1
|
Lipp C, Laamari L, Bertsch A, Podlesek D, Bensafi M, Hummel T, Brugger J. Devices for the electrical stimulation of the olfactory system: A review. Biosens Bioelectron 2025; 271:117063. [PMID: 39729754 DOI: 10.1016/j.bios.2024.117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024]
Abstract
The loss of olfactory function has a profound impact on quality of life, affecting not only sensory perception but also memory, emotion, and overall well-being. Despite this, advancements in olfactory prostheses have lagged significantly behind those made for vision and hearing restoration. This review offers a comprehensive analysis of the current state of devices for electrical stimulation of the olfactory system. We begin by providing an overview of the olfactory system's structure and function, emphasizing the neural pathways involved in smell perception. Following this, we explore the key challenges associated with chronic implantation and electrical stimulation, material biocompatibility, inflammation risks, and ensuring long-term functionality and durability. A detailed analysis of existing neural stimulation devices-including ECoG, intracortical, and depth electrodes-is presented, assessing their potential for application in olfactory stimulation. We also discuss the limitations and pitfalls of current approaches and explore new emerging technologies aimed at overcoming these obstacles. A comprehensive literature review about the olfactory system electrical stimulation is reported, and results are analyzed to identify the most promising routes. Finally, the review highlights emerging technologies, ongoing research, and the ethical considerations associated with olfactory implants, along with future directions for developing more effective, safe, and durable solutions to restore the sense of smell for individuals with olfactory disorders.
Collapse
Affiliation(s)
- Clémentine Lipp
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Lara Laamari
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Arnaud Bertsch
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Dino Podlesek
- Department of Neurosurgery, University Clinic "Carl Gustav Carus", TU Dresden, Germany
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Lyon 1 Centre Hospitalier Le Vinatier, 69675, Bron, France
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Jürgen Brugger
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Tankus A, Stern E, Klein G, Kaptzon N, Nash L, Marziano T, Shamia O, Gurevitch G, Bergman L, Goldstein L, Fahoum F, Strauss I. A Speech Neuroprosthesis in the Frontal Lobe and Hippocampus: Decoding High-Frequency Activity into Phonemes. Neurosurgery 2025; 96:356-364. [PMID: 38934637 DOI: 10.1227/neu.0000000000003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/05/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Loss of speech due to injury or disease is devastating. Here, we report a novel speech neuroprosthesis that artificially articulates building blocks of speech based on high-frequency activity in brain areas never harnessed for a neuroprosthesis before: anterior cingulate and orbitofrontal cortices, and hippocampus. METHODS A 37-year-old male neurosurgical epilepsy patient with intact speech, implanted with depth electrodes for clinical reasons only, silently controlled the neuroprosthesis almost immediately and in a natural way to voluntarily produce 2 vowel sounds. RESULTS During the first set of trials, the participant made the neuroprosthesis produce the different vowel sounds artificially with 85% accuracy. In the following trials, performance improved consistently, which may be attributed to neuroplasticity. We show that a neuroprosthesis trained on overt speech data may be controlled silently. CONCLUSION This may open the way for a novel strategy of neuroprosthesis implantation at earlier disease stages (eg, amyotrophic lateral sclerosis), while speech is intact, for improved training that still allows silent control at later stages. The results demonstrate clinical feasibility of direct decoding of high-frequency activity that includes spiking activity in the aforementioned areas for silent production of phonemes that may serve as a part of a neuroprosthesis for replacing lost speech control pathways.
Collapse
Affiliation(s)
- Ariel Tankus
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv , Israel
- Department of Neurology and Neurosurgery, School of Medicine, Tel Aviv University, Tel Aviv , Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv , Israel
| | - Einat Stern
- Department of Neurology and Neurosurgery, School of Medicine, Tel Aviv University, Tel Aviv , Israel
| | - Guy Klein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv , Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv , Israel
| | - Nufar Kaptzon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv , Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv , Israel
| | - Lilac Nash
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv , Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv , Israel
| | - Tal Marziano
- School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv , Israel
| | - Omer Shamia
- School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv , Israel
| | - Guy Gurevitch
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv , Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv , Israel
| | - Lottem Bergman
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv , Israel
| | - Lilach Goldstein
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv , Israel
| | - Firas Fahoum
- Department of Neurology and Neurosurgery, School of Medicine, Tel Aviv University, Tel Aviv , Israel
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv , Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv , Israel
- Department of Neurology and Neurosurgery, School of Medicine, Tel Aviv University, Tel Aviv , Israel
| |
Collapse
|
3
|
Valjakka JS, Paasonen J, Salo RA, Paasonen E, Stenroos P, Gureviciene I, Kettunen M, Idiyatullin D, Tanila H, Michaeli S, Mangia S, Gröhn O. Correlation of zero echo time functional MRI with neuronal activity in rats. J Cereb Blood Flow Metab 2025:271678X251314682. [PMID: 39846159 PMCID: PMC11758440 DOI: 10.1177/0271678x251314682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined. Therefore, we aimed to derive a function to model the temporal dynamics of the zero-TE fMRI signal in response to neuronal activity. Furthermore, we examined the correlation of zero-TE fMRI with neuronal activity across stimulation frequencies. To these ends, we performed simultaneous electrophysiological recordings and zero-TE fMRI in rats subjected to whisker stimulation. The presented impulse response function provides a basis for the statistical modeling of neuronal activity-induced changes in the zero-TE fMRI signal. The temporal characteristics of the zero-TE fMRI response were found to be consistent with the previously postulated non-BOLD hemodynamic origin of the functional contrast. The zero-TE fMRI signal was well predicted by electrophysiological recordings, although systematic stimulation-dependent residuals were also observed, suggesting nonlinearities in neurovascular coupling. We conclude that zero-TE fMRI provides a robust proxy for neuronal activity.
Collapse
Affiliation(s)
- Juha S Valjakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neurocenter, Kuopio University Hospital, Kuopio, Finland
| | - Petteri Stenroos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irina Gureviciene
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Robbins C, Eles J, Zheng XS, Kozai T, Cui XT, Vazquez A. Longitudinal changes in electrophysiology and widefield calcium imaging following electrode implantation. J Neural Eng 2024; 21:066043. [PMID: 39693772 DOI: 10.1088/1741-2552/ada0eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/18/2024] [Indexed: 12/20/2024]
Abstract
Objective. Intracortical microelectrode arrays often fail to deliver reliable signal quality over chronic recordings, and the effect of an implanted recording array on local neural circuits is not completely understood.Approach. In this work we examined the degree of correlation and the spatial dependence of that relationship between widefield calcium imaging and electrophysiology in awake mice from 4 to 44 d post-implantation. Both correlation maps and spike-triggered averaging (STA) are used to characterize the relationship.Main results. We find that calcium imaging and electrophysiological signal are highly correlated in all animals, however, spatial variability in the correlation is affected by inherent correlation in the calcium imaging signal. Some animals exhibit a high degree of apparent neuronal synchrony in the vicinity of the probe at 4 d, while more diversity of response is detected at later time points.Significance. Degree of synchrony appears to be related to the acute injury response to the implanted electrode, with later time points displaying less synchrony. STA may be used to uncover the diverse cortical connections of spiking units.
Collapse
Affiliation(s)
- Constance Robbins
- Department of Radiology, University of Pittsburgh, 203 Lothrop St, EEI Suite 700, Pittsburgh, PA 15213, United States of America
| | - James Eles
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
| | - X Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
| | - Takashi Kozai
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15260, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
- Center for Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, United States of America
- Neuroscience Institute at Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15260, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, 203 Lothrop St, EEI Suite 700, Pittsburgh, PA 15213, United States of America
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
| |
Collapse
|
5
|
Hu N, Shi JX, Chen C, Xu HH, Chang ZH, Hu PF, Guo D, Zhang XW, Shao WW, Fan X, Zuo JC, Ming D, Li XH. Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury. Nat Commun 2024; 15:9580. [PMID: 39505863 PMCID: PMC11541701 DOI: 10.1038/s41467-024-53858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The reconstruction of damaged neural circuits is critical for neurological repair after brain injury. Classical brain-computer interfaces (BCIs) allow direct communication between the brain and external controllers to compensate for lost functions. Importantly, there is increasing potential for generalized BCIs to input information into the brains to restore damage, but their effectiveness is limited when a large injured cavity is caused. Notably, it might be overcome by transplantation of brain organoids into the damaged region. Here, we construct innovative BCIs mediated by implantable organoids, coined as organoid-brain-computer interfaces (OBCIs). We assess the prolonged safety and feasibility of the OBCIs, and explore neuroregulatory strategies. OBCI stimulation promotes progressive differentiation of grafts and enhances structural-functional connections within organoids and the host brain, promising to repair the damaged brain via regenerating and regulating, potentially directing neurons to preselected targets and recovering functional neural networks in the future.
Collapse
Affiliation(s)
- Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Peng-Fei Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China.
| |
Collapse
|
6
|
Su H, Mao L, Chen X, Liu P, Pu J, Mao Z, Fujiwara T, Ma Y, Mao X, Li T. A Complementary Dual-Mode Ion-Electron Conductive Hydrogel Enables Sustained Conductivity for Prolonged Electroencephalogram Recording. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405273. [PMID: 39116352 PMCID: PMC11481220 DOI: 10.1002/advs.202405273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Conductive gel interface materials are widely employed as reliable agents for electroencephalogram (EEG) recording. However, prolonged EEG recording poses challenges in maintaining stable and efficient capture due to inevitable evaporation in hydrogels, which restricts sustained high conductivity. This study introduces a novel ion-electron dual-mode conductive hydrogel synthesized through a cost-effective and streamlined process. By embedding graphite nanoparticles into ionic hyaluronic acid (HAGN), the hydrogel maintains higher conductivity for over 72 h, outperforming commercial gels. Additionally, it exhibits superior low skin contact impedance, considerable electrochemical capability, and excellent tensile and adhesion performance in both dry and wet conditions. The biocompatibility of the HAGN hydrogel, verified through in vitro cell viability assays and in vivo skin irritation tests, underscores its suitability for prolonged skin contact without eliciting adverse reactions. Furthermore, in vivo EEG tests confirm the HAGN hydrogel's capability to provide high-fidelity signal acquisition across multiple EEG protocols. The HAGN hydrogel proves to be an effective interface for prolonged high-quality EEG recording, facilitating high-performance capture and classification of evoked potentials, thereby providing a reliable conductive medium for EEG-based systems.
Collapse
Affiliation(s)
- Hengjie Su
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Linna Mao
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Xiaoqi Chen
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
- Department of Biomedical EngineeringTiangong UniversityTianjin300187China
| | - Peishuai Liu
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Jiangbo Pu
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Zhuo Mao
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Tomoko Fujiwara
- Department of ChemistryThe University of MemphisMemphisTN38152USA
| | - Yue Ma
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Xinyang Mao
- Department of Biomedical EngineeringTianjin Medical UniversityTianjin301700China
| | - Ting Li
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| |
Collapse
|
7
|
Darlot F, Villard P, Salam LA, Rousseau L, Piret G. Glial scarring around intra-cortical MEA implants with flexible and free microwires inserted using biodegradable PLGA needles. Front Bioeng Biotechnol 2024; 12:1408088. [PMID: 39104630 PMCID: PMC11298340 DOI: 10.3389/fbioe.2024.1408088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction: Many invasive and noninvasive neurotechnologies are being developed to help treat neurological pathologies and disorders. Making a brain implant safe, stable, and efficient in the long run is one of the requirements to conform with neuroethics and overcome limitations for numerous promising neural treatments. A main limitation is low biocompatibility, characterized by the damage implants create in brain tissue and their low adhesion to it. This damage is partly linked to friction over time due to the mechanical mismatch between the soft brain tissue and the more rigid wires. Methods: Here, we performed a short biocompatibility assessment of bio-inspired intra-cortical implants named "Neurosnooper" made of a microelectrode array consisting of a thin, flexible polymer-metal-polymer stack with microwires that mimic axons. Implants were assembled into poly-lactic-glycolic acid (PLGA) biodegradable needles for their intra-cortical implantation. Results and Discussion: The study of glial scars around implants, at 7 days and 2 months post-implantation, revealed a good adhesion between the brain tissue and implant wires and a low glial scar thickness. The lowest corresponds to electrode wires with a section size of 8 μm × 10 μm, compared to implants with the 8 μm × 50 μm electrode wire section size, and a straight shape appears to be better than a zigzag. Therefore, in addition to flexibility, size and shape parameters are important when designing electrode wires for the next generation of clinical intra-cortical implants.
Collapse
Affiliation(s)
- Fannie Darlot
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| | - Paul Villard
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| | - Lara Abdel Salam
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| | | | - Gaëlle Piret
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Liu Z, Gu Y, Yu L, Yang X, Ma Z, Zhao J, Gu Y. Locomotion Control of Cyborg Insects by Charge-Balanced Biphasic Electrical Stimulation. CYBORG AND BIONIC SYSTEMS 2024; 5:0134. [PMID: 38975251 PMCID: PMC11223913 DOI: 10.34133/cbsystems.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024] Open
Abstract
The integration of electronic stimulation devices with insects in the context of cyborg insect systems has great application potential, particularly in the fields of environmental monitoring, urban surveillance, and rescue missions. Despite considerable advantages compared to the current robot technology, including flexibility, durability, and low energy consumption, this integration faces certain challenges related to the potential risk of charge accumulation caused by prolonged and repetitive electrical stimulations. To address these challenges, this study proposes a universal system for remote signal output control using infrared signals. The proposed system integrates high-precision digital-to-analog converters capable of generating customized waveform electrical stimulation signals within defined ranges. This enhances the accuracy of locomotion control in cyborg insects while maintaining real-time control and dynamic parameter adjustment. The proposed system is verified by experiments. The experimental results show that the signals generated by the proposed system have a success rate of over 76.25% in controlling the turning locomotion of cyborg insects, which is higher than previously reported results. In addition, the charge-balanced characteristics of these signals can minimize muscle tissue damage, thus substantially enhancing control repeatability. This study provides a comprehensive solution for the remote control and monitoring of cyborg insects, whose flexibility and adaptability can meet various application and experimental requirements. The results presented in this study lay a robust foundation for further advancement of various technologies, particularly those related to cyborg insect locomotion control systems and wireless control mechanisms for cyborg insects.
Collapse
Affiliation(s)
- Zhong Liu
- School of Computing and Artificial Intelligence,
Beijing Technology and Business University, Beijing 100048, China
| | - Yongxia Gu
- School of Computing and Artificial Intelligence,
Beijing Technology and Business University, Beijing 100048, China
| | - Li Yu
- School of Mechanical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xiang Yang
- School of Computing and Artificial Intelligence,
Beijing Technology and Business University, Beijing 100048, China
| | - Zhiyun Ma
- School of Mechanical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Jieliang Zhao
- School of Mechanical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yufei Gu
- New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
9
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Xing Z, Hu Q, Wang W, Kong N, Gao R, Shen X, Xu S, Meng L, Liu JR, Zhu X. An NIR-IIb emissive transmembrane voltage nano-indicator for the optical monitoring of electrophysiological activities in vivo. MATERIALS HORIZONS 2024; 11:2457-2468. [PMID: 38465967 DOI: 10.1039/d3mh02189k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In vivo transmembrane-voltage detection reflected the electrophysiological activities of the biological system, which is crucial for the diagnosis of neuronal disease. Traditional implanted electrodes can only monitor limited regions and induce relatively large tissue damage. Despite emerging monitoring methods based on optical imaging have access to signal recording in a larger area, the recording wavelength of less than 1000 nm seriously weakens the detection depth and resolution in vivo. Herein, a Förster resonance energy transfer (FRET)-based nano-indicator, NaYbF4:Er@NaYF4@Cy7.5@DPPC (Cy7.5-ErNP) with emission in the near-infrared IIb biological window (NIR-IIb, 1500-1700 nm) is developed for transmembrane-voltage detection. Cy7.5 dye is found to be voltage-sensitive and is employed as the energy donor for the energy transfer to the lanthanide nanoparticle, NaYbF4:Er@NaYF4 (ErNP), which works as the acceptor to achieve electrophysiological signal responsive NIR-IIb luminescence. Benefiting from the high penetration and low scattering of NIR-IIb luminescence, the Cy7.5-ErNP enables both the visualization of action potential in vitro and monitoring of Mesial Temporal lobe epilepsy (mTLE) disease in vivo. This work presents a concept for leveraging the lanthanide luminescent nanoprobes to visualize electrophysiological activity in vivo, which facilitates the development of an optical nano-indicator for the diagnosis of neurological disorders.
Collapse
Affiliation(s)
- Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Weikan Wang
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, P. R. China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Xiaolei Shen
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, P. R. China
| | - Sixin Xu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Lingkai Meng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Jian-Ren Liu
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, P. R. China
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| |
Collapse
|
11
|
Yi Y, An HW, Wang H. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305099. [PMID: 37490938 DOI: 10.1002/adma.202305099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.
Collapse
Affiliation(s)
- Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Varaganti P, Seo S. Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs. Biomimetics (Basel) 2024; 9:273. [PMID: 38786483 PMCID: PMC11118077 DOI: 10.3390/biomimetics9050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Recent advancements in biomimetics have spurred significant innovations in prosthetic limb development by leveraging the intricate designs and mechanisms found in nature. Biomimetics, also known as "nature-inspired engineering", involves studying and emulating biological systems to address complex human challenges. This comprehensive review provides insights into the latest trends in biomimetic prosthetics, focusing on leveraging knowledge from natural biomechanics, sensory feedback mechanisms, and control systems to closely mimic biological appendages. Highlighted breakthroughs include the integration of cutting-edge materials and manufacturing techniques such as 3D printing, facilitating seamless anatomical integration of prosthetic limbs. Additionally, the incorporation of neural interfaces and sensory feedback systems enhances control and movement, while technologies like 3D scanning enable personalized customization, optimizing comfort and functionality for individual users. Ongoing research efforts in biomimetics hold promise for further advancements, offering enhanced mobility and integration for individuals with limb loss or impairment. This review illuminates the dynamic landscape of biomimetic prosthetic technology, emphasizing its transformative potential in rehabilitation and assistive technologies. It envisions a future where prosthetic solutions seamlessly integrate with the human body, augmenting both mobility and quality of life.
Collapse
Affiliation(s)
| | - Soonmin Seo
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
13
|
Liu X, Gong Y, Jiang Z, Stevens T, Li W. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci 2024; 18:1348434. [PMID: 38686330 PMCID: PMC11057246 DOI: 10.3389/fnins.2024.1348434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Flexible high-density microelectrode arrays (HDMEAs) are emerging as a key component in closed-loop brain-machine interfaces (BMIs), providing high-resolution functionality for recording, stimulation, or both. The flexibility of these arrays provides advantages over rigid ones, such as reduced mismatch between interface and tissue, resilience to micromotion, and sustained long-term performance. This review summarizes the recent developments and applications of flexible HDMEAs in closed-loop BMI systems. It delves into the various challenges encountered in the development of ideal flexible HDMEAs for closed-loop BMI systems and highlights the latest methodologies and breakthroughs to address these challenges. These insights could be instrumental in guiding the creation of future generations of flexible HDMEAs, specifically tailored for use in closed-loop BMIs. The review thoroughly explores both the current state and prospects of these advanced arrays, emphasizing their potential in enhancing BMI technology.
Collapse
Affiliation(s)
- Xiang Liu
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
| | - Yan Gong
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Zebin Jiang
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Trevor Stevens
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Wen Li
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Abu Shihada J, Jung M, Decke S, Koschinski L, Musall S, Rincón Montes V, Offenhäusser A. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305944. [PMID: 38240370 PMCID: PMC10987114 DOI: 10.1002/advs.202305944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Indexed: 02/16/2024]
Abstract
Planar microelectrode arrays (MEAs) for - in vitro or in vivo - neuronal signal recordings lack the spatial resolution and sufficient signal-to-noise ratio (SNR) required for a detailed understanding of neural network function and synaptic plasticity. To overcome these limitations, a highly customizable three-dimensional (3D) printing process is used in combination with thin film technology and a self-aligned template-assisted electrochemical deposition process to fabricate 3D-printed-based MEAs on stiff or flexible substrates. Devices with design flexibility and physical robustness are shown for recording neural activity in different in vitro and in vivo applications, achieving high-aspect ratio 3D microelectrodes of up to 33:1. Here, MEAs successfully record neural activity in 3D neuronal cultures, retinal explants, and the cortex of living mice, thereby demonstrating the versatility of the 3D MEA while maintaining high-quality neural recordings. Customizable 3D MEAs provide unique opportunities to study neural activity under regular or various pathological conditions, both in vitro and in vivo, and contribute to the development of drug screening and neuromodulation systems that can accurately monitor the activity of large neural networks over time.
Collapse
Affiliation(s)
- J. Abu Shihada
- Institute of Biological Information Processing (IBI‐3) – BioelectronicsForschungszentrum52428JülichGermany
- RWTH Aachen University52062AachenGermany
| | - M. Jung
- Institute of Biological Information Processing (IBI‐3) – BioelectronicsForschungszentrum52428JülichGermany
- RWTH Aachen University52062AachenGermany
| | - S. Decke
- Institute of Biological Information Processing (IBI‐3) – BioelectronicsForschungszentrum52428JülichGermany
| | - L. Koschinski
- Institute of Biological Information Processing (IBI‐3) – BioelectronicsForschungszentrum52428JülichGermany
- RWTH Aachen University52062AachenGermany
- Helmholtz Nano Facility (HNF)Forschungszentrum Jülich52428JülichGermany
| | - S. Musall
- Institute of Biological Information Processing (IBI‐3) – BioelectronicsForschungszentrum52428JülichGermany
- RWTH Aachen University52062AachenGermany
- Faculty of MedicineInstitute of Experimental Epileptology and Cognition ResearchUniversity of Bonn53127BonnGermany
- University Hospital Bonn53127BonnGermany
| | - V. Rincón Montes
- Institute of Biological Information Processing (IBI‐3) – BioelectronicsForschungszentrum52428JülichGermany
| | - A. Offenhäusser
- Institute of Biological Information Processing (IBI‐3) – BioelectronicsForschungszentrum52428JülichGermany
| |
Collapse
|
15
|
Wang X, Jiang W, Yang H, Ye Y, Zhou Z, Sun L, Nie Y, Tao TH, Wei X. Ultraflexible PEDOT:PSS/IrO x-Modified Electrodes: Applications in Behavioral Modulation and Neural Signal Recording in Mice. MICROMACHINES 2024; 15:447. [PMID: 38675259 PMCID: PMC11051784 DOI: 10.3390/mi15040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Recent advancements in neural probe technology have become pivotal in both neuroscience research and the clinical management of neurological disorders. State-of-the-art developments have led to the advent of multichannel, high-density bidirectional neural interfaces that are adept at both recording and modulating neuronal activity within the central nervous system. Despite this progress, extant bidirectional probes designed for simultaneous recording and stimulation are beset with limitations, including elicitation of inflammatory responses and insufficient charge injection capacity. In this paper, we delineate the design and application of an innovative ultraflexible bidirectional neural probe engineered from polyimide. This probe is distinguished by its ability to facilitate high-resolution recordings and precise stimulation control in deep brain regions. Electrodes enhanced with a PEDOT:PSS/IrOx composite exhibit a substantial increase in charge storage capacity, escalating from 0.14 ± 0.01 mC/cm2 to an impressive 24.75 ± 0.18 mC/cm2. This augmentation significantly bolsters the electrodes' charge transfer efficacy. In tandem, we observed a notable reduction in electrode impedance, from 3.47 ± 1.77 MΩ to a mere 41.88 ± 4.04 kΩ, while the phase angle exhibited a positive shift from -72.61 ± 1.84° to -34.17 ± 0.42°. To substantiate the electrodes' functional prowess, we conducted in vivo experiments, where the probes were surgically implanted into the bilateral motor cortex of mice. These experiments involved the synchronous recording and meticulous analysis of neural signal fluctuations during stimulation and an assessment of the probes' proficiency in modulating directional turning behaviors in the subjects. The empirical evidence corroborates that targeted stimulation within the bilateral motor cortex of mice can modulate the intensity of neural signals in the stimulated locale, enabling the directional control of the mice's turning behavior to the contralateral side of the stimulation site.
Collapse
Affiliation(s)
- Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqi Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
| | - Yifei Ye
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yanyan Nie
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China;
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Neuroxess Co., Ltd. (Jiangxi), Nanchang 330029, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai 200040, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Valle G, Katic Secerovic N, Eggemann D, Gorskii O, Pavlova N, Petrini FM, Cvancara P, Stieglitz T, Musienko P, Bumbasirevic M, Raspopovic S. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat Commun 2024; 15:1151. [PMID: 38378671 PMCID: PMC10879152 DOI: 10.1038/s41467-024-45190-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Artificial communication with the brain through peripheral nerve stimulation shows promising results in individuals with sensorimotor deficits. However, these efforts lack an intuitive and natural sensory experience. In this study, we design and test a biomimetic neurostimulation framework inspired by nature, capable of "writing" physiologically plausible information back into the peripheral nervous system. Starting from an in-silico model of mechanoreceptors, we develop biomimetic stimulation policies. We then experimentally assess them alongside mechanical touch and common linear neuromodulations. Neural responses resulting from biomimetic neuromodulation are consistently transmitted towards dorsal root ganglion and spinal cord of cats, and their spatio-temporal neural dynamics resemble those naturally induced. We implement these paradigms within the bionic device and test it with patients (ClinicalTrials.gov identifier NCT03350061). He we report that biomimetic neurostimulation improves mobility (primary outcome) and reduces mental effort (secondary outcome) compared to traditional approaches. The outcomes of this neuroscience-driven technology, inspired by the human body, may serve as a model for advancing assistive neurotechnologies.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Natalija Katic Secerovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
- School of Electrical Engineering, University of Belgrade, 11000, Belgrade, Serbia
- The Mihajlo Pupin Institute, University of Belgrade, 11000, Belgrade, Serbia
| | - Dominic Eggemann
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Oleg Gorskii
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Neuromodulation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", 119049, Moscow, Russia
| | - Natalia Pavlova
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | - Paul Cvancara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Pavel Musienko
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Sirius University of Science and Technology, Neuroscience Program, Sirius, Russia
- Laboratory for Neurorehabilitation Technologies, Life Improvement by Future Technologies Center "LIFT", Moscow, Russia
| | - Marko Bumbasirevic
- Orthopaedic Surgery Department, School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
17
|
Donati E, Valle G. Neuromorphic hardware for somatosensory neuroprostheses. Nat Commun 2024; 15:556. [PMID: 38228580 PMCID: PMC10791662 DOI: 10.1038/s41467-024-44723-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies.
Collapse
Affiliation(s)
- Elisa Donati
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Rahman MM, Bhuiyan NH, Park M, Uddin MJ, Jin GJ, Shim JS. Lithography-free interdigitated electrodes by trench-filling patterning on polymer substrate for Alzheimer's disease detection. Biosens Bioelectron 2024; 244:115803. [PMID: 37956638 DOI: 10.1016/j.bios.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Microelectrodes have played a crucial role in electrochemistry for the last few decades. However, the conventional lithographic processes, the key players in fabrication, are nonetheless technologically challenging, pricey, and lack reproducibility. In this work has developed a novel and low-cost patterned-replication fabrication technology for interdigitated electrode array (IDA) electrodes on the polymer substrate. Conventional UV-lithography has been utilized to fabricate the nickel IDA electrode pattern as a master mold on the stainless-steel substrate, which was replicated onto the polymer substrate by the hot-emboss technique. Then, gold was deposited on the replicated wafer by electron beam evaporation, and finally adhesive tape lift-off was used to obtain the gold IDA electrode. The fabricated IDA electrode was applied for electrochemical detection of various p-aminophenol (PAP) concentrations as a representative biomarker with a detection limit of 0.01 nM. Finally, different levels of amyloid beta 42 (Aß42) and amyloid beta aggregated (Aß Agg.), two Alzheimer's disease (AD) biomarkers, were measured using the developed IDA electrode via e-ELISA using enzyme by-products PAP. While quantified, the proposed IDA electrode successfully detects Aß42 and Aß Agg. with the lower detection limit (LOD) of 3.9 and 7.81 pg/ml, respectively.
Collapse
Affiliation(s)
- M Mahabubur Rahman
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Nabil H Bhuiyan
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - MinJun Park
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - M Jalal Uddin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Gyeong J Jin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Joon S Shim
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
19
|
Ionescu ON, Franti E, Carbunaru V, Moldovan C, Dinulescu S, Ion M, Dragomir DC, Mihailescu CM, Lascar I, Oproiu AM, Neagu TP, Costea R, Dascalu M, Teleanu MD, Ionescu G, Teleanu R. System of Implantable Electrodes for Neural Signal Acquisition and Stimulation for Wirelessly Connected Forearm Prosthesis. BIOSENSORS 2024; 14:31. [PMID: 38248408 PMCID: PMC10813559 DOI: 10.3390/bios14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
There is great interest in the development of prosthetic limbs capable of complex activities that are wirelessly connected to the patient's neural system. Although some progress has been achieved in this area, one of the main problems encountered is the selective acquisition of nerve impulses and the closing of the automation loop through the selective stimulation of the sensitive branches of the patient. Large-scale research and development have achieved so-called "cuff electrodes"; however, they present a big disadvantage: they are not selective. In this article, we present the progress made in the development of an implantable system of plug neural microelectrodes that relate to the biological nerve tissue and can be used for the selective acquisition of neuronal signals and for the stimulation of specific nerve fascicles. The developed plug electrodes are also advantageous due to their small thickness, as they do not trigger nerve inflammation. In addition, the results of the conducted tests on a sous scrofa subject are presented.
Collapse
Affiliation(s)
- Octavian Narcis Ionescu
- Faculty of Mechanical and Electrical Engineering, Petroleum and Gas University from Ploiesti, 100680 Ploiesti, Romania; (O.N.I.); (G.I.)
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Eduard Franti
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
- ICIA, Centre of New Electronic Architectures, 061071 Bucharest, Romania;
| | - Vlad Carbunaru
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Carmen Moldovan
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Silviu Dinulescu
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Marian Ion
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - David Catalin Dragomir
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Carmen Marinela Mihailescu
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Ioan Lascar
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Ana Maria Oproiu
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Tiberiu Paul Neagu
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Ruxandra Costea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Monica Dascalu
- ICIA, Centre of New Electronic Architectures, 061071 Bucharest, Romania;
- Faculty of Electronics, Telecommunications and Information Technology, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mihai Daniel Teleanu
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Gabriela Ionescu
- Faculty of Mechanical and Electrical Engineering, Petroleum and Gas University from Ploiesti, 100680 Ploiesti, Romania; (O.N.I.); (G.I.)
| | - Raluca Teleanu
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| |
Collapse
|
20
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
21
|
Boulingre M, Portillo-Lara R, Green RA. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem Commun (Camb) 2023; 59:14745-14758. [PMID: 37991846 PMCID: PMC10720954 DOI: 10.1039/d3cc05006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Implantable neural interfaces (NIs) have emerged in the clinic as outstanding tools for the management of a variety of neurological conditions caused by trauma or disease. However, the foreign body reaction triggered upon implantation remains one of the major challenges hindering the safety and longevity of NIs. The integration of tools and principles from biomaterial design and tissue engineering has been investigated as a promising strategy to develop NIs with enhanced functionality and performance. In this Feature Article, we highlight the main bioengineering approaches for the development of biohybrid NIs with an emphasis on relevant device design criteria. Technical and scientific challenges associated with the fabrication and functional assessment of technologies composed of both artificial and biological components are discussed. Lastly, we provide future perspectives related to engineering, regulatory, and neuroethical challenges to be addressed towards the realisation of the promise of biohybrid neurotechnology.
Collapse
Affiliation(s)
- Marjolaine Boulingre
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
22
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
23
|
Yan P, Akhoundi A, Shah NP, Tandon P, Muratore DG, Chichilnisky EJ, Murmann B. Data Compression Versus Signal Fidelity Tradeoff in Wired-OR Analog-to-Digital Compressive Arrays for Neural Recording. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:754-767. [PMID: 37402181 DOI: 10.1109/tbcas.2023.3292058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Future high-density and high channel count neural interfaces that enable simultaneous recording of tens of thousands of neurons will provide a gateway to study, restore and augment neural functions. However, building such technology within the bit-rate limit and power budget of a fully implantable device is challenging. The wired-OR compressive readout architecture addresses the data deluge challenge of a high channel count neural interface using lossy compression at the analog-to-digital interface. In this article, we assess the suitability of wired-OR for several steps that are important for neuroengineering, including spike detection, spike assignment and waveform estimation. For various wiring configurations of wired-OR and assumptions about the quality of the underlying signal, we characterize the trade-off between compression ratio and task-specific signal fidelity metrics. Using data from 18 large-scale microelectrode array recordings in macaque retina ex vivo, we find that for an event SNR of 7-10, wired-OR correctly detects and assigns at least 80% of the spikes with at least 50× compression. The wired-OR approach also robustly encodes action potential waveform information, enabling downstream processing such as cell-type classification. Finally, we show that by applying an LZ77-based lossless compressor (gzip) to the output of the wired-OR architecture, 1000× compression can be achieved over the baseline recordings.
Collapse
|
24
|
Sayeed SYB, Al Duhni G, Navaz HV, Volakis JL, Pulugurtha MR. Passive Impedance-Matched Neural Recording Systems for Improved Signal Sensitivity. SENSORS (BASEL, SWITZERLAND) 2023; 23:6441. [PMID: 37514733 PMCID: PMC10385688 DOI: 10.3390/s23146441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Wireless passive neural recording systems integrate sensory electrophysiological interfaces with a backscattering-based telemetry system. Despite the circuit simplicity and miniaturization with this topology, the high electrode-tissue impedance creates a major barrier to achieving high signal sensitivity and low telemetry power. In this paper, buffered impedance is utilized to address this limitation. The resulting passive telemetry-based wireless neural recording is implemented with thin flexible packages. Thus, the paper reports neural recording implants and integrator systems with three improved features: (1) passive high impedance matching with a simple buffer circuit, (2) a bypass capacitor to route the high frequency and improve mixer performance, and (3) system packaging with an integrated, flexible, biocompatible patch to capture the neural signal. The patch consists of a U-slot dual-band patch antenna that receives the transmitted power from the interrogator and backscatters the modulated carrier power at a different frequency. When the incoming power was 5-10 dBm, the neurosensor could communicate with the interrogator at a maximum distance of 5 cm. A biosignal as low as 80 µV peak was detected at the receiver.
Collapse
Affiliation(s)
- Sk Yeahia Been Sayeed
- Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174-1630, USA
| | - Ghaleb Al Duhni
- Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174-1630, USA
| | - Hooman Vatan Navaz
- Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174-1630, USA
| | - John L Volakis
- Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174-1630, USA
| | - Markondeya Raj Pulugurtha
- Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174-1630, USA
| |
Collapse
|
25
|
Fredj Z, Sawan M. Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends. BIOSENSORS 2023; 13:211. [PMID: 36831978 PMCID: PMC9953752 DOI: 10.3390/bios13020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain's highest levels of mental function and play key roles in neurological disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have been widely adopted and perceived as a dramatically accelerating development in the last decade. Therefore, this review aims to provide a comprehensive overview on the recent advances and main challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors, reviewing their sensing mechanism and the unique characteristics brought by the emergence of nanotechnology. Based on specific biosensors' performance metrics, multiple perspectives on the therapeutic use of nanomaterial for catecholamines analysis and future development trends are also summarized.
Collapse
Affiliation(s)
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|