1
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Arias-Vasquez A, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MPM, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJC, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DCM, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Maniega SM, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BWJH, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van T Ent D, van Bokhoven H, van der Meer D, van der Wee NJA, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. Nat Genet 2024:10.1038/s41588-024-01951-z. [PMID: 39433889 DOI: 10.1038/s41588-024-01951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Adrian I Campos
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Zuriel Ceja
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Brittany L Mitchell
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Katrina L Grasby
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jackson G Thorp
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Molecular and Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
- National Ageing Research Institute, Parkville, Victoria, Australia
| | - Philippe Amouyel
- Universite Lille, U1167-RID-AGE-LabEx DISTALZ-Risk Factors and Molecular Determinants of Aging Diseases, Lille, France
- Institut National de la Santé et de la Recherche Médicale, Lille, France
- Centre Hospitalier Universitaire de Lille Department of Public Health, Lille, France
- Institut Pasteur de Lille UMR1167, Lille, France
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alejandro Arias-Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marco P M Boks
- Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)-Georgia State, Georgia Tech and Emory University, Atlanta, GA, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Christopher R K Ching
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion Biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, Spain
| | | | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stéphanie Debette
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Susanne Erk
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychology, Oslo New University College, Oslo, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Evan Fletcher
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, Germany
- Goethe-University Frankfurt, Frankfurt, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Heinz
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE)-Site Rostock/Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Neda Jahanshad
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Rene S Kahn
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicholas G Martin
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales Psychiatrie', Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep and Stress Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics Program, Amsterdam, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, Seattle, WA, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, Germany
| | - Rafael Romero-Garcia
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | | - Arvin Saremi
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Gottfried Schatz Center for Signaling, Metabolism and Aging, Medical University Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Gunter Schumann
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, PR China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jason L Stein
- Department of Genetics and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophia I Thomopoulos
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The National Centre of Excellence in Intellectual Disability Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Dennis van T Ent
- Department of Biological Psychology and Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael W Weiner
- University of California, San Francisco, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Paul M Thompson
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sarah E Medland
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel E Rentería
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Núñez-Ríos DL, Nagamatsu ST, Martínez-Magaña JJ, Hurd Y, Rompala G, Krystal JH, Montalvo-Ortiz JL. Mapping the epigenomic landscape of post-traumatic stress disorder in human cortical neurons. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315258. [PMID: 39484232 PMCID: PMC11527063 DOI: 10.1101/2024.10.11.24315258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Most epigenetic research on post-traumatic stress disorder (PTSD) has primarily focused on DNA methylation (5mC) in peripheral tissues, particularly at CpG sites. DNA hydroxymethylation (5hmC) has been found to be highly enriched in the mammalian brain, while 5mC at non-CpG sites shows high enrichment in neurons. However, little is known about their role in PTSD. Here, we characterize genome-wide differential 5mC and 5hmC at both CpG and non-CpG sites in postmortem orbitofrontal neurons from PTSD cases and controls. Utilizing reduced-representation oxidative bisulfite sequencing, we found that genome-wide significant (GWS) differential CpGs were primarily hyper-5mC/5hmC, whereas GWS differential non-CpGs were hypo-5mC/5hmC. Compared with 5mC, we show that 5hmC is a more sensitive epigenetic mark in PTSD, with a higher number of differential 5hmC sites and a stronger significance in enriched pathways. Integrating other -omics data highlighted developmental processes as significant convergent pathways and revealed overlap of our GWS 5hmC findings with 50 previously reported PTSD-associated genes, including potential therapeutic targets such as CRHR1 and DRD4. This study underscores the importance of evaluating 5hmC in the human brain and our multi-omics integration provides insights into potential target genes for future therapeutic interventions in PTSD. Graphical abstract The study conducted a comprehensive genome-wide analysis of differential 5mC and 5hmC modifications at both CpG and non-CpG sites in postmortem orbitofrontal neurons from 25 PTSD cases and 13 healthy controls. It was observed that PTSD patients exhibit a greater number of differential 5hmC sites compared to 5mC sites. Specifically, individuals with PTSD tend to show hyper-5mC/5hmC at CpG sites, particularly within CpG islands and promoter regions, and hypo-5mC/5hmC at non-CpG sites, especially within intragenic regions. Functional enrichment analysis indicated distinct yet interconnected roles for 5mC and 5hmC in PTSD. The 5mC marks primarily regulate cell-cell adhesion processes, whereas 5hmC marks are involved in embryonic morphogenesis and cell fate commitment. By integrating published PTSD findings from central and peripheral tissues through multi-omics approaches, several biological mechanisms were prioritized, including developmental processes, HPA axis regulation, and immune responses. Based on the consistent enrichment in developmental processes, we hypothesize that if epigenetic changes occur during early developmental stages, they may increase the risk of developing PTSD following trauma exposure. Conversely, if these epigenetic changes occur in adulthood, they may influence neuronal apoptosis and survival mechanisms.
Collapse
|
3
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Vasquez AA, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MP, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJ, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DC, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Muñoz Maniega S, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BW, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van 't Ent D, van Bokhoven H, van der Meer D, van der Wee NJ, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.13.24311922. [PMID: 39371125 PMCID: PMC11451674 DOI: 10.1101/2024.08.13.24311922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. We performed GWAS meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and, for the first time, the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signalling and brain ageing-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and ADHD. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Adrian I Campos
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Zuriel Ceja
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Brittany L Mitchell
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katrina L Grasby
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jackson G Thorp
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Ingrid Agartz
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, 0407, Norway
- Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, SE-11364, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Molecular & Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, D15, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Kew, VIC, 3101, Australia
- National Ageing Research Institute, Parkville, VIC, 3052, Australia
| | - Philippe Amouyel
- Universite Lille, U1167 - RID-AGE - LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, Lille, F-59000, France
- Institut National de la Sante et de la Recherche Medicale, U1167, Lille, F-59000, France
- Centre Hospitalier Universitaire de Lille, Department of Public Health, Lille, F-59000, Franch
- Institut Pasteur de Lille UMR1167, Lille, F-59000, France
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0407, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, 0407, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | - Alejandro Arias Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway, Oslo, 0455, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
| | - Marco Pm Boks
- Brain Center University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | | | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neurocience, VU Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, 93053, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
- Altrecht Mental Health Institute, Utrecht, 3512PG, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), {Georgia State, Georgia Tech, Emory}, Atlanta, GA, 30303, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Department of Biomedicine, University of Basel, Basel, CH-4031, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, 4031, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, 41013, Spain
| | - Fabrice Crivello
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux, 33076, France
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, 92093, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, University of Bristol, Bristol, BS8 BN, United Kingdom
| | - Eco Jc de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10538, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Stéphanie Debette
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, F-33000, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, 1070, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, United Kingdom
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, 0450, Norway
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, 01307, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
- Department of Psychology, Oslo New University College, Oslo, 0456, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, 91190, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6500 HE, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Evan Fletcher
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, 68159, Germany
- Goethe-University Frankfurt, Frankfurt am Main, 60528, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, D-69115, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, 7030, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, 7006, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, 0450, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Andreas Heinz
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52246, USA
| | - David F Hoehn
- Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- Accare Child Study Center, Groningen, 9723 HE, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE) - site Rostock/Greifswald, Greifswald, 17489, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, 17475, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, 3015 CN , The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, 7925, South Africa
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, SE-11364, Sweden
| | - Rene S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, United Kingdom
| | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, 33076, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, 98104-2420, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Nicholas G Martin
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, 911
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, 14152, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics program, Amsterdam, 1081 HV, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, D-40225, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, CH-4031, Switzerland
| | - Bertram Müller-Myhsok
- Statistics Genetics Group, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, 17489, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, 17489, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- General internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, 1100 DD, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, 1070, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, M5G 0A4, Canada
| | - Brenda Wjh Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Health Systems and Population Health, Seattle, WA, 98195-9458, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, 80804, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, 68159, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, 10117, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, 14197, Germany
| | - Rafael Romero-Garcia
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/ CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Sevilla, 41013, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | | | - Arvin Saremi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, F-33000, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Orygen, Parkville, VIC, 3052, Australia
| | - Helena Schmidt
- Institute of Molecular Biology & Biochemistry, Gottfried Schatz Center for Signaling, Metabolism & Aging, Medical University Graz, Graz, 8010, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, 8023, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, 04107, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, 200031, P.R. China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, 10017, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, M5G 0A4, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Mediciine, University of Eastern Finland, Kuopio, 70100, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7250, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Arthur W Toga
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, E-39005, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, 39011, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- The National Centre of Excellence in Intellectual Disability Health,, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Dennis van 't Ent
- Department of Biological Psychology & Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Nic Ja van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla - IDIVAL, Santander, 39008, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, 39008, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, 41013, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Michael W Weiner
- University of California San Francisco, San Francisco, CA, 94121, USA
- Northern California Institute for Research & Education (NCIRE), San Francisco, CA, 94121, USA
- Veterans Administration Medical Center, San Francisco, CA, 94121, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, 14183, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, 20892-1276, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Sarah E Medland
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel E Rentería
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Liu H, Zhang Y, Hou X, Zhu C, Yang Q, Li K, Fan L, Zhang X, Jiang X, Jin X, Lei H, Chen T, Zhang F, Zhang Z, Song J. CRHR1 antagonist alleviated depression-like behavior by downregulating p62 in a rat model of post-stroke depression. Exp Neurol 2024; 378:114822. [PMID: 38823676 DOI: 10.1016/j.expneurol.2024.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.
Collapse
Affiliation(s)
- Huanhuan Liu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Yunfei Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoli Hou
- General Hospital of Pingmei Shenma Group, Pingdingshan, Henan, China
| | - Chuanzhou Zhu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Qianling Yang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Kun Li
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Lifei Fan
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyue Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Xinhui Jiang
- The Third People's Hospital of Luoyang, Luoyang, Henan, China
| | - Xuejiao Jin
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Hao Lei
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tengfei Chen
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Fuping Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| | - Zhaohui Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Jinggui Song
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| |
Collapse
|
5
|
Wang Z, Zhang L, Yang J, Zeng Y, Su C, Yao M, Zhang H, Hu W, Liu Y, Lai Y, Wang X, Zeng J, Liu R. Chronic stress induces Alzheimer's disease-like pathologies through DNA damage-Chk1-CIP2A signaling. Aging (Albany NY) 2024; 16:9168-9187. [PMID: 38819231 PMCID: PMC11164505 DOI: 10.18632/aging.205862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Stress is an important initiating factor in promoting Alzheimer's disease (AD) pathogenesis. However, the mechanism by which stress induces AD-like cognitive impairment remains to be clarified. Here, we demonstrate that DNA damage is increased in stress hormone Corticotropin-releasing factor (CRF)-treated cells and in brains of mice exposed to chronic restraint stress. Accumulation of DNA damage drives activation of cell cycle checkpoint protein kinase 1 (Chk1), upregulation of cancerous inhibitor of PP2A (CIP2A), tau hyperphosphorylation, and Aβ overproduction, eventually resulting in synaptic impairment and cognitive deficits. Pharmacological intervention targeting Chk1 by specific inhibitor and DNA damage by vitamin C, suppress DNA damage-Chk1-CIP2A signaling pathway in chronic stress animal model, which in turn attenuate AD-like pathologies, synaptic impairments and cognitive deficits. Our study uncovers a novel molecular mechanism of stress-induced AD-like pathologies and provides effective preventive and therapeutic strategies targeting this signaling pathway.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Jiayu Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zeng
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengke Su
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdong Yao
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yi Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Lai
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Jia M, Lv X, Zhu T, Shen JC, Liu WX, Yang JJ. Liraglutide ameliorates delirium-like behaviors of aged mice undergoing cardiac surgery by mitigating microglia activation via promoting mitophagy. Psychopharmacology (Berl) 2024; 241:687-698. [PMID: 37968531 DOI: 10.1007/s00213-023-06492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Postoperative delirium (POD) is a prevalent complication in cardiac surgery patients, particularly the elderly, with neuroinflammation posited as a crucial contributing factor. We investigated the prophylactic effects of liraglutide, a GLP-1 analog, on delirium-like behaviors in aged mice undergoing cardiac surgery and explored the underlying mechanisms focusing on neuroinflammation, mitochondrial dysfunction, and synaptic plasticity. METHODS Using a cardiac ischemia-reperfusion animal model to mimic cardiac surgery, we assessed delirium-like behaviors, microglial activation, NLRP3 inflammasome activation, mitophagy, synaptic engulfment, and synaptic plasticity. RESULTS Cardiac surgery triggered delirium-like behaviors, concomitant with heightened microglial and NLRP3 inflammasome activation and impaired mitochondrial function and synaptic plasticity. Pretreatment with liraglutide ameliorated these adverse outcomes. Mechanistically, liraglutide enhanced mitophagy, thereby inhibiting NLRP3 inflammasome activation and subsequent microglial activation. Furthermore, liraglutide counteracted surgery-induced synaptic loss and impairment of synaptic plasticity. CONCLUSION Liraglutide exerts protective effects against delirium-like behaviors in aged mice post-cardiac surgery, potentially through bolstering microglia mitophagy, curtailing neuroinflammation, and preserving synaptic integrity. This highlights the potential of liraglutide as a promising perioperative strategy for delirium prevention in cardiac surgery patients.
Collapse
Affiliation(s)
- Min Jia
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Lv
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Tong Zhu
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Wen-Xue Liu
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Reiners JC, Leopold L, Hallebach V, Sinske D, Meier P, Amoroso M, Langgartner D, Reber SO, Knöll B. Acute stress modulates the outcome of traumatic brain injury-associated gene expression and behavioral responses. FASEB J 2023; 37:e23218. [PMID: 37779443 DOI: 10.1096/fj.202301035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Psychological stress and traumatic brain injury (TBI) result in long-lasting emotional and behavioral impairments in patients. So far, the interaction of psychological stress with TBI not only in the brain but also in peripheral organs is poorly understood. Herein, the impact of acute stress (AS) occurring immediately before TBI is investigated. For this, a mouse model of restraint stress and TBI was employed, and their influence on behavior and gene expression in brain regions, the hypothalamic-pituitary-adrenal (HPA) axis, and peripheral organs was analyzed. Results demonstrate that, compared to single AS or TBI exposure, mice treated with AS prior to TBI showed sex-specific alterations in body weight, memory function, and locomotion. The induction of immediate early genes (IEGs, e.g., c-Fos) by TBI was modulated by previous AS in several brain regions. Furthermore, IEG upregulation along the HPA axis (e.g., pituitary, adrenal glands) and other peripheral organs (e.g., heart) was modulated by AS-TBI interaction. Proteomics of plasma samples revealed proteins potentially mediating this interaction. Finally, the deletion of Atf3 diminished the TBI-induced induction of IEGs in peripheral organs but left them largely unaltered in the brain. In summary, AS immediately before brain injury affects the brain and, to a strong degree, also responses in peripheral organs.
Collapse
Affiliation(s)
| | - Laura Leopold
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Vera Hallebach
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Daniela Sinske
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Wang Q, Zhang X, Guo YJ, Pang YY, Li JJ, Zhao YL, Wei JF, Zhu BT, Tang JX, Jiang YY, Meng J, Yue JR, Lei P. Scopolamine causes delirium-like brain network dysfunction and reversible cognitive impairment without neuronal loss. Zool Res 2023; 44:712-724. [PMID: 37313848 PMCID: PMC10415773 DOI: 10.24272/j.issn.2095-8137.2022.473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia. However, given its inherent complexity, few animal models of delirium have been established and the mechanism underlying the onset of delirium remains elusive. Here, we conducted a comparison of three mouse models of delirium induced by clinically relevant risk factors, including anesthesia with surgery (AS), systemic inflammation, and neurotransmission modulation. We found that both bacterial lipopolysaccharide (LPS) and cholinergic receptor antagonist scopolamine (Scop) induction reduced neuronal activities in the delirium-related brain network, with the latter presenting a similar pattern of reduction as found in delirium patients. Consistently, Scop injection resulted in reversible cognitive impairment with hyperactive behavior. No loss of cholinergic neurons was found with treatment, but hippocampal synaptic functions were affected. These findings provide further clues regarding the mechanism underlying delirium onset and demonstrate the successful application of the Scop injection model in mimicking delirium-like phenotypes in mice.
Collapse
Affiliation(s)
- Qing Wang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiang Zhang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-Jie Guo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-Yan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jun-Jie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yan-Li Zhao
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun-Fen Wei
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bai-Ting Zhu
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-Xiang Tang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang-Yang Jiang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Meng
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Rong Yue
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| | - Peng Lei
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| |
Collapse
|
9
|
Three-dimensional chromatin architecture datasets for aging and Alzheimer's disease. Sci Data 2023; 10:51. [PMID: 36693875 PMCID: PMC9873630 DOI: 10.1038/s41597-023-01948-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Recently, increasing studies are indicating a close association between dysregulated enhancers and neurodegenerative diseases, such as Alzheimer's disease (AD). However, their contributions were poorly defined for lacking direct links to disease genes. To bridge this gap, we presented the Hi-C datasets of 4 AD patients, 4 dementia-free aged and 3 young subjects, including 30 billion reads. As applications, we utilized them to link the AD risk SNPs and dysregulated epigenetic marks to the target genes. Combining with epigenetic data, we observed more detailed interactions among regulatory regions and found that many known AD risk genes were under long-distance promoter-enhancer interactions. For future AD and aging studies, our datasets provide a reference landscape to better interpret findings of association and epigenetic studies for AD and aging process.
Collapse
|
10
|
Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation. Cells 2022; 12:cells12010160. [PMID: 36611953 PMCID: PMC9818437 DOI: 10.3390/cells12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic sleep disturbances (CSDs) including insomnia, insufficient sleep time, and poor sleep quality are major public health concerns around the world, especially in developed countries. CSDs are major health risk factors linked to multiple neurodegenerative and neuropsychological diseases. It has been suggested that CSDs could activate microglia (Mg) leading to increased neuroinflammation levels, which ultimately lead to neuronal dysfunction. However, the detailed mechanisms underlying CSD-mediated microglial activation remain mostly unexplored. In this study, we used mice with three-weeks of sleep fragmentation (SF) to explore the underlying pathways responsible for Mg activation. Our results revealed that SF activates Mg in the hippocampus (HP) but not in the striatum and prefrontal cortex (PFc). SF increased the levels of corticotropin-releasing hormone (CRH) in the HP. In vitro mechanism studies revealed that CRH activation of Mg involves galectin 3 (Gal3) upregulation and autophagy dysregulation. CRH could disrupt lysosome membrane integrity resulting in lysosomal cathepsins leakage. CRHR2 blockage mitigated CRH-mediated effects on microglia in vitro. SF mice also show increased Gal3 levels and autophagy dysregulation in the HP compared to controls. Taken together, our results show that SF-mediated hippocampal Mg activation involves CRH mediated galectin 3 and autophagy dysregulation. These findings suggest that targeting the hippocampal CRH system might be a novel therapeutic approach to ameliorate CSD-mediated neuroinflammation and neurodegenerative diseases.
Collapse
|
11
|
Yuan M, Zhu H, Li Y, Ge F, Lui S, Gong Q, Qiu C, Song H, Zhang W. The DRD2 Taq1A polymorphism moderates the effect of PTSD symptom severity on the left hippocampal CA3 volume: a pilot study. Psychopharmacology (Berl) 2022; 239:3431-3438. [PMID: 34086098 PMCID: PMC9585014 DOI: 10.1007/s00213-021-05882-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/21/2021] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES The hippocampus, especially the CA1, CA3, and dentate gyrus (DG) subfields, is reported to be associated with post-traumatic stress disorder (PTSD) after trauma. However, neuroimaging studies of the associations between PTSD and hippocampal subfield volumes have failed to yield consistent findings. The aim of this study is to examine whether the dopamine D2 receptor (DRD2) Taq1A polymorphism, which is associated with both hippocampal function and PTSD, moderated the association between PTSD severity and hippocampal CA1, CA3 and DG volumes. METHODS T1-weighted images were acquired from 142 trauma survivors from the 2008 Wenchuan earthquake using a 3.0-T magnetic resonance imaging system. Hippocampal subfield segmentations were performed with FreeSurfer v6.0. We used the simple moderation model from the PROCESS v3.4 tool for SPSS 23.0 to examine the association between the rs1800497 polymorphism, PTSD severity, and hippocampal CA3 and DG volumes. RESULTS A significant genotype × PTSD symptom severity interaction was found for the left CA3 volume (ΔF = 5.01, p = 0.008, ΔR2 = 0.05). Post hoc, exploratory analyses deconstructing the interaction revealed that severe PTSD symptomatology were associated with reduced left CA3 volume among TC heterozygotes (t = - 2.86, p = 0.005). CONCLUSIONS This study suggests that DRD2 Taq1A polymorphism moderates the association between PTSD symptomatology and left CA3 volume, which promotes an etiological understanding of the hippocampal atrophy at the subfield level. This highlights the complex effect of environmental stress, and provides possible mechanism for the relationship between the dopaminergic system and hippocampal function in PTSD.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuchen Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fenfen Ge
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Ruf WP, Palmer A, Dörfer L, Wiesner D, Buck E, Grozdanov V, Kassubek J, Dimou L, Ludolph AC, Huber-Lang M, Danzer KM. Thoracic trauma promotes alpha-Synuclein oligomerization in murine Parkinson's disease. Neurobiol Dis 2022; 174:105877. [PMID: 36162738 DOI: 10.1016/j.nbd.2022.105877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Systemic and neuroinflammatory processes play key roles in neurodegenerative diseases such as Parkinson's disease (PD). Physical trauma which induces considerable systemic inflammatory responses, represents an evident environmental factor in aging. However, little is known about the impact of physical trauma, on the immuno-pathophysiology of PD. Especially blunt chest trauma which is associated with a high morbidity and mortality rate in the elderly population, can induce a strong pulmonary and systemic inflammatory reaction. Hence, we sought out to combine a well-established thoracic trauma mouse model with a well-established PD mouse model to characterize the influence of physical trauma to neurodegenerative processes in PD. METHODS To study the influence of peripheral trauma in a PD mouse model we performed a highly standardized blunt thorax trauma in a well-established PD mouse model and determined the subsequent local and systemic response. RESULTS We could show that blunt chest trauma leads to a systemic inflammatory response which is quantifiable with increased inflammatory markers in bronchoalveolar fluids (BALF) and plasma regardless of the presence of a PD phenotype. A difference of the local inflammatory response in the brain between the PD group and non-PD group could be detected, as well as an increase in the formation of oligomeric pathological alpha-Synuclein (asyn) suggesting an interplay between peripheral thoracic trauma and asyn pathology in PD. CONCLUSION Taken together this study provides evidence that physical trauma is associated with increased asyn oligomerization in a PD mouse model underlining the relevance of PD pathogenesis under traumatic settings.
Collapse
Affiliation(s)
- Wolfgang P Ruf
- Department of Neurology, Ulm University, 89081 Ulm, Germany.
| | - Annette Palmer
- Institute of Experimental Trauma- Immunology, University Hospital of Ulm, Ulm, Germany.
| | - Lena Dörfer
- Institute of Experimental Trauma- Immunology, University Hospital of Ulm, Ulm, Germany
| | - Diana Wiesner
- German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | - Eva Buck
- German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | - Leda Dimou
- Molecular and Translational Neuroscience, Ulm University, 89081 Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | - Markus Huber-Lang
- Institute of Experimental Trauma- Immunology, University Hospital of Ulm, Ulm, Germany.
| | - Karin M Danzer
- Department of Neurology, Ulm University, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| |
Collapse
|
13
|
Chen M, Zhang L, Shao M, Du J, Xiao Y, Zhang F, Zhang T, Li Y, Zhou Q, Liu K, Wang Z, Wu B. E4BP4 Coordinates Circadian Control of Cognition in Delirium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200559. [PMID: 35713240 PMCID: PMC9376827 DOI: 10.1002/advs.202200559] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Indexed: 05/07/2023]
Abstract
Improved understanding of the etiologies of delirium, a common and severe neuropsychiatric syndrome, would facilitate the disease prevention and treatment. Here, the authors invesitgate the role of circadian rhythms in the pathogenesis of delirium. They observe perturbance of circadian rhythms in mouse models of delirium and disrupted clock gene expression in patients with delirium. In turn, physiological and genetic circadian disruptions sensitize mice to delirium with aggravated cognitive impairment. Likewise, global deletion of E4bp4 (E4 promoter-binding protein), a clock gene markedly altered in delirium conditions, results in exacerbated delirium-associated cognitive decline. Cognitive decline in delirium models is attributed to microglial activation and impaired long-term potentiation in the hippocampus. Single-cell RNA-sequencing reveals microglia as the regulatory target of E4bp4. E4bp4 restrains microglial activation via inhibiting the ERK1/2 signaling pathway. Supporting this, mice lacking in microglial E4bp4 are delirious prone, whereas mice with E4bp4 specifically deleted in hippocampal CA1 neurons have a normal phenotype. Mechanistically, E4bp4 inhibits ERK1/2 signaling by trans-repressing Mapk1/3 (genes encoding ERK1/2) via direct binding to a D-box element in the promoter region. These findings define a causal role of clock dysfunction in delirium development and indicate E4bp4 as a regulator of cognition at the crosstalk between circadian clock and delirium.
Collapse
Affiliation(s)
- Min Chen
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Li Zhang
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Mingting Shao
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Jianhao Du
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Yifei Xiao
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Fugui Zhang
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifang Li
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Qianqian Zhou
- Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated HospitalSouthern University of Science and Technology)Shenzhen518119China
| | - Kaisheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated HospitalSouthern University of Science and Technology)Shenzhen518119China
| | - Zhigang Wang
- Department of Intensive Care UnitFirst Affiliated Hospital of Jinan UniversityGuangzhou510630China
| | - Baojian Wu
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
14
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
15
|
Urrutia-Ruiz C, Rombach D, Cursano S, Gerlach-Arbeiter S, Schoen M, Bockmann J, Demestre M, Boeckers TM. Deletion of the Autism-Associated Protein SHANK3 Abolishes Structural Synaptic Plasticity after Brain Trauma. Int J Mol Sci 2022; 23:ijms23116081. [PMID: 35682760 PMCID: PMC9181590 DOI: 10.3390/ijms23116081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by repetitive behaviors and impairments of sociability and communication. About 1% of ASD cases are caused by mutations of SHANK3, a major scaffolding protein of the postsynaptic density. We studied the role of SHANK3 in plastic changes of excitatory synapses within the central nervous system by employing mild traumatic brain injury (mTBI) in WT and Shank3 knockout mice. In WT mice, mTBI triggered ipsi- and contralateral loss of hippocampal dendritic spines and excitatory synapses with a partial recovery over time. In contrast, no significant synaptic alterations were detected in Shank3∆11−/− mice, which showed fewer dendritic spines and excitatory synapses at baseline. In line, mTBI induced the upregulation of synaptic plasticity-related proteins Arc and p-cofilin only in WT mice. Interestingly, microglia proliferation was observed in WT mice after mTBI but not in Shank3∆11−/− mice. Finally, we detected TBI-induced increased fear memory at the behavioral level, whereas in Shank3∆11−/− animals, the already-enhanced fear memory levels increased only slightly after mTBI. Our data show the lack of structural synaptic plasticity in Shank3 knockout mice that might explain at least in part the rigidity of behaviors, problems in adjusting to new situations and cognitive deficits seen in ASDs.
Collapse
Affiliation(s)
- Carolina Urrutia-Ruiz
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Daniel Rombach
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Silvia Cursano
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Susanne Gerlach-Arbeiter
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Translational Biochemistry, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-5002-3220
| |
Collapse
|
16
|
Garrido D, Beretta S, Grabrucker S, Bauer HF, Bayer D, Sala C, Verpelli C, Roselli F, Bockmann J, Proepper C, Catanese A, Boeckers TM. Shank2/3 double knockout-based screening of cortical subregions links the retrosplenial area to the loss of social memory in autism spectrum disorders. Mol Psychiatry 2022; 27:4994-5006. [PMID: 36100669 PMCID: PMC9763120 DOI: 10.1038/s41380-022-01756-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
Members of the Shank protein family are master scaffolds of the postsynaptic architecture and mutations within the SHANK genes are causally associated with autism spectrum disorders (ASDs). We generated a Shank2-Shank3 double knockout mouse that is showing severe autism related core symptoms, as well as a broad spectrum of comorbidities. We exploited this animal model to identify cortical brain areas linked to specific autistic traits by locally deleting Shank2 and Shank3 simultaneously. Our screening of 10 cortical subregions revealed that a Shank2/3 deletion within the retrosplenial area severely impairs social memory, a core symptom of ASD. Notably, DREADD-mediated neuronal activation could rescue the social impairment triggered by Shank2/3 depletion. Data indicate that the retrosplenial area has to be added to the list of defined brain regions that contribute to the spectrum of behavioural alterations seen in ASDs.
Collapse
Affiliation(s)
- Débora Garrido
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany
| | - Stefania Beretta
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Stefanie Grabrucker
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Helen Friedericke Bauer
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany
| | - David Bayer
- grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Carlo Sala
- grid.418879.b0000 0004 1758 9800CNR, Institute for Neuroscience, Milano, Italy
| | - Chiara Verpelli
- grid.418879.b0000 0004 1758 9800CNR, Institute for Neuroscience, Milano, Italy
| | - Francesco Roselli
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Juergen Bockmann
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Christian Proepper
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Alberto Catanese
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| |
Collapse
|
17
|
Selective striatal cell loss is ameliorated by regulated autophagy of the cortex. Life Sci 2021; 282:119822. [PMID: 34271058 DOI: 10.1016/j.lfs.2021.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
AIMS The harmful cellular environment leads to brain damage, and each brain subregion exhibits a differential vulnerability to its effects. This study investigated the causes of selectively striatal cell loss in systemic 3-nitropropionic acid (3-NP) infused mice. MAIN METHODS This study was performed in the neuronal cell line, primary neuron, cultured mouse brain, and mice brain tissues. The 3-NP solution was delivered using an osmotic mini-pump system for 7 days. ROS in brain tissue were detected and evaluated with the signals of CM-H2DCFDA for total cellular ROS and MitoSOX Red for mitochondrial ROS. Cellular ROS and the functional status of mitochondria were assessed with a detection kit and analyzed using flow cytometry. To quantify oxidative damaged DNA, apurinic/apyrimidinic (AP) site numbers in DNA were measured. The protein expression level was assessed using Western blotting, and immunohistochemistry was performed. Cleaved caspase-3 activities were measured by using an enzyme-linked immunosorbent assay (ELISA) kit. KEY FINDINGS By 3-NP, mitochondrial dysfunction was higher in the striatum than in the cortex, and mitochondria-derived ROS levels were higher in the striatum than in the cortex. However, autophagy that may restore the energy depletion resulting from mitochondrial dysfunction occurred comparably less in the striatum than in the cortex. Inhibition of ASK1 by NQDI1 regulates MAPK signaling, apoptosis, and autophagy. Regulated autophagy of the cortex improved non-cell autonomously striatal damaged condition. SIGNIFICANCE This study illustrated that the different vulnerabilities of the brain subregions, striatum or cortex, against 3-NP are rooted in different mitochondria-derived ROS amounts and autophagic capacity.
Collapse
|
18
|
Battaglia CR, Cursano S, Calzia E, Catanese A, Boeckers TM. Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death Dis 2020; 11:1004. [PMID: 33230105 PMCID: PMC7683554 DOI: 10.1038/s41419-020-03204-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Neuronal stress-adaptation combines multiple molecular responses. We have previously reported that thorax trauma induces a transient loss of hippocampal excitatory synapses mediated by the local release of the stress-related hormone corticotropin-releasing hormone (CRH). Since a physiological synaptic activity relies also on mitochondrial functionality, we investigated the direct involvement of mitochondria in the (mal)-adaptive changes induced by the activation of neuronal CRH receptors 1 (CRHR1). We observed, in vivo and in vitro, a significant shift of mitochondrial dynamics towards fission, which correlated with increased swollen mitochondria and aberrant cristae. These morphological changes, which are associated with increased NF-kB activity and nitric oxide concentrations, correlated with a pronounced reduction of mitochondrial activity. However, ATP availability was unaltered, suggesting that neurons maintain a physiological energy metabolism to preserve them from apoptosis under CRH exposure. Our findings demonstrate that stress-induced CRHR1 activation leads to strong, but reversible, modifications of mitochondrial dynamics and morphology. These alterations are accompanied by bioenergetic defects and the reduction of neuronal activity, which are linked to increased intracellular oxidative stress, and to the activation of the NF-kB/c-Abl/DRP1 axis.
Collapse
Affiliation(s)
- Chiara R Battaglia
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School, Ulm University, Ulm, Germany
| | - Silvia Cursano
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School, Ulm University, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany. .,DZNE, Ulm site, Ulm, Germany.
| |
Collapse
|
19
|
Wilson JE, Mart MF, Cunningham C, Shehabi Y, Girard TD, MacLullich AMJ, Slooter AJC, Ely EW. Delirium. Nat Rev Dis Primers 2020; 6:90. [PMID: 33184265 PMCID: PMC9012267 DOI: 10.1038/s41572-020-00223-4] [Citation(s) in RCA: 454] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Delirium, a syndrome characterized by an acute change in attention, awareness and cognition, is caused by a medical condition that cannot be better explained by a pre-existing neurocognitive disorder. Multiple predisposing factors (for example, pre-existing cognitive impairment) and precipitating factors (for example, urinary tract infection) for delirium have been described, with most patients having both types. Because multiple factors are implicated in the aetiology of delirium, there are likely several neurobiological processes that contribute to delirium pathogenesis, including neuroinflammation, brain vascular dysfunction, altered brain metabolism, neurotransmitter imbalance and impaired neuronal network connectivity. The Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) is the most commonly used diagnostic system upon which a reference standard diagnosis is made, although many other delirium screening tools have been developed given the impracticality of using the DSM-5 in many settings. Pharmacological treatments for delirium (such as antipsychotic drugs) are not effective, reflecting substantial gaps in our understanding of its pathophysiology. Currently, the best management strategies are multidomain interventions that focus on treating precipitating conditions, medication review, managing distress, mitigating complications and maintaining engagement to environmental issues. The effective implementation of delirium detection, treatment and prevention strategies remains a major challenge for health-care organizations globally.
Collapse
Affiliation(s)
- Jo Ellen Wilson
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Division of General Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Matthew F Mart
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Yahya Shehabi
- Monash Health School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
- Prince of Wales Clinical School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy D Girard
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA
- Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alasdair M J MacLullich
- Edinburgh Delirium Research Group, Geriatric Medicine, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Arjen J C Slooter
- Department of Intensive Care Medicine and UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - E Wesley Ely
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Veteran's Affairs TN Valley, Geriatrics Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| |
Collapse
|
20
|
Peters van Ton AM, Verbeek MM, Alkema W, Pickkers P, Abdo WF. Downregulation of synapse-associated protein expression and loss of homeostatic microglial control in cerebrospinal fluid of infectious patients with delirium and patients with Alzheimer's disease. Brain Behav Immun 2020; 89:656-667. [PMID: 32592865 DOI: 10.1016/j.bbi.2020.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Delirium is a complex and multifactorial condition associated with long-term cognitive decline. Due to the strong links between systemic inflammation, delirium and dementia we hypothesized that responses within the brain in patients who develop delirium could show biochemical overlap with patients with Alzheimer's disease (AD). In this observational study we analyzed protein expression signatures in cerebrospinal fluid (CSF) from 15 patients with infectious delirium and compared these to 29 patients with AD, 30 infectious patients without delirium and 15 non-infectious controls free of neurological disease. A proximity extension assay was performed measuring a total of 184 inflammatory and neurology-related proteins. Eight inflammatory proteins (4%), including the key neuron-microglia communication marker CX3CL1 (fractalkine), were significantly upregulated in both delirium and AD, compared to infectious patients without delirium. Likewise, 23 proteins (13%) showed downregulation in both delirium and AD, relative to infectious patients without delirium, which interestingly included CD200R1, another neuron-microglia communication marker, as well as a cluster of proteins related to synapse formation and function. Synaptopathy is an early event in AD and correlates strongly with cognitive dysfunction. These results were partially mediated by aging, which is an important predisposing risk factor among many others for both conditions. Within this study we report the first in vivo human evidence suggesting that synapse pathology and loss of homeostatic microglial control is involved in the pathophysiology of both infectious delirium and AD and thus may provide a link for the association between infections, delirium and long-term cognitive decline.
Collapse
Affiliation(s)
- A M Peters van Ton
- Radboudumc, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Nijmegen, The Netherlands; Radboudumc, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - M M Verbeek
- Radboudumc, Donders Center of Medical Neurosciences, Department of Neurology, Nijmegen, The Netherlands; Radboudumc, Department of Laboratory Medicine, Nijmegen, The Netherlands
| | - W Alkema
- Radboudumc, Radboud Institute for Molecular Life Sciences, Center for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands
| | - P Pickkers
- Radboudumc, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Nijmegen, The Netherlands; Radboudumc, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - W F Abdo
- Radboudumc, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Nijmegen, The Netherlands; Radboudumc, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Memory dysfunction and anxiety-like behavior in a mouse model of chronic sleep disorders. Biochem Biophys Res Commun 2020; 529:175-179. [DOI: 10.1016/j.bbrc.2020.05.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/31/2020] [Indexed: 01/12/2023]
|