1
|
Pindwarawala M, Abid FA, Lee J, Miller ML, Noppers JS, Rideout AP, Agosto MA. Defective glycosylation and ELFN1 binding of mGluR6 congenital stationary night blindness mutants. Life Sci Alliance 2025; 8:e202403118. [PMID: 39681475 DOI: 10.26508/lsa.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
Synaptic transmission from photoreceptors to ON-bipolar cells (BCs) requires the postsynaptic metabotropic glutamate receptor mGluR6, located at BC dendritic tips. Binding of the neurotransmitter glutamate initiates G protein signaling that regulates the TRPM1 transduction channel. mGluR6 also interacts with presynaptic ELFN adhesion proteins, and these interactions are important for mGluR6 synaptic localization. The mechanisms of mGluR6 trafficking and synaptic targeting remain poorly understood. In this study, we investigated mGluR6 missense mutations from patients with congenital stationary night blindness (CSNB), which is associated with loss of synaptic transmission to ON-BCs. We found that multiple CSNB mutations in the extracellular ligand-binding domain of mGluR6 impart a trafficking defect leading to lack of complex N-glycosylation but efficient plasma membrane insertion, suggesting a Golgi bypass mechanism. These mutants fail to bind ELFN1, consistent with lack of a necessary modification normally acquired in the Golgi. The same mutants were mislocalized in bipolar cells, explaining the loss of function in CSNB. The results reveal a key role of Golgi trafficking in mGluR6 function, and suggest a role of the extracellular domain in Golgi sorting.
Collapse
Affiliation(s)
| | - Faiyaz Ak Abid
- Department of Microbiology and Immunology, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Jaeeun Lee
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Michael L Miller
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Juliet S Noppers
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Andrew P Rideout
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Melina A Agosto
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Canada
| |
Collapse
|
2
|
Dunn HA, Dhaliwal SK, Chang CT, Martemyanov KA. Distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, synaptic localization, and dimerization. J Biol Chem 2024:108073. [PMID: 39675706 DOI: 10.1016/j.jbc.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Synaptic adhesion molecules are essential components of the synapse, yet the diversity of these molecules and their associated functions remain to be fully characterized. Extracellular leucine rich repeat and fibronectin type III domain containing 1 (ELFN1) is a postsynaptic adhesion molecule in the brain that has been increasingly implicated in human neurological disease. ELFN1 is best known for trans-synaptically modulating group III metabotropic glutamate receptors (mGluRs). However, little is known about ELFN1 organization and regulation, which likely govern and precede its ultimate trans-synaptic engagement with group III mGluRs. Herein, we report that the intracellular ELFN1 domain controls membrane trafficking and post-synaptic localization of ELFN1. We pinpoint a ∼30 amino acid juxtamembranous region required for membrane-targeting and discover that ELFN1 exists as an obligate homodimer prior to its trafficking to the membrane. We determine that ELFN1 homodimerization is not appreciably affected by the intracellular region and instead utilizes the extracellular leucine rich repeats (LRR) domain. We find that a single membrane-targeting motif located in one protomer is sufficient for effective trafficking of the ELFN1 homodimer. We further demonstrate that the closest ELFN1 homolog, synaptic adhesion molecule ELFN2, exhibits similar properties and participates in heterodimerization with ELFN1. This establishes distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, post-synaptic localization, and dimerization while indicating conservation of the mechanisms across the ELFN subfamily of cell adhesion molecules.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.
| | - Simran K Dhaliwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chu-Ting Chang
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
3
|
Qian J, Duan J, Cao D. Identification of a Novel 4-gene Prognostic Model Related to Neutrophil Extracellular Traps for Colorectal Cancer. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:849-858. [PMID: 39549020 PMCID: PMC11562497 DOI: 10.5152/tjg.2024.24131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 11/18/2024]
Abstract
Background/Aims Colorectal cancer (CRC) is a significant global health concern, and understanding the molecular mechanisms underlying CRC progression and prognosis is crucial. Neutrophil extracellular traps (NETs) have been implicated in various cancers, but their role in CRC and its clinical implications remain to be elucidated. Materials and Methods Transcriptomic data from TCGA of CRC patients were analyzed to assess NETs enrichment and "NETs formation" pathway scores in NETs_high and NETs_low groups. Univariate Cox regression was used to identify prognosis-associated genes with the Log-Rank test for selection. Patients in the TCGA database were randomly split into training and testing sets to build a prognostic model with LASSO Cox regression. Model diagnostic performance was evaluated using Kaplan-Meier curves and receiver operating characteristic analysis. Single-sample gene set enrichment analysis (ssGSEA) was used to determine the abundance of 23 immune cells. ESTIMATE was used to calculate ImmuneScore and ESTIMATEScore, characterizing immune features of CRC samples. Results The NETs_high group in CRC showed significantly better survival than the NETs_low group. A robust prognostic model based on PRKRIP1, SERTAD2, ELFN1, and LINC00672 accurately predicted patient outcomes. NETs_high samples exhibited a more enriched immune environment with higher immune cell infiltration levels, as well as ImmuneScore and ESTIMATEScore. PRKRIP1, SERTAD2, ELFN1, and LINC00672 were significantly correlated with key immune cell types. Additionally, 18 drugs displayed differential sensitivity between NETs_high and NETs_low groups, with Daporinad and Selumetinib as potential therapeutic options. Conclusion Our findings may catalyze the development of personalized treatment modalities and bestow invaluable insights into the intricate dynamics governing CRC progression.
Collapse
Affiliation(s)
- Junwen Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, China
| | - Jiyun Duan
- Department of Breast Thyroid Head and Neck Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, China
| | - Dong Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, China
| |
Collapse
|
4
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Früh S, Boudkkazi S, Koppensteiner P, Sereikaite V, Chen LY, Fernandez-Fernandez D, Rem PD, Ulrich D, Schwenk J, Chen Z, Le Monnier E, Fritzius T, Innocenti SM, Besseyrias V, Trovò L, Stawarski M, Argilli E, Sherr EH, van Bon B, Kamsteeg EJ, Iascone M, Pilotta A, Cutrì MR, Azamian MS, Hernández-García A, Lalani SR, Rosenfeld JA, Zhao X, Vogel TP, Ona H, Scott DA, Scheiffele P, Strømgaard K, Tafti M, Gassmann M, Fakler B, Shigemoto R, Bettler B. Monoallelic de novo AJAP1 loss-of-function variants disrupt trans-synaptic control of neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadk5462. [PMID: 38985877 PMCID: PMC11235169 DOI: 10.1126/sciadv.adk5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants.
Collapse
Affiliation(s)
- Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sami Boudkkazi
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Li-Yuan Chen
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Diego Fernandez-Fernandez
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Pascal D. Rem
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jochen Schwenk
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Maria Iascone
- Laboratorio Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Herda Ona
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Scheiffele
- Biocenter, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Miller ML, Pindwarawala M, Agosto MA. Complex N-glycosylation of mGluR6 is required for trans-synaptic interaction with ELFN adhesion proteins. J Biol Chem 2024; 300:107119. [PMID: 38428819 PMCID: PMC10973816 DOI: 10.1016/j.jbc.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Synaptic transmission from retinal photoreceptors to downstream ON-type bipolar cells (BCs) depends on the postsynaptic metabotropic glutamate receptor mGluR6, located at the BC dendritic tips. Glutamate binding to mGluR6 initiates G-protein signaling that ultimately leads to BC depolarization in response to light. The mGluR6 receptor also engages in trans-synaptic interactions with presynaptic ELFN adhesion proteins. The roles of post-translational modifications in mGluR6 trafficking and function are unknown. Treatment with glycosidase enzymes PNGase F and Endo H demonstrated that both endogenous and heterologously expressed mGluR6 contain complex N-glycosylation acquired in the Golgi. Pull-down experiments with ELFN1 and ELFN2 extracellular domains revealed that these proteins interact exclusively with the complex glycosylated form of mGluR6. Mutation of the four predicted N-glycosylation sites, either singly or in combination, revealed that all four sites are glycosylated. Single mutations partially reduced, but did not abolish, surface expression in heterologous cells, while triple mutants had little or no surface expression, indicating that no single glycosylation site is necessary or sufficient for plasma membrane trafficking. Mutation at N445 severely impaired both ELFN1 and ELFN2 binding. All single mutants exhibited dendritic tip enrichment in rod BCs, as did the triple mutant with N445 as the sole N-glycosylation site, demonstrating that glycosylation at N445 is sufficient but not necessary for dendritic tip localization. The quadruple mutant was completely mislocalized. These results reveal a key role for complex N-glycosylation in regulating mGluR6 trafficking and ELFN binding, and by extension, function of the photoreceptor synapses.
Collapse
Affiliation(s)
- Michael L Miller
- Faculty of Science, Medical Sciences Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mustansir Pindwarawala
- Faculty of Science, Medical Sciences Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melina A Agosto
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
8
|
Polakkattil BK, Vellichirammal NN, Nair IV, Nair CM, Banerjee M. Methylome-wide and meQTL analysis helps to distinguish treatment response from non-response and pathogenesis markers in schizophrenia. Front Psychiatry 2024; 15:1297760. [PMID: 38516266 PMCID: PMC10954811 DOI: 10.3389/fpsyt.2024.1297760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Schizophrenia is a complex condition with entwined genetic and epigenetic risk factors, posing a challenge to disentangle the intermixed pathological and therapeutic epigenetic signatures. To resolve this, we performed 850K methylome-wide and 700K genome-wide studies on the same set of schizophrenia patients by stratifying them into responders, non-responders, and drug-naïve patients. The key genes that signified the response were followed up using real-time gene expression studies to understand the effect of antipsychotics at the gene transcription level. The study primarily implicates hypermethylation in therapeutic response and hypomethylation in the drug-non-responsive state. Several differentially methylated sites and regions colocalized with the schizophrenia genome-wide association study (GWAS) risk genes and variants, supporting the convoluted gene-environment association. Gene ontology and protein-protein interaction (PPI) network analyses revealed distinct patterns that differentiated the treatment response from drug resistance. The study highlights the strong involvement of several processes related to nervous system development, cell adhesion, and signaling in the antipsychotic response. The ability of antipsychotic medications to alter the pathology by modulating gene expression or methylation patterns is evident from the general increase in the gene expression of response markers and histone modifiers and the decrease in class II human leukocyte antigen (HLA) genes following treatment with varying concentrations of medications like clozapine, olanzapine, risperidone, and haloperidol. The study indicates a directional overlap of methylation markers between pathogenesis and therapeutic response, thereby suggesting a careful distinction of methylation markers of pathogenesis from treatment response. In addition, there is a need to understand the trade-off between genetic and epigenetic observations. It is suggested that methylomic changes brought about by drugs need careful evaluation for their positive effects on pathogenesis, course of disease progression, symptom severity, side effects, and refractoriness.
Collapse
Affiliation(s)
- Binithamol K. Polakkattil
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Center, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Neetha N. Vellichirammal
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Indu V. Nair
- Mental Health Centre, Thiruvananthapuram, Kerala, India
| | | | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
9
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Le Merrer J, Detraux B, Gandía J, De Groote A, Fonteneau M, de Kerchove d'Exaerde A, Becker JAJ. Balance Between Projecting Neuronal Populations of the Nucleus Accumbens Controls Social Behavior in Mice. Biol Psychiatry 2024; 95:123-135. [PMID: 37207936 DOI: 10.1016/j.biopsych.2023.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Deficient social interactions are a hallmark of major neuropsychiatric disorders, and accumulating evidence points to altered social reward and motivation as key underlying mechanisms of these pathologies. In the present study, we further explored the role of the balance of activity between D1 and D2 receptor-expressing striatal projection neurons (D1R- and D2R-SPNs) in the control of social behavior, challenging the hypothesis that excessive D2R-SPN activity, rather than deficient D1R-SPN activity, compromises social behavior. METHODS We selectively ablated D1R- and D2R-SPNs using an inducible diphtheria toxin receptor-mediated cell targeting strategy and assessed social behavior as well as repetitive/perseverative behavior, motor function, and anxiety levels. We tested the effects of optogenetic stimulation of D2R-SPNs in the nucleus accumbens (NAc) and pharmacological compounds repressing D2R-SPN. RESULTS Targeted deletion of D1R-SPNs in the NAc blunted social behavior in mice, facilitated motor skill learning, and increased anxiety levels. These behaviors were normalized by pharmacological inhibition of D2R-SPN, which also repressed transcription in the efferent nucleus, the ventral pallidum. Ablation of D1R-SPNs in the dorsal striatum had no impact on social behavior but impaired motor skill learning and decreased anxiety levels. Deletion of D2R-SPNs in the NAc produced motor stereotypies but facilitated social behavior and impaired motor skill learning. We mimicked excessive D2R-SPN activity by optically stimulating D2R-SPNs in the NAc and observed a severe deficit in social interaction that was prevented by D2R-SPN pharmacological inhibition. CONCLUSIONS Repressing D2R-SPN activity may represent a promising therapeutic strategy to relieve social deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 0085, Institut National de la Santé et de la Recherche Médicale, Université de Tours, Nouzilly, France; iBrain, Unité Mixte de Recherche 1253 Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Université de Tours, Tours, France.
| | - Bérangère Detraux
- Neurophy Lab, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Jorge Gandía
- Physiologie de la Reproduction et des Comportements, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 0085, Institut National de la Santé et de la Recherche Médicale, Université de Tours, Nouzilly, France
| | - Aurélie De Groote
- Neurophy Lab, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Fonteneau
- iBrain, Unité Mixte de Recherche 1253 Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Alban de Kerchove d'Exaerde
- Neurophy Lab, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium; WELBIO, Wavre, Belgium.
| | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 0085, Institut National de la Santé et de la Recherche Médicale, Université de Tours, Nouzilly, France; iBrain, Unité Mixte de Recherche 1253 Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| |
Collapse
|
11
|
Uchigashima M, Hayashi Y, Futai K. Regulation of Presynaptic Release Machinery by Cell Adhesion Molecules. ADVANCES IN NEUROBIOLOGY 2023; 33:333-356. [PMID: 37615873 DOI: 10.1007/978-3-031-34229-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The synapse is a highly specialized asymmetric structure that transmits and stores information in the brain. The size of pre- and postsynaptic structures and function is well coordinated at the individual synapse level. For example, large postsynaptic dendritic spines have a larger postsynaptic density with higher α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) number on their surface, while juxtaposing presynaptic terminals have a larger active zone and higher release probability. This indicates that pre- and postsynaptic domains bidirectionally communicate to coordinate assembly of specific molecules on both sides of the synaptic cleft. Cell adhesion molecules (CAMs) that localize at synapses form transsynaptic protein interactions across the synaptic cleft and play important roles in synapse formation and regulation. The extracellular domain of CAMs is essential for specific synapse formation and function. In contrast, the intracellular domain is necessary for binding with synaptic molecules and signal transduction. Therefore, CAMs play an essential role on synapse function and structure. In fact, ample evidence indicates that transsynaptic CAMs instruct and modulate functions at presynaptic sites. This chapter focuses on transsynaptic protein interactions that regulate presynaptic functions emphasizing the role of neuronal CAMs and the intracellular mechanism of their regulation.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Derieux C, Léauté A, Brugoux A, Jaccaz D, Terrier C, Pin JP, Kniazeff J, Le Merrer J, Becker JAJ. Chronic sodium bromide treatment relieves autistic-like behavioral deficits in three mouse models of autism. Neuropsychopharmacology 2022; 47:1680-1692. [PMID: 35418620 PMCID: PMC9283539 DOI: 10.1038/s41386-022-01317-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behavior. To date, no pharmacological treatment has been approved that ameliorates social behavior in patients with ASD. Based on the excitation/inhibition imbalance theory of autism, we hypothesized that bromide ions, long used as an antiepileptic medication, could relieve core symptoms of ASD. We evaluated the effects of chronic sodium bromide (NaBr) administration on autistic-like symptoms in three genetic mouse models of autism: Oprm1-/-, Fmr1-/- and Shank3Δex13-16-/- mice. We showed that chronic NaBr treatment relieved autistic-like behaviors in these three models. In Oprm1-/- mice, these beneficial effects were superior to those of chronic bumetanide administration. At transcriptional level, chronic NaBr in Oprm1 null mice was associated with increased expression of genes coding for chloride ions transporters, GABAA receptor subunits, oxytocin and mGlu4 receptor. Lastly, we uncovered synergistic alleviating effects of chronic NaBr and a positive allosteric modulator (PAM) of mGlu4 receptor on autistic-like behavior in Oprm1-/- mice. We evidenced in heterologous cells that bromide ions behave as PAMs of mGlu4, providing a molecular mechanism for such synergy. Our data reveal the therapeutic potential of bromide ions, alone or in combination with a PAM of mGlu4 receptor, for the treatment of ASDs.
Collapse
Affiliation(s)
- Cécile Derieux
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France ,grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Audrey Léauté
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France
| | - Agathe Brugoux
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Déborah Jaccaz
- Unité Expérimentale de Physiologie Animale de l’Orfrasière, INRAE UE0028, 37380 Nouzilly, France
| | - Claire Terrier
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Jean-Philippe Pin
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Julie Kniazeff
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380, Nouzilly, France. .,UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.
| | - Jerome A. J. Becker
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
13
|
Bodzęta A, Berger F, MacGillavry HD. Subsynaptic mobility of presynaptic mGluR types is differentially regulated by intra- and extracellular interactions. Mol Biol Cell 2022; 33:ar66. [PMID: 35511883 PMCID: PMC9635276 DOI: 10.1091/mbc.e21-10-0484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Presynaptic metabotropic glutamate receptors (mGluRs) are essential for the control of synaptic transmission. However, how the subsynaptic dynamics of these receptors is controlled and contributes to synaptic signaling remain poorly understood quantitatively. Particularly, since the affinity of individual mGluR subtypes for glutamate differs considerably, the activation of mGluR subtypes critically depends on their precise subsynaptic distribution. Here, using superresolution microscopy and single-molecule tracking, we unravel novel molecular mechanisms that control the nanoscale distribution and mobility of presynaptic mGluRs in hippocampal neurons. We demonstrate that the high-affinity group II receptor mGluR2 localizes diffusely along the axon, and is highly mobile, while the low-affinity group III receptor mGluR7 is stably anchored at the active zone. We demonstrate that intracellular interactions modulate surface diffusion of mGluR2, while immobilization of mGluR7 at the active zone relies on its extracellular domain. Receptor activation or increases in synaptic activity do not alter the surface mobility of presynaptic mGluRs. Finally, computational modeling of presynaptic mGluR activity revealed that this particular nanoscale arrangement directly impacts their ability to modulate neurotransmitter release. Altogether, this study demonstrates that distinct mechanisms control surface mobility of presynaptic mGluRs to contribute differentially to glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Anna Bodzęta
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - Florian Berger
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| |
Collapse
|
14
|
Sarnowski C, Ghanbari M, Bis JC, Logue M, Fornage M, Mishra A, Ahmad S, Beiser AS, Boerwinkle E, Bouteloup V, Chouraki V, Cupples LA, Damotte V, DeCarli CS, DeStefano AL, Djoussé L, Fohner AE, Franz CE, Kautz TF, Lambert JC, Lyons MJ, Mosley TH, Mukamal KJ, Pase MP, Portilla Fernandez EC, Rissman RA, Satizabal CL, Vasan RS, Yaqub A, Debette S, Dufouil C, Launer LJ, Kremen WS, Longstreth WT, Ikram MA, Seshadri S. Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun Biol 2022; 5:336. [PMID: 35396452 PMCID: PMC8993877 DOI: 10.1038/s42003-022-03287-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10-8. We additionally detected 14 novel loci at P < 5 × 10-7, specific to either Europeans or African Americans. Using whole-exome sequence data in 2,279 European participants, we identified ten genes associated with circulating total-tau when aggregating rare variants. Our genetic study sheds light on genes reported to be associated with neurological diseases including stroke, Alzheimer's, and Parkinson's (F5, MAP1B, and BCAS3), with Alzheimer's pathological hallmarks (ADAMTS12, IL15, and FHIT), or with an important function in the brain (PARD3, ELFN2, UBASH3B, SLIT3, and NSD3), and suggests that the genetic architecture of circulating total-tau may differ according to ancestry.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mark Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Myriam Fornage
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Eric Boerwinkle
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Vincent Bouteloup
- Centre Inserm U1219 Bordeaux Population Health, CIC1401-EC, Institut de Santé Publique, d'Epidémiologie et de Développement, Université de Bordeaux, CHU de Bordeaux, Pôle Santé Publique, Bordeaux, France
| | - Vincent Chouraki
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
| | - Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - Charles S DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Luc Djoussé
- Department of Medicine, Division of Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison E Fohner
- Institute of Public Health Genetics and Department of Epidemiology and Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Carol E Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - Michael J Lyons
- Department of Psychology and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Claudia L Satizabal
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Ramachandran S Vasan
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Preventive Medicine & Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Amber Yaqub
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France
| | - Carole Dufouil
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France
| | | | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sudha Seshadri
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
15
|
Metabotropic Glutamate Receptors at Ribbon Synapses in the Retina and Cochlea. Cells 2022; 11:cells11071097. [PMID: 35406660 PMCID: PMC8998116 DOI: 10.3390/cells11071097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Our senses define our view of the world. They allow us to adapt to environmental stimuli and are essential for communication and social behaviour. For most humans, seeing and hearing are central senses for their daily life. Our eyes and ears respond to an extraordinary broad range of stimuli covering about 12 log units of light intensity or acoustic power, respectively. The cellular basis is represented by sensory cells (photoreceptors in the retina and inner hair cells in the cochlea) that convert sensory inputs into electrical signals. Photoreceptors and inner hair cells have developed a specific pre-synaptic structure, termed synaptic ribbon, that is decorated with numerous vesicles filled with the excitatory neurotransmitter glutamate. At these ribbon synapses, glutamatergic signal transduction is guided by distinct sets of metabotropic glutamate receptors (mGluRs). MGluRs belong to group II and III of the receptor classification can inhibit neuronal activity, thus protecting neurons from overstimulation and subsequent degeneration. Consequently, dysfunction of mGluRs is associated with vision and hearing disorders. In this review, we introduce the principle characteristics of ribbon synapses and describe group II and III mGluRs in these fascinating structures in the retina and cochlea.
Collapse
|
16
|
Punzi G, Ursini G, Chen Q, Radulescu E, Tao R, Huuki LA, Carlo PD, Torres LC, Shin JH, Catanesi R, Jaffe AE, Hyde TM, Kleinman JE, Mackay TFC, Weinberger DR. Genetics and Brain Transcriptomics of Completed Suicide. Am J Psychiatry 2022; 179:226-241. [PMID: 35236118 PMCID: PMC8908792 DOI: 10.1176/appi.ajp.2021.21030299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors sought to study the transcriptomic and genomic features of completed suicide by parsing the method chosen, to capture molecular correlates of the distinctive frame of mind of individuals who die by suicide, while reducing heterogeneity. METHODS The authors analyzed gene expression (RNA sequencing) from postmortem dorsolateral prefrontal cortex of patients who died by suicide with violent compared with nonviolent means, nonsuicide patients with the same psychiatric disorders, and a neurotypical group (total N=329). They then examined genomic risk scores (GRSs) for each psychiatric disorder included, and GRSs for cognition (IQ) and for suicide attempt, testing how they predict diagnosis or traits (total N=888). RESULTS Patients who died by suicide by violent means showed a transcriptomic pattern remarkably divergent from each of the other patient groups but less from the neurotypical group; consistently, their genomic profile of risk was relatively low for their diagnosed illness as well as for suicide attempt, and relatively high for IQ: they were more similar to the neurotypical group than to other patients. Differentially expressed genes (DEGs) associated with patients who died by suicide by violent means pointed to purinergic signaling in microglia, showing similarities to a genome-wide association study of Drosophila aggression. Weighted gene coexpression network analysis revealed that these DEGs were coexpressed in a context of mitochondrial metabolic activation unique to suicide by violent means. CONCLUSIONS These findings suggest that patients who die by suicide by violent means are in part biologically separable from other patients with the same diagnoses, and their behavioral outcome may be less dependent on genetic risk for conventional psychiatric disorders and be associated with an alteration of purinergic signaling and mitochondrial metabolism.
Collapse
Affiliation(s)
- Giovanna Punzi
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Eugenia Radulescu
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Louise A. Huuki
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Leonardo Collado Torres
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Roberto Catanesi
- Section of Forensic Psychiatry and Criminology, Institute of Legal Medicine, D.I.M., University of Bari ‘Aldo Moro’, Bari, Italy
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
| | - Trudy F. C. Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, South Carolina, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Departments of Neuroscience, and Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Huang T, Huang X, Li H, Qi J, Wang N, Xu Y, Zeng Y, Xiao X, Liu R, Chan YL, Oliver BG, Yi C, Li D, Chen H. Maternal Cigarette Smoke Exposure Exaggerates the Behavioral Defects and Neuronal Loss Caused by Hypoxic-Ischemic Brain Injury in Female Offspring. Front Cell Neurosci 2022; 16:818536. [PMID: 35250486 PMCID: PMC8894648 DOI: 10.3389/fncel.2022.818536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveHypoxic-ischemic encephalopathy affects ∼6 in 1,000 preterm neonates, leading to significant neurological sequela (e.g., cognitive deficits and cerebral palsy). Maternal smoke exposure (SE) is one of the common causes of neurological disorders; however, female offspring seems to be less affected than males in our previous study. We also showed that maternal SE exaggerated neurological disorders caused by neonatal hypoxic-ischemic brain injury in adolescent male offspring. Here, we aimed to examine whether female littermates of these males are protected from such insult.MethodsBALB/c dams were exposed to cigarette smoke generated from 2 cigarettes twice daily for 6 weeks before mating, during gestation and lactation. To induce hypoxic-ischemic brain injury, half of the pups from each litter underwent left carotid artery occlusion, followed by exposure to 8% oxygen (92% nitrogen) at postnatal day (P) 10. Behavioral tests were performed at P40–44, and brain tissues were collected at P45.ResultsMaternal SE worsened the defects in short-term memory and motor function in females with hypoxic-ischemic injury; however, reduced anxiety due to injury was observed in the control offspring, but not the SE offspring. Both hypoxic-ischemic injury and maternal SE caused significant loss of neuronal cells and synaptic proteins, along with increased oxidative stress and inflammatory responses.ConclusionOxidative stress and inflammatory response due to maternal SE may be the mechanism of worsened neurological outcomes by hypoxic-ischemic brain injury in females, which was similar to their male littermates shown in our previous study.
Collapse
Affiliation(s)
- Taida Huang
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Li
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhua Qi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nan Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yi Xu
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunxin Zeng
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xuewen Xiao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ruide Liu
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Chenju Yi,
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Dan Li,
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Dong Y, Zhang T, Li X, Yu F, Yu H, Shao S. Identification of Key Prognostic-Related miRNA-mRNA Pairs in the Progression of Endometrial Carcinoma. Gynecol Obstet Invest 2022; 87:12-21. [PMID: 35081534 DOI: 10.1159/000520339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Endometrial carcinoma (EC) is one of the leading causes of death from gynecological cancer due to the high recurrence rate. However, the molecular mechanisms of EC progression are not well understood. This study aimed to identify critical genes and miRNAs associated with the progression and prognosis of EC and find the potential mRNA-miRNA regulatory relationship. DESIGN The mRNA and miRNA data were downloaded from The Cancer Genome Atlas (TCGA) database. Next, differentially expressed genes (DEGs) were identified. Subsequently, prognosis-related genes and miRNAs were identified, followed by co-expression analysis of these mRNAs and miRNAs. Materials, Setting, and Methods: Samples in the mRNA microarray were divided into normal (n = 35), early stage (n = 385), and advanced stage (n = 153). Next, DEGs in normal versus early stage and early stage versus advanced stage were, respectively, identified, followed by Venn analysis to screen overlapping DEGs in 2 comparison groups. Based on the expression level of these DEGs, univariate Cox regression analysis and Kaplan-Meier method were performed to obtain prognosis-related genes. Moreover, genes-related miRNAs were predicted, and miRNA-mRNA co-expressed pairs were identified. Then, survival analysis of co-expressed miRNA was performed. Finally, co-expressed genes of key genes were identified, and then functional enrichment analysis was conducted. RESULTS After integrating analysis, 326 overlapping (309 upregulated and 17 downregulated) DEGs were obtained. Univariate Cox regression analysis showed that 44 mRNAs and 8 miRNAs were associated with the prognosis of EC. Combined with the co-expressed analysis, only one prognosis-related hsa-miR-326/ELFN2 axis was obtained. In addition, functional enrichment analysis showed that co-expressed genes of ELFN2 were mainly involved in the PI3K-Akt signaling pathway. LIMITATIONS These findings were obtained via bioinformatics analysis, and thus further experimental studies are urgently demanded to validate our results. CONCLUSIONS One key miRNA-mRNA regulatory pair (hsa-miR-326-ELFN2) was screened. This study provided a bioinformatics basis for the molecular mechanism of EC progression and might contribute to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Ying Dong
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Ting Zhang
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, China
| | - Xining Li
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, China
| | - Feng Yu
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, China
| | - Hongwei Yu
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, China
| |
Collapse
|
19
|
Sui L, Sanders A, Jiang WG, Ye L. Deregulated molecules and pathways in the predisposition and dissemination of breast cancer cells to bone. Comput Struct Biotechnol J 2022; 20:2745-2758. [PMID: 35685372 PMCID: PMC9168524 DOI: 10.1016/j.csbj.2022.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/28/2022] Open
|
20
|
Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neuropharmacology 2021; 200:108799. [PMID: 34592242 DOI: 10.1016/j.neuropharm.2021.108799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The plethora of functions of glutamate in the brain are mediated by the complementary actions of ionotropic and metabotropic glutamate receptors (mGluRs). The ionotropic glutamate receptors carry most of the fast excitatory transmission, while mGluRs modulate transmission on longer timescales by triggering multiple intracellular signaling pathways. As such, mGluRs mediate critical aspects of synaptic transmission and plasticity. Interestingly, at synapses, mGluRs operate at both sides of the cleft, and thus bidirectionally exert the effects of glutamate. At postsynaptic sites, group I mGluRs act to modulate excitability and plasticity. At presynaptic sites, group II and III mGluRs act as auto-receptors, modulating release properties in an activity-dependent manner. Thus, synaptic mGluRs are essential signal integrators that functionally couple presynaptic and postsynaptic mechanisms of transmission and plasticity. Understanding how these receptors reach the membrane and are positioned relative to the presynaptic glutamate release site are therefore important aspects of synapse biology. In this review, we will discuss the currently known mechanisms underlying the trafficking and positioning of mGluRs at and around synapses, and how these mechanisms contribute to synaptic functioning. We will highlight outstanding questions and present an outlook on how recent technological developments will move this exciting research field forward.
Collapse
|
21
|
Jullié D, Valbret Z, Stoeber M. Optical tools to study the subcellular organization of GPCR neuromodulation. J Neurosci Methods 2021; 366:109408. [PMID: 34763022 DOI: 10.1016/j.jneumeth.2021.109408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022]
Abstract
Modulation of neuronal circuit activity is key to information processing in the brain. G protein-coupled receptors (GPCRs), the targets of most neuromodulatory ligands, show extremely diverse expression patterns in neurons and receptors can be localized in various sub-neuronal membrane compartments. Upon activation, GPCRs promote signaling cascades that alter the level of second messengers, drive phosphorylation changes, modulate ion channel function, and influence gene expression, all of which critically impact neuron physiology. Because of its high degree of complexity, this form of interneuronal communication has remained challenging to integrate into our conceptual understanding of brain function. Recent technological advances in fluorescence microscopy and the development of optical biosensors now allow investigating neuromodulation with unprecedented resolution on the level of individual cells. In this review, we will highlight recent imaging techniques that enable determining the precise localization of GPCRs in neurons, with specific focus on the subcellular and nanoscale level. Downstream of receptors, we describe novel conformation-specific biosensors that allow for real-time monitoring of GPCR activation and of distinct signal transduction events in neurons. Applying these new tools has the potential to provide critical insights into the function and organization of GPCRs in neuronal cells and may help decipher the molecular and cellular mechanisms that underlie neuromodulation.
Collapse
Affiliation(s)
- Damien Jullié
- Department of Psychiatry, University of California San Francisco, San Francisco, USA.
| | - Zoé Valbret
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
22
|
Facilitating mGluR4 activity reverses the long-term deleterious consequences of chronic morphine exposure in male mice. Neuropsychopharmacology 2021; 46:1373-1385. [PMID: 33349673 PMCID: PMC8136479 DOI: 10.1038/s41386-020-00927-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Understanding the neurobiological underpinnings of abstinence from drugs of abuse is critical to allow better recovery and ensure relapse prevention in addicted subjects. By comparing the long-term transcriptional consequences of morphine and cocaine exposure, we identified the metabotropic glutamate receptor subtype 4 (mGluR4) as a promising pharmacological target in morphine abstinence. We evaluated the behavioral and molecular effects of facilitating mGluR4 activity in abstinent mice. Transcriptional regulation of marker genes of medium spiny neurons (MSNs) allowed best discriminating between 4-week morphine and cocaine abstinence in the nucleus accumbens (NAc). Among these markers, Grm4, encoding mGluR4, displayed down-regulated expression in the caudate putamen and NAc of morphine, but not cocaine, abstinent mice. Chronic administration of the mGluR4 positive allosteric modulator (PAM) VU0155041 (2.5 and 5 mg/kg) rescued social behavior, normalized stereotypies and anxiety and blunted locomotor sensitization in morphine abstinent mice. This treatment improved social preference but increased stereotypies in cocaine abstinent mice. Finally, the beneficial behavioral effects of VU0155041 treatment in morphine abstinent mice were correlated with restored expression of key MSN and neural activity marker genes in the NAc. This study reports that chronic administration of the mGluR4 PAM VU0155041 relieves long-term deleterious consequences of morphine exposure. It illustrates the neurobiological differences between opiate and psychostimulant abstinence and points to pharmacological repression of excessive activity of D2-MSNs in the NAc as a promising therapeutic lever in drug addiction.
Collapse
|
23
|
Matsunaga H, Aruga J. Trans-Synaptic Regulation of Metabotropic Glutamate Receptors by Elfn Proteins in Health and Disease. Front Neural Circuits 2021; 15:634875. [PMID: 33790745 PMCID: PMC8005653 DOI: 10.3389/fncir.2021.634875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Trans-regulation of G protein-coupled receptors (GPCRs) by leucine-rich repeat (LRR) transmembrane proteins has emerged as a novel type of synaptic molecular interaction in the last decade. Several studies on LRR–GPCR interactions have revealed their critical role in synapse formation and in establishing synaptic properties. Among them, LRR–GPCR interactions between extracellular LRR fibronectin domain-containing family proteins (Elfn1 and Elfn2) and metabotropic glutamate receptors (mGluRs) are particularly interesting as they can affect a broad range of synapses through the modulation of signaling by glutamate, the principal excitatory transmitter in the mammalian central nervous system (CNS). Elfn–mGluR interactions have been investigated in hippocampal, cortical, and retinal synapses. Postsynaptic Elfn1 in the hippocampus and cerebral cortex mediates the tonic regulation of excitatory input onto somatostatin-positive interneurons (INs) through recruitment of presynaptic mGluR7. In the retina, presynaptic Elfn1 binds to mGluR6 and is necessary for synapse formation between rod photoreceptor cells and rod-bipolar cells. The repertoire of binding partners for Elfn1 and Elfn2 includes all group III mGluRs (mGluR4, mGluR6, mGluR7, and mGluR8), and both Elfn1 and Elfn2 can alter mGluR-mediated signaling through trans-interaction. Importantly, both preclinical and clinical studies have provided support for the involvement of the Elfn1–mGluR7 interaction in attention-deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), and epilepsy. In fact, Elfn1–mGluR7-associated disorders may reflect the altered function of somatostatin-positive interneuron inhibitory neural circuits, the mesolimbic and nigrostriatal dopaminergic pathway, and habenular circuits, highlighting the need for further investigation into this interaction.
Collapse
Affiliation(s)
- Hayato Matsunaga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
24
|
Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Trends Biochem Sci 2020; 45:1049-1064. [PMID: 32861513 PMCID: PMC7642020 DOI: 10.1016/j.tibs.2020.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the β2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Diomedes A Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, College of Science and Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
25
|
Park D, Park S, Song J, Kang M, Lee S, Horak M, Suh YH. N‐linked glycosylation of the mGlu7 receptor regulates the forward trafficking and transsynaptic interaction with Elfn1. FASEB J 2020; 34:14977-14996. [DOI: 10.1096/fj.202001544r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Da‐ha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sunha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Jae‐man Song
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Minji Kang
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Martin Horak
- Institute of Physiology of the Czech Academy of Sciences Institute of Experimental Medicine of the Czech Academy of Sciences Prague 4 Czech Republic
| | - Young Ho Suh
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| |
Collapse
|
26
|
Interplay between cell-adhesion molecules governs synaptic wiring of cone photoreceptors. Proc Natl Acad Sci U S A 2020; 117:23914-23924. [PMID: 32879010 DOI: 10.1073/pnas.2009940117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Establishment of functional synaptic connections in a selective manner is essential for nervous system operation. In mammalian retinas, rod and cone photoreceptors form selective synaptic connections with different classes of bipolar cells (BCs) to propagate light signals. While there has been progress in elucidating rod wiring, molecular mechanisms used by cones to establish functional synapses with BCs have remained unknown. Using an unbiased proteomic strategy in cone-dominant species, we identified the cell-adhesion molecule ELFN2 to be pivotal for the functional wiring of cones with the ON type of BC. It is selectively expressed in cones and transsynaptically recruits the key neurotransmitter receptor mGluR6 in ON-BCs to enable synaptic transmission. Remarkably, ELFN2 in cone terminals functions in synergy with a related adhesion molecule, ELFN1, and their concerted interplay during development specifies selective wiring and transmission of cone signals. These findings identify a synaptic connectivity mechanism of cones and illustrate how interplay between adhesion molecules and postsynaptic transmitter receptors orchestrates functional synaptic specification in a neural circuit.
Collapse
|