1
|
Dor H, Hertzberg L. Schizophrenia Biomarkers: Blood Transcriptome Suggests Two Molecular Subtypes. Neuromolecular Med 2024; 26:50. [PMID: 39609319 PMCID: PMC11604812 DOI: 10.1007/s12017-024-08817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
Schizophrenia is a chronic illness that imposes a significant burden on patients, their families, and the health care system. While it has a substantial genetic component, its heterogeneous nature-both genetic and clinical-limits the ability to identify causal genes and mechanisms. In this study, we analyzed the blood transcriptomes of 398 samples (212 patients with schizophrenia and 186 controls) obtained from five public datasets. We demonstrated this heterogeneity by clustering patients with schizophrenia into two molecular subtypes using an unsupervised machine-learning algorithm. We found that the genes most influential in clustering were enriched in pathways related to the ribosome and ubiquitin-proteasomes system, which are known to be associated with schizophrenia. Based on the expression levels of these genes, we developed a logistic regression model capable of predicting schizophrenia samples in unrelated datasets with a positive predictive value of 64% (p value = 0.039). In the future, integrating blood transcriptomics with clinical characteristics may enable the definition of distinct molecular subtypes, leading to a better understanding of schizophrenia pathophysiology and aiding in the development of personalized drugs and treatment options.
Collapse
Affiliation(s)
- Herut Dor
- The Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Libi Hertzberg
- The Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel.
- Shalvata Mental Health Center, Affiliated with the Faculty of Medicine, Tel-Aviv University, 13 Aliat Hanoar St., 45100, Hod Hasharon, Israel.
| |
Collapse
|
2
|
Zaharija B, Bradshaw NJ. Aggregation of Disrupted in Schizophrenia 1 arises from a central region of the protein. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110923. [PMID: 38135095 DOI: 10.1016/j.pnpbp.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
An emerging approach to studying major mental illness is through proteostasis, with the identification of several proteins that form insoluble aggregates in the brains of patients. One of these is Disrupted in Schizophrenia 1 (DISC1), a neurodevelopmentally-important scaffold protein, and product of a classic schizophrenia risk gene. DISC1 aggregates have been detected in post mortem brain tissue from patients with schizophrenia, bipolar disorder and major depressive disorder, as well as various model systems, although the mechanism by which it aggregates is still unclear. Aggregation of two other proteins implicated in mental illness, TRIOBP-1 and NPAS3, was shown to be dependent on very specific structural regions of the protein. We therefore looked at the domain structure of DISC1, and investigated which structural elements are key for its aggregation. While none of the known structured DISC1 regions (named D, I, S and C respectively) formed aggregates individually when expressed in neuroblastoma cells, the combination of the D and I regions, plus the linker region between them, formed visible aggregates. Further refinement revealed that a region of approximately 30 amino acids between these two regions is critical for aggregation, and deletion of this region is sufficient to abolish the aggregation propensity of DISC1. This finding from mammalian cell culture contrasts with the recent determination that the C-region of DISC1 can aggregate in vitro, although some variations of the C-terminal of DISC1 could aggregate in our system. It therefore appears likely that DISC1 aggregation, implicated in mental illness, can occur through at least two distinct mechanisms.
Collapse
Affiliation(s)
- Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia.
| |
Collapse
|
3
|
Samardžija B, Juković M, Zaharija B, Renner É, Palkovits M, Bradshaw NJ. Co-Aggregation and Parallel Aggregation of Specific Proteins in Major Mental Illness. Cells 2023; 12:1848. [PMID: 37508512 PMCID: PMC10378145 DOI: 10.3390/cells12141848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Disrupted proteostasis is an emerging area of research into major depressive disorder. Several proteins have been implicated as forming aggregates specifically in the brains of subsets of patients with psychiatric illnesses. These proteins include CRMP1, DISC1, NPAS3 and TRIOBP-1. It is unclear, however, whether these proteins normally aggregate together in the same individuals and, if so, whether each protein aggregates independently of each other ("parallel aggregation") or if the proteins physically interact and aggregate together ("co-aggregation"). MATERIALS AND METHODS Post mortem insular cortex samples from major depressive disorder and Alzheimer's disease patients, suicide victims and control individuals had their insoluble fractions isolated and tested by Western blotting to determine which of these proteins are insoluble and, therefore, likely to be aggregating. The ability of the proteins to co-aggregate (directly interact and form common aggregate structures) was tested by systematic pairwise expression of the proteins in SH-SY5Y neuroblastoma cells, which were then examined by immunofluorescent microscopy. RESULTS Many individuals displayed multiple insoluble proteins in the brain, although not enough to imply interaction between the proteins. Cell culture analysis revealed that only a few of the proteins analyzed can consistently co-aggregate with each other: DISC1 with each of CRMP1 and TRIOBP-1. DISC1 was able to induce aggregation of full length TRIOBP-1, but not individual domains of TRIOBP-1 when they were expressed individually. CONCLUSIONS While specific proteins are capable of co-aggregating, and appear to do so in the brains of individuals with mental illness and potentially also with suicidal tendency, it is more common for such proteins to aggregate in a parallel manner, through independent mechanisms. This information aids in understanding the distribution of protein aggregates among mental illness patients and is therefore important for any future diagnostic or therapeutic approaches based on this aspect of mental illness pathology.
Collapse
Affiliation(s)
- Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Éva Renner
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | | |
Collapse
|
4
|
Segev S, Yitzhaky A, Ben Shachar D, Hertzberg L. VDAC genes down-regulation in brain samples of individuals with schizophrenia is revealed by a systematic meta-analysis. Neurosci Res 2023:S0168-0102(23)00022-6. [PMID: 36717018 DOI: 10.1016/j.neures.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Mitochondrial dysfunction was shown to be involved in schizophrenia pathophysiology. Abnormal energy states can lead to alterations in neural function and thereby to the cognitive and behavioral aberrations characteristics of schizophrenia. Voltage-dependent anion-selective channels (VDAC) are located in the outer mitochondrial membrane and are involved in mitochondrial energy production. Only few studies explored VDAC genes' expression in schizophrenia, and their results were not consistent. We conducted a systematic meta-analysis of ten brain samples gene expression datasets (overall 368 samples, 179 schizophrenia, 189 controls). In addition, we conducted a meta-analysis of three blood samples datasets (overall 300 samples, 167 schizophrenia, 133 controls). Pairwise correlation analysis was conducted between the VDAC and proteasome subunit genes' expression patterns. VDAC1, VDAC2 and VDAC3 showed significant down-regulation in brain samples of patients with schizophrenia. They also showed significant positive correlations with the proteasome subunit genes' expression levels. Our findings suggest that VDAC genes might play a role in mitochondrial dysfunction in schizophrenia. VDAC1 was down-regulated also in blood samples, which suggests its potential role as a biomarker for schizophrenia. The correlation with proteasome subunits, which were previously shown to be down-regulated in a subgroup of the patients, suggests that our findings might characterize a subgroup of the patients. This direction has the potential to lead to patients' stratification and more precisely-targeted therapy and necessitates further study.
Collapse
Affiliation(s)
- Shaked Segev
- Sackler School of Medicine, Tel-Aviv University, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Dorit Ben Shachar
- Psychobiology Research Lab, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| | - Libi Hertzberg
- Sackler School of Medicine, Tel-Aviv University, Israel; Shalvata Mental Health Center, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Zaharija B, Odorčić M, Hart A, Samardžija B, Marreiros R, Prikulis I, Juković M, Hyde TM, Kleinman JE, Korth C, Bradshaw NJ. TRIOBP-1 Protein Aggregation Exists in Both Major Depressive Disorder and Schizophrenia, and Can Occur through Two Distinct Regions of the Protein. Int J Mol Sci 2022; 23:ijms231911048. [PMID: 36232351 PMCID: PMC9569677 DOI: 10.3390/ijms231911048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333–340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as “Tara” or “TAP68”) has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.
Collapse
Affiliation(s)
- Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Odorčić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Anja Hart
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Rita Marreiros
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| | - Nicholas J. Bradshaw
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| |
Collapse
|
6
|
Nakamura M, Yoshimi A, Mouri A, Tokura T, Kimura H, Kishi S, Miyauchi T, Iwamoto K, Ito M, Sato-Boku A, Ozaki N, Nabeshima T, Noda Y. Duloxetine attenuates pain in association with downregulation of platelet serotonin transporter in patients with burning mouth syndrome and atypical odontalgia. Hum Psychopharmacol 2022; 37:e2818. [PMID: 34541697 DOI: 10.1002/hup.2818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this study was evaluation of the association between severity of pain and expression of total or ubiquitinated serotonin transporter (SERT) protein in patients with burning mouth syndrome and atypical odontalgia (BMS/AO), who were treated by duloxetine. METHODS Patients with BMS/AO were assessed for severity of pain using the visual analog scale (VAS), and expression of total and ubiquitinated SERT protein in platelets before (baseline) and 12 weeks after duloxetine-treatment. RESULTS The expression of total and ubiquitinated SERT protein at baseline in all patients (n = 33) were higher and lower, respectively, compared to those in healthy controls. 12 weeks after duloxetine-treatment, there was no difference in the total SERT protein levels between patients (n = 21) and healthy controls. In the 16 patients who could be measured, mean VAS scores and total SERT protein levels were significantly decreased after the treatment, compared to those at baseline. There was tendency for a positive correlation between total SERT protein levels and VAS scores in these patients. CONCLUSIONS Our findings indicate that duloxetine relieves pain in association with downregulation of platelet SERT expression in patients with BMS/AO.
Collapse
Affiliation(s)
- Mariko Nakamura
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan.,Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan.,Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Tatsuya Tokura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kishi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Miyauchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, KACHI Memorial Hospital, Toyohashi, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikiko Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Aiji Sato-Boku
- Department of Anesthesiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan.,Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| |
Collapse
|
7
|
Hui KK, Endo R, Sawa A, Tanaka M. A Perspective on the Potential Involvement of Impaired Proteostasis in Neuropsychiatric Disorders. Biol Psychiatry 2022; 91:335-345. [PMID: 34836635 PMCID: PMC8792182 DOI: 10.1016/j.biopsych.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Recent genetic approaches have demonstrated that genetic factors contribute to the pathologic origins of neuropsychiatric disorders. Nevertheless, the exact pathophysiological mechanism for most cases remains unclear. Recent studies have demonstrated alterations in pathways of protein homeostasis (proteostasis) and identified several proteins that are misfolded and/or aggregated in the brains of patients with neuropsychiatric disorders, thus providing early evidence that disrupted proteostasis may be a contributing factor to their pathophysiology. Unlike neurodegenerative disorders in which massive neuronal and synaptic losses are observed, proteostasis impairments in neuropsychiatric disorders do not lead to robust neuronal death, but rather likely act via loss- and gain-of-function effects to disrupt neuronal and synaptic functions. Furthermore, abnormal activation of or overwhelmed endoplasmic reticulum and mitochondrial quality control pathways may exacerbate the pathophysiological changes initiated by impaired proteostasis, as these organelles are critical for proper neuronal functions and involved in the maintenance of proteostasis. This perspective article reviews recent findings implicating proteostasis impairments in the pathophysiology of neuropsychiatric disorders and explores how neuronal and synaptic functions may be impacted by disruptions in protein homeostasis. A greater understanding of the contributions by proteostasis impairment in neuropsychiatric disorders will help guide future studies to identify additional candidate proteins and new targets for therapeutic development.
Collapse
Affiliation(s)
- Kelvin K Hui
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
8
|
Grubisha MJ, Sweet RA, MacDonald ML. Investigating Post-translational Modifications in Neuropsychiatric Disease: The Next Frontier in Human Post-mortem Brain Research. Front Mol Neurosci 2021; 14:689495. [PMID: 34335181 PMCID: PMC8322442 DOI: 10.3389/fnmol.2021.689495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
Gene expression and translation have been extensively studied in human post-mortem brain tissue from subjects with psychiatric disease. Post-translational modifications (PTMs) have received less attention despite their implication by unbiased genetic studies and importance in regulating neuronal and circuit function. Here we review the rationale for studying PTMs in psychiatric disease, recent findings in human post-mortem tissue, the required controls for these types of studies, and highlight the emerging mass spectrometry approaches transforming this research direction.
Collapse
Affiliation(s)
- Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Hertzberg L, Maggio N, Muler I, Yitzhaky A, Majer M, Haroutunian V, Zuk O, Katsel P, Domany E, Weiser M. Comprehensive Gene Expression Analysis Detects Global Reduction of Proteasome Subunits in Schizophrenia. Schizophr Bull 2021; 47:785-795. [PMID: 33141894 PMCID: PMC8084431 DOI: 10.1093/schbul/sbaa160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The main challenge in the study of schizophrenia is its high heterogeneity. While it is generally accepted that there exist several biological mechanisms that may define distinct schizophrenia subtypes, they have not been identified yet. We performed comprehensive gene expression analysis to search for molecular signals that differentiate schizophrenia patients from healthy controls and examined whether an identified signal was concentrated in a subgroup of the patients. METHODS Transcriptome sequencing of 14 superior temporal gyrus (STG) samples of subjects with schizophrenia and 15 matched controls from the Stanley Medical Research Institute (SMRI) was performed. Differential expression and pathway enrichment analysis results were compared to an independent cohort. Replicability was tested on 6 additional independent datasets. RESULTS The 2 STG cohorts showed high replicability. Pathway enrichment analysis of the down-regulated genes pointed to proteasome-related pathways. Meta-analysis of differential expression identified down-regulation of 12 of 39 proteasome subunit genes in schizophrenia. The signal of proteasome subunits down-regulation was replicated in 6 additional datasets (overall 8 cohorts with 267 schizophrenia and 266 control samples, from 5 brain regions). The signal was concentrated in a subgroup of patients with schizophrenia. CONCLUSIONS We detected global down-regulation of proteasome subunits in a subgroup of patients with schizophrenia. We hypothesize that the down-regulation of proteasome subunits leads to proteasome dysfunction that causes accumulation of ubiquitinated proteins, which has been recently detected in a subgroup of schizophrenia patients. Thus, down-regulation of proteasome subunits might define a biological subtype of schizophrenia.
Collapse
Affiliation(s)
- Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, Affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inna Muler
- Childhood Leukemia Research Institute and the Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Majer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Or Zuk
- Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pavel Katsel
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Weiser
- Department of Psychiatry, Chaim Sheba Medical Center, Ramat-Gan and the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Licinio J, Wong ML. Molecular Psychiatry, August 2020: new impact factor, and highlights of recent advances in psychiatry, including an overview of the brain's response to stress during infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mol Psychiatry 2020; 25:1606-1610. [PMID: 32724165 PMCID: PMC7385469 DOI: 10.1038/s41380-020-0845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
11
|
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, Martins-de-Souza D. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Sci Rep 2020; 10:12655. [PMID: 32724114 PMCID: PMC7387551 DOI: 10.1038/s41598-020-69543-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
12
|
Fernández-Cruz I, Sánchez-Díaz I, Narváez-Padilla V, Reynaud E. Rpt2 proteasome subunit reduction causes Parkinson's disease like symptoms in Drosophila. IBRO Rep 2020; 9:65-77. [PMID: 32715147 PMCID: PMC7369354 DOI: 10.1016/j.ibror.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/01/2020] [Indexed: 01/15/2023] Open
Abstract
The dysfunction of the proteasome-ubiquitin system is commonly reported in several neurodegenerative diseases. Post mortem samples of brains of patients with Parkinson´s disease present cytoplasmic inclusions that are rich in proteins such as ubiquitin, Tau, and α-synuclein. In Parkinson´s disease, a specific reduction of some of the proteasome subunits has also been reported. However, the specific role of the different proteasome subunits in dopaminergic neuron degeneration has not been thoroughly explored. In this work, we used the Gal4/UAS system to test fourteen Drosophila melanogaster RNAi lines from the Bloomington Drosophila Stock Center. Each of these lines targets a different proteasome subunit. To identify the strains that were able to induce neurodegeneration, we drove the expression of these lines to the eye and cataloged them as a function of the extent of neurodegeneration that they induced. The targeted proteasomal subunits are conserved in mammals and therefore may be relevant to study proteasome related diseases. The RNAi line among the regulatory subunits with the most penetrant phenotype targeted the proteasomal subunit Rpt2 and we decided to further characterize its phenotypes. Rpt2 knockdown in the Drosophila central nervous system reduced the activity of the proteasome, augmented the amount of insoluble ubiquitinated protein, and elicited motor and non-motor phenotypes that were similar to the ones found in Drosophila and other models for Parkinson's disease. When Rpt2 is silenced pan-neurally, third instar larvae have locomotion dysfunctions and die during pupation. Larval lethality was avoided using the Gal80-Gal4 system to induce the expression of the Rpt2 RNAi to dopaminergic neurons only after pupation. The reduction of Rpt2 in adult dopaminergic neurons causes reduced survival, hyperactivity, neurodegeneration, and sleep loss; probably recapitulating some of the sleep disorders that Parkinson's disease patients have before the appearance of locomotion disorders.
Collapse
Affiliation(s)
- Iván Fernández-Cruz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Iván Sánchez-Díaz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Narváez-Padilla
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
13
|
Chadha R, Meador-Woodruff JH. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology 2020; 45:1059-1067. [PMID: 31952070 PMCID: PMC7162985 DOI: 10.1038/s41386-020-0614-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/09/2022]
Abstract
Abnormal neurotransmission is central to schizophrenia (SZ). Alterations across multiple neurotransmitter systems in SZ suggest that this illness may be associated with dysregulation of core intracellular processes such as signaling pathways that underlie the regulation and integration of these systems. The AKT-mTOR signaling cascade has been implicated in SZ by gene association, postmortem brain and animal studies. AKT and mTOR are serine/threonine kinases which play important roles in cell growth, proliferation, survival, and differentiation. Both AKT and mTOR require phosphorylation at specific sites for their complete activation. mTOR forms two functionally distinct multiprotein complexes, mTOR Complex 1 (mTORC1) and Complex 2 (mTORC2). mTORC1 mediates ribosome biogenesis, protein translation, and autophagy, whereas mTORC2 contributes to actin dynamics. Altered protein synthesis and actin dynamics can lead to an abnormal neuronal morphology resulting in deficits in learning and memory. Currently, there is a lack of direct evidence to support the hypothesis of disrupted mTOR signaling in SZ, and we have addressed this by characterizing this signaling pathway in SZ brain. We found a reduction in AKT and mTOR protein expression and/or phosphorylation state in dorsolateral prefrontal cortex (DLPFC) from 22 pairs of SZ and matched comparison subjects. We also found reduced protein expression of GβL, a subunit protein common to both mTOR complexes. We further investigated mTOR complex-specific subunit composition and phosphorylation state, and found abnormal mTOR expression in both complexes in SZ DLPFC. These findings provide evidence that proteins associated with the AKT-mTOR signaling cascade are downregulated in SZ DLPFC.
Collapse
Affiliation(s)
- Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL, 35294-0021, USA.
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
14
|
|
15
|
Licinio J, Wong ML. Advances in schizophrenia research: glycobiology, white matter abnormalities, and their interactions. Mol Psychiatry 2020; 25:3116-3118. [PMID: 33273719 PMCID: PMC7714683 DOI: 10.1038/s41380-020-00961-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Ma-Li Wong
- grid.411023.50000 0000 9159 4457State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
| |
Collapse
|
16
|
MacDonald ML, Garver M, Newman J, Sun Z, Kannarkat J, Salisbury R, Glausier J, Ding Y, Lewis DA, Yates N, Sweet RA. Synaptic Proteome Alterations in the Primary Auditory Cortex of Individuals With Schizophrenia. JAMA Psychiatry 2020; 77:86-95. [PMID: 31642882 PMCID: PMC6813579 DOI: 10.1001/jamapsychiatry.2019.2974] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
Importance Findings from unbiased genetic studies have consistently implicated synaptic protein networks in schizophrenia, but the molecular pathologic features within these networks and their contribution to the synaptic and circuit deficits thought to underlie disease symptoms remain unknown. Objective To determine whether protein levels are altered within synapses from the primary auditory cortex (A1) of individuals with schizophrenia and, if so, whether these differences are restricted to the synapse or occur throughout the gray matter. Design, Setting, and Participants This paired case-control study included tissue samples from individuals with schizophrenia obtained from the Allegheny County Office of the Medical Examiner. An independent panel of health care professionals made consensus DSM-IV diagnoses. Each tissue sample from an individual with schizophrenia was matched by sex, age, and postmortem interval with 1 sample from an unaffected control individual. Targeted mass spectrometry was used to measure protein levels in A1 gray matter homogenate and synaptosome preparations. All experimenters were blinded to diagnosis. Mass spectrometry data were collected from September 26 through November 4, 2016, and analyzed from November 3, 2016, to July 15, 2019. Main Outcomes and Measures Primary measures were homogenate and synaptosome protein levels and their coregulation network features. Hypotheses generated before data collection were (1) that levels of canonical postsynaptic proteins in A1 synaptosome preparations would differ between individuals with schizophrenia and controls and (2) that these differences would not be explained by changes in total A1 homogenate protein levels. Results Synaptosome and homogenate protein levels were investigated in 48 individuals with a schizophrenia diagnosis and 48 controls (mean age in both groups, 48 years [range, 17-83 years]); each group included 35 males (73%) and 13 females (27%). Robust alterations (statistical cutoff set at an adjusted Limma P < .05) were observed in synaptosome levels of canonical mitochondrial and postsynaptic proteins that were highly coregulated and not readily explained by postmortem interval, antipsychotic drug treatment, synaptosome yield, or underlying alterations in homogenate protein levels. Conclusions and Relevance These findings suggest a robust and highly coordinated rearrangement of the synaptic proteome. In line with unbiased genetic findings, alterations in synaptic levels of postsynaptic proteins were identified, providing a road map to identify the specific cells and circuits that are impaired in individuals with schizophrenia A1.
Collapse
Affiliation(s)
- Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan Garver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhe Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Kannarkat
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nathan Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|