1
|
De Simone G, Iasevoli F, Barone A, Gaudieri V, Cuocolo A, Ciccarelli M, Pappatà S, de Bartolomeis A. Addressing brain metabolic connectivity in treatment-resistant schizophrenia: a novel graph theory-driven application of 18F-FDG-PET with antipsychotic dose correction. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:116. [PMID: 39702476 DOI: 10.1038/s41537-024-00535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
Few studies using Positron Emission Tomography with 18F-fluorodeoxyglucose (18F-FDG-PET) have examined the neurobiological basis of antipsychotic resistance in schizophrenia, primarily focusing on metabolic activity, with none investigating connectivity patterns. Here, we aimed to explore differential patterns of glucose metabolism between patients and controls (CTRL) through a graph theory-based approach and network comparison tests. PET scans with 18F-FDG were obtained by 70 subjects, 26 with treatment-resistant schizophrenia (TRS), 28 patients responsive to antipsychotics (nTRS), and 16 CTRL. Relative brain glucose metabolism maps were processed in the automated anatomical labeling (AAL)-Merged atlas template. Inter-subject connectivity matrices were derived using Gaussian Graphical Models and group networks were compared through permutation testing. A logistic model based on machine-learning was employed to estimate the association between the metabolic signals of brain regions and treatment resistance. To account for the potential influence of antipsychotic medication, we incorporated chlorpromazine equivalents as a covariate in the network analysis during partial correlation calculations. Additionally, the machine-learning analysis employed medication dose-stratified folds. Global reduced connectivity was detected in the nTRS (p-value = 0.008) and TRS groups (p-value = 0.001) compared to CTRL, with prominent alterations localized in the frontal lobe, Default Mode Network, and dorsal dopamine pathway. Disruptions in frontotemporal and striatal-cortical connectivity were detected in TRS but not nTRS patients. After adjusting for antipsychotic doses, alterations in the anterior cingulate, frontal and temporal gyri, hippocampus, and precuneus also emerged. The machine-learning approach demonstrated an accuracy ranging from 0.72 to 0.8 in detecting the TRS condition.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples "Federico II", School of Medicine, Naples Italy, Via Pansini 5, 80131, Naples, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples "Federico II", School of Medicine, Naples Italy, Via Pansini 5, 80131, Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples "Federico II", School of Medicine, Naples Italy, Via Pansini 5, 80131, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples "Federico II", School of Medicine, Naples Italy, Via Pansini 5, 80131, Naples, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples "Federico II", School of Medicine, Naples Italy, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
2
|
Zhang W, Wang L, Wu X, Yao L, Yi Z, Yin H, Zhang L, Lui S, Gong Q. Improved patient identification by incorporating symptom severity in deep learning using neuroanatomic images in first episode schizophrenia. Neuropsychopharmacology 2024:10.1038/s41386-024-02021-y. [PMID: 39506100 DOI: 10.1038/s41386-024-02021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Brain alterations associated with illness severity in schizophrenia remain poorly understood. Establishing linkages between imaging biomarkers and symptom expression may enhance mechanistic understanding of acute psychotic illness. Constructing models using MRI and clinical features together to maximize model validity may be particularly useful for these purposes. A multi-task deep learning model for standard case/control recognition incorporated with psychosis symptom severity regression was constructed with anatomic MRI collected from 286 patients with drug-naïve first-episode schizophrenia and 330 healthy controls from two datasets, and validated with an independent dataset including 40 first-episode schizophrenia. To evaluate the contribution of regression to the case/control recognition, a single-task classification model was constructed. Performance of unprocessed anatomical images and of predefined imaging features obtained using voxel-based morphometry (VBM) and surface-based morphometry (SBM), were examined and compared. Brain regions contributing to the symptom severity regression and illness identification were identified. Models developed with unprocessed images achieved greater group separation than either VBM or SBM measurements, differentiating schizophrenia patients from healthy controls with a balanced accuracy of 83.0% with sensitivity = 76.1% and specificity = 89.0%. The multi-task model also showed superior performance to single-task classification model without considering clinical symptoms. These findings showed high replication in the site-split validation and external validation analyses. Measurements in parietal, occipital and medial frontal cortex and bilateral cerebellum had the greatest contribution to the multi-task model. Incorporating illness severity regression in pattern recognition algorithms, our study developed an MRI-based model that was of high diagnostic value in acutely ill schizophrenia patients, highlighting clinical relevance of the model.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lituan Wang
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China
| | - Xusha Wu
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Li Yao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Yi
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China
| | - Hong Yin
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhang
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China.
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
3
|
Li Y, Zhang W, Wu Y, Yin L, Zhu C, Chen Y, Cetin-Karayumak S, Cho KIK, Zekelman LR, Rushmore J, Rathi Y, Makris N, O'Donnell LJ, Zhang F. A diffusion MRI tractography atlas for concurrent white matter mapping across Eastern and Western populations. Sci Data 2024; 11:787. [PMID: 39019877 PMCID: PMC11255335 DOI: 10.1038/s41597-024-03624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
The study of brain differences across Eastern and Western populations provides vital insights for understanding potential cultural and genetic influences on cognition and mental health. Diffusion MRI (dMRI) tractography is an important tool in assessing white matter (WM) connectivity and brain tissue microstructure across different populations. However, a comprehensive investigation into WM fiber tracts between Eastern and Western populations is challenged due to the lack of a cross-population WM atlas and the large site-specific variability of dMRI data. This study presents a dMRI tractography atlas, namely the East-West WM Atlas, for concurrent WM mapping between Eastern and Western populations and creates a large, harmonized dMRI dataset (n=306) based on the Human Connectome Project and the Chinese Human Connectome Project. The curated WM atlas, as well as subject-specific data including the harmonized dMRI data, the whole brain tractography data, and parcellated WM fiber tracts and their diffusion measures, are publicly released. This resource is a valuable addition to facilitating the exploration of brain commonalities and differences across diverse cultural backgrounds.
Collapse
Affiliation(s)
- Yijie Li
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Li Yin
- West China Hospital of Medical Science, Sichuan University, Chengdu, China
| | - Ce Zhu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Leo R Zekelman
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jarrett Rushmore
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Seitz-Holland J, Alemán-Gómez Y, Cho KIK, Pasternak O, Cleusix M, Jenni R, Baumann PS, Klauser P, Conus P, Hagmann P, Do KQ, Kubicki M, Dwir D. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024; 49:1140-1150. [PMID: 38431757 PMCID: PMC11109110 DOI: 10.1038/s41386-024-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Lefebvre S, Gehrig G, Nadesalingam N, Nuoffer MG, Kyrou A, Wüthrich F, Walther S. The pathobiology of psychomotor slowing in psychosis: altered cortical excitability and connectivity. Brain 2024; 147:1423-1435. [PMID: 38537253 PMCID: PMC10994557 DOI: 10.1093/brain/awad395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 04/06/2024] Open
Abstract
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Gwendolyn Gehrig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3000 Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| |
Collapse
|
6
|
Tabata K, Son S, Miyata J, Toriumi K, Miyashita M, Suzuki K, Itokawa M, Takahashi H, Murai T, Arai M. Association of homocysteine with white matter dysconnectivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:39. [PMID: 38509166 PMCID: PMC10954654 DOI: 10.1038/s41537-024-00458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Several studies have shown white matter (WM) dysconnectivity in people with schizophrenia (SZ). However, the underlying mechanism remains unclear. We investigated the relationship between plasma homocysteine (Hcy) levels and WM microstructure in people with SZ using diffusion tensor imaging (DTI). Fifty-three people with SZ and 83 healthy controls (HC) were included in this retrospective observational study. Tract-Based Spatial Statistics (TBSS) were used to evaluate group differences in WM microstructure. A significant negative correlation between plasma Hcy levels and WM microstructural disruption was noted in the SZ group (Spearman's ρ = -.330, P = 0.016) but not in the HC group (Spearman's ρ = .041, P = 0.712). These results suggest that increased Hcy may be associated with WM dysconnectivity in SZ, and the interaction between Hcy and WM dysconnectivity could be a potential mechanism of the pathophysiology of SZ. Further, longitudinal studies are required to investigate whether high Hcy levels subsequently cause WM microstructural disruption in people with SZ.
Collapse
Grants
- 19K17061 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H02749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05130 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04979 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02849 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H05173 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H02844 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18dm0307008 Japan Agency for Medical Research and Development (AMED)
- JP21uk1024002 Japan Agency for Medical Research and Development (AMED)
- JPMJCR22P3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- The Novartis Pharma Research Grant; SENSHIN Medical Research Foundation; SUZUKEN Memorial Foundation; the Takeda Science Foundation.
- the Brain/MINDS Beyond program (23dm0307008) from the Japan Agency for Medical Research
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Cetin-Karayumak S, Zhang F, Zurrin R, Billah T, Zekelman L, Makris N, Pieper S, O'Donnell LJ, Rathi Y. Harmonized diffusion MRI data and white matter measures from the Adolescent Brain Cognitive Development Study. Sci Data 2024; 11:249. [PMID: 38413633 PMCID: PMC10899197 DOI: 10.1038/s41597-024-03058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The Adolescent Brain Cognitive Development (ABCD) Study® has collected data from over 10,000 children across 21 sites, providing insights into adolescent brain development. However, site-specific scanner variability has made it challenging to use diffusion MRI (dMRI) data from this study. To address this, a dataset of harmonized and processed ABCD dMRI data (from release 3) has been created, comprising quality-controlled imaging data from 9,345 subjects, focusing exclusively on the baseline session, i.e., the first time point of the study. This resource required substantial computational time (approx. 50,000 CPU hours) for harmonization, whole-brain tractography, and white matter parcellation. The dataset includes harmonized dMRI data, 800 white matter clusters, 73 anatomically labeled white matter tracts in full and low resolution, and 804 different dMRI-derived measures per subject (72.3 TB total size). Accessible via the NIMH Data Archive, it offers a large-scale dMRI dataset for studying structural connectivity in child and adolescent neurodevelopment. Additionally, several post-harmonization experiments were conducted to demonstrate the success of the harmonization process on the ABCD dataset.
Collapse
Affiliation(s)
- Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Zurrin
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leo Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Klaassen AL, Michel C, Stüble M, Kaess M, Morishima Y, Kindler J. Reduced anterior callosal white matter in risk for psychosis associated with processing speed as a fundamental cognitive impairment. Schizophr Res 2024; 264:211-219. [PMID: 38157681 DOI: 10.1016/j.schres.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous research in psychotic disorders discovered associations between reduced integrity of white matter (WM) in the corpus callosum (CC) and impaired cognitive functions, suggesting processing speed as a central construct. However, it is still largely unexplored to what extent disruption in callosal WM is related to cognitive deficits during the risk stage prior to psychosis. METHODS To address this gap, we measured the WM integrity in CC by fractional anisotropy (FA) and assessed cognition in 60 clinical-high risk for psychosis (CHR) patients during adolescence/young adulthood and 38 healthy control (HC) subjects. We employed tract based spatial statistics to examine group differences and associations between CC-FA and processing speed, executive function, and spatial working memory. RESULTS We revealed deficits in processing speed, executive function, and spatial working memory of CHR patients, and reductions in FA of the genu and the body of the CC (p < 0.05, corrected for multiple comparisons) compared to HC. A mediation analysis using the combined sample (CHR + HC) showed that processing speed mediates the associations between the impaired CC structure and executive function and spatial working memory, respectively. Exploratory analyses between CC-FA and the cognitive domains located associations of processing speed in the genu and the body of CC with distinct spatial distributions of executive function and spatial working memory. CONCLUSION We suggest processing speed as a subordinate cognitive factor contributing to the associations between callosal WM, executive function and working memory. These results extend findings in psychotic disorders to the prior risk stage.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland.
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| | - Miriam Stüble
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; University Hospital Heidelberg, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Yosuke Morishima
- University Hospital of Psychiatry Bern, Department of Psychiatric Neurophysiology, University of Bern, Switzerland
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| |
Collapse
|
9
|
Kobayashi H, Sasabayashi D, Takahashi T, Furuichi A, Kido M, Takayanagi Y, Noguchi K, Suzuki M. The relationship between gray/white matter contrast and cognitive performance in first-episode schizophrenia. Cereb Cortex 2024; 34:bhae009. [PMID: 38265871 DOI: 10.1093/cercor/bhae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
Previous postmortem brain studies have revealed disturbed myelination in the intracortical regions in patients with schizophrenia, possibly reflecting anomalous brain maturational processes. However, it currently remains unclear whether this anomalous myelination is already present in early illness stages and/or progresses during the course of the illness. In this magnetic resonance imaging study, we examined gray/white matter contrast (GWC) as a potential marker of intracortical myelination in 63 first-episode schizophrenia (FESz) patients and 77 healthy controls (HC). Furthermore, we investigated the relationships between GWC findings and clinical/cognitive variables in FESz patients. GWC in the bilateral temporal, parietal, occipital, and insular regions was significantly higher in FESz patients than in HC, which was partly associated with the durations of illness and medication, the onset age, and lower executive and verbal learning performances. Because higher GWC implicates lower myelin in the deeper layers of the cortex, these results suggest that schizophrenia patients have less intracortical myelin at the time of their first psychotic episode, which underlies lower cognitive performance in early illness stages.
Collapse
Affiliation(s)
- Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Kido Clinic, 244 Honoki, Imizu City, Toyama, 934-0053, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Arisawabashi Hospital, 5-5 Hane-Shin, Fuchu-Machi, Toyama, 939-2704, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
10
|
Cetin-Karayumak S, Zhang F, Billah T, Zekelman L, Makris N, Pieper S, O’Donnell LJ, Rathi Y. Harmonized diffusion MRI data and white matter measures from the Adolescent Brain Cognitive Development Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535587. [PMID: 37066186 PMCID: PMC10104063 DOI: 10.1101/2023.04.04.535587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Adolescent Brain Cognitive Development (ABCD) study has collected data from over 10,000 children across 21 sites, providing valuable insights into adolescent brain development. However, site-specific scanner variability has made it challenging to use diffusion MRI (dMRI) data from this study. To address this, a database of harmonized and processed ABCD dMRI data has been created, comprising quality-controlled imaging data from 9345 subjects. This resource required significant computational effort, taking ~50,000 CPU hours to harmonize the data, perform white matter parcellation, and run whole brain tractography. The database includes harmonized dMRI data, 800 white matter clusters, 73 anatomically labeled white matter tracts both in full-resolution (for analysis) and low-resolution (for visualization), and 804 different dMRI-derived measures per subject. It is available via the NIMH Data Archive and offers tremendous potential for scientific discoveries in structural connectivity studies of neurodevelopment in children and adolescents. Additionally, several post-harmonization experiments were conducted to demonstrate the success of the harmonization process on the ABCD dataset.
Collapse
Affiliation(s)
- Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leo Zekelman
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lauren J. O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Xie M, Cai J, Liu Y, Wei W, Zhao Z, Dai M, Wu Y, Huang Y, Tang Y, Xiao L, Zhang G, Li C, Guo W, Ma X, Deng W, Du X, Wang Q, Li T. Association between childhood trauma and white matter deficits in first-episode schizophrenia. Psychiatry Res 2023; 323:115111. [PMID: 36924585 DOI: 10.1016/j.psychres.2023.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the relationship between childhood trauma (ChT) and white matter (WM) deficits in first-episode schizophrenia (FES). METHODS A total of 103 individuals with FES and 206 healthy control individuals (HCs) were enrolled and assessed based on ChT Questionnaire (CTQ) and Positive and Negative Symptoms Scale (PANSS). Diffusion tensor imaging was acquired on a Signa 3.0 T scanner. Map of fractional anisotropy (FA) was analyzed using Tract-Based Spatial Statistics. Hierarchical logistic regression analyses were used to examine associations of sociodemographic characteristics, total CTQ scores, and WM deficits. RESULTS Compared with the HCs group, the FES group showed significantly lower FA in several WM bundles (left anterior thalamic radiation, left inferior frontal-occipital fasciculus, left cingulum, forceps major, and forceps minor), and the mean FA value in these WM bundles was inversely related to the total CTQ score. In addition, a higher CTQ score may increase the risk of schizophrenia, while higher FA values may decrease the risk of schizophrenia. CONCLUSION This study demonstrates that individuals with FES evince widespread cerebral WM abnormalities and that these abnormalities were associated with ChT. These results provide clues about the neural basis and potential biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Min Xie
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia Cai
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunjia Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Wei
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Zhengyang Zhao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Minhan Dai
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yulu Wu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunqi Huang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiguo Tang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liling Xiao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guangya Zhang
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Chuanwei Li
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Wanjun Guo
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tao Li
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China.
| |
Collapse
|
12
|
Pratt DN, Luther L, Kinney KS, Osborne KJ, Corlett PR, Powers AR, Woods SW, Gold JM, Schiffman J, Ellman LM, Strauss GP, Walker EF, Zinbarg R, Waltz JA, Silverstein SM, Mittal VA. Comparing a Computerized Digit Symbol Test to a Pen-and-Paper Classic. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad027. [PMID: 37868160 PMCID: PMC10590153 DOI: 10.1093/schizbullopen/sgad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Background and Hypothesis Processing speed dysfunction is a core feature of psychosis and predictive of conversion in individuals at clinical high risk (CHR) for psychosis. Although traditionally measured with pen-and-paper tasks, computerized digit symbol tasks are needed to meet the increasing demand for remote assessments. Therefore we: (1) assessed the relationship between traditional and computerized processing speed measurements; (2) compared effect sizes of impairment for progressive and persistent subgroups of CHR individuals on these tasks; and (3) explored causes contributing to task performance differences. Study Design Participants included 92 CHR individuals and 60 healthy controls who completed clinical interviews, the Brief Assessment of Cognition in Schizophrenia Symbol Coding test, the computerized TestMyBrain Digit Symbol Matching Test, a finger-tapping task, and a self-reported motor abilities measure. Correlations, Hedges' g, and linear models were utilized, respectively, to achieve the above aims. Study Results Task performance was strongly correlated (r = 0.505). A similar degree of impairment was seen between progressive (g = -0.541) and persistent (g = -0.417) groups on the paper version. The computerized task uniquely identified impairment for progressive individuals (g = -477), as the persistent group performed similarly to controls (g = -0.184). Motor abilities were related to the computerized version, but the paper version was more related to symptoms and psychosis risk level. Conclusions The paper symbol coding task measures impairment throughout the CHR state, while the computerized version only identifies impairment in those with worsening symptomatology. These results may be reflective of sensitivity differences, an artifact of existing subgroups, or evidence of mechanistic differences.
Collapse
Affiliation(s)
- Danielle N Pratt
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Lauren Luther
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Kyle S Kinney
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | | | | | - Albert R Powers
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - James M Gold
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Lauren M Ellman
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Gregory P Strauss
- Department of Psychology, University of Georgia, Athens, GA, USA
- Department of Neuroscience, University of Georgia, Athens, GA, USA
| | - Elaine F Walker
- Department of Psychology and Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Richard Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - James A Waltz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven M Silverstein
- Departments of Psychiatry, Neuroscience and Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institutes for Policy Research (IPR) and Innovations in Developmental Sciences (DevSci), Psychiatry, Medical Social Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
13
|
Li X, Liu N, Yang C, Zhang W, Lui S. Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis. Front Psychiatry 2022; 13:1083480. [PMID: 36620665 PMCID: PMC9814486 DOI: 10.3389/fpsyt.2022.1083480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In schizophrenia, the structural changes in the cerebellum are associated with patients' cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia. METHODS Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes. RESULTS Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia. CONCLUSION The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Xing Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|