1
|
Munshi S, Alarbi AM, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall LK, Victor TA, Aupperle RL, Khalsa SS, Paulus MP, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Mol Psychiatry 2025; 30:574-586. [PMID: 39174649 DOI: 10.1038/s41380-024-02695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. Sensitivity analyses excluding covariates yielded similar results. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) remained significant and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. NLRC4 and MFN2 were positively correlated with serum C-reactive protein concentrations, while ASC trended significant. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Ahlam M Alarbi
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Kaiping Burrows
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, 300 UCLA Medical Plaza, Los Angeles, CA, 90095, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - T Kent Teague
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th St., Tulsa, OK, 74107, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| |
Collapse
|
2
|
Savitz J, McKinney BA, Meier TB, Zheng H, Ford BN, Yolken RH, Teague TK, Cole SW. Nuclear factor kappa-B cell (NF-κB), interferon regulatory Factor, and glucocorticoid receptor pathway activation in major depressive Disorder: The role of cytomegalovirus infection. Brain Behav Immun 2025; 123:1052-1060. [PMID: 39532200 PMCID: PMC11624063 DOI: 10.1016/j.bbi.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Altered activity of major immunoregulatory pathways has been reported in major depressive disorder (MDD) and is thought to underlie the elevations in circulating inflammatory mediators present in a subgroup of patients. However, the drivers of these changes in gene expression remain unclear. One potential modulator of immune function is viral infection. Here we examined the relationship between cytomegalovirus (CMV), a common herpesvirus, that has been shown to be a pathological cofactor in inflammatory disorders, and activity of key coordinators of the innate inflammatory response in MDD. We used RNAseq to characterize gene expression differences in in 79 unmedicated individuals with MDD and 80 healthy controls (HCs). A well-established bioinformatic strategy was used to quantify transcription control pathway activity based on the relative prevalence of pre-specified transcription factor-binding motifs in the promoters of differentially expressed genes. The main aim was to characterize diagnostic differences in immunoregulatory pathway activity and determine if these were related to CMV serostatus or antibody titer (viral reactivation). Significantly increased activity of interferon regulatory factor 1 (IRF1) and nuclear factor kappa-B cell (NF-κB) pathways was observed in the MDD group compared with HCs. Transcript Origin Analyses using cell-specific reference transcriptomes indicated that the MDD-associated transcriptome changes derived primarily from myeloid lineage immune cells (classical and non-classical monocytes). A more modest MDD-associated upregulation of glucocorticoid receptor (GR) pathway activity was also present. CMV infection/activity across the combined MDD and HC groups was weakly related to GR pathway activation but not to IRF1 and NF-κB activity; the most salient signature of CMV was activation and/or expansion of the CD8+ T-cell population. The elevated MDD-associated NF-κB (but not IRF1) activity was markedly attenuated after controlling for CMV antibody titer or for CD8+ T-cell prevalence. At least some of the NF-κB signal in MDD may be attributable to the cellular immune response to CMV, suggesting that CMV infection may be one of several pathways contributing to inflammation in depression. The pronounced activation of the antiviral IRF-1 pathway in MDD suggests the contribution of viral processes although this specific antiviral effect was not specific to CMV.CMV may indirectly drive interferon responses by impairing T-cell control of other viral infections.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa OK, USA.
| | - Brett A McKinney
- Department of Mathematics and Computer Science, The University of Tulsa, Tulsa, OK, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa OK, USA
| | - Bart N Ford
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Steve W Cole
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Los Angeles, CA, USA; University of California, Los Angeles, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, USA
| |
Collapse
|
3
|
Krstanović F, Mihalić A, Šakota L, Lisnić B, Jonjić S, Brizić I. Susceptibility of Mouse Brain to MCMV Infection and Neuroinflammation During Ontogeny. Pathogens 2024; 13:1108. [PMID: 39770367 PMCID: PMC11728524 DOI: 10.3390/pathogens13121108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Human cytomegalovirus (HCMV) rarely infects the brain following infection of adult individuals. However, the virus readily infects the brain during congenital HCMV (cHCMV) infection, frequently causing severe neurodevelopmental and neurological sequelae. Interestingly, although the incidence of cHCMV infection is 0.5-1%, the proportion of congenitally infected individuals in which the virus manages to gain access to the brain is unknown. In this study, we used infection of mice with mouse cytomegalovirus (MCMV), the most commonly used experimental system for modeling HCMV disease in humans, to determine the impact of age on the susceptibility of the brain to cytomegalovirus infection and infection-mediated neuroinflammation. We demonstrate that infection of mice during various stages of neonatal development can lead to CMV neuroinvasion and inflammation. In contrast, MCMV infection does not result in MCMV neuroinvasion and neuroinflammation in weanling and adult mice. The obtained results establish a basis for elucidating the mechanisms of CMV neuroinvasion and the deleterious inflammatory response during ontogeny.
Collapse
Affiliation(s)
- Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (A.M.); (L.Š.); (B.L.); (S.J.)
| | - Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (A.M.); (L.Š.); (B.L.); (S.J.)
| | - Lucija Šakota
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (A.M.); (L.Š.); (B.L.); (S.J.)
- Faculty of Pharmacy, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (A.M.); (L.Š.); (B.L.); (S.J.)
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (A.M.); (L.Š.); (B.L.); (S.J.)
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, 51000 Rijeka, Croatia
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (A.M.); (L.Š.); (B.L.); (S.J.)
| |
Collapse
|
4
|
Bumrungthai S, Buddhisa S, Duangjit S, Passorn S, Sumala S, Prakobkaew N. Association of HHV‑6 reactivation and SLC6A3 (C>T, rs40184), BDNF (C>T, rs6265), and JARID2 (G>A, rs9383046) single nucleotide polymorphisms in depression. Biomed Rep 2024; 21:181. [PMID: 39420919 PMCID: PMC11484186 DOI: 10.3892/br.2024.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Major depressive disorder (MDD) is a global health concern with a complex etiology involving genetic, environmental and infectious factors. The exact cause of MDD remains unknown. The present study explored the association between genetic factors, human herpesvirus 6 (HHV-6) and MDD. The present study analyzed single nucleotide polymorphisms (SNPs) and HHV-6 viral load in oral buccal samples from patients with MDD (with and without blood relatives with MDD) and healthy controls. The study used high-resolution melt analysis to examine rs40184 (C>T) in the solute carrier family 6 member 3 (SLC6A31) gene, rs6265 (C>T) in the brain-derived neurotrophic factor (BDNF) gene and rs9383046 (G>A) in the jumonji and AT-rich interaction domain-containing 2 (JARID2) gene. HHV-6 infection and viral load was assessed using the quantitative PCR. Whole-exome sequencing was used to examine SNPs. The variant alleles of SNPs rs40184 [18/40 (45.00) vs. 29/238 (12.55%)] and rs6265 [30/54 (55.46) vs. 117/292 (40.06%)] were significantly more common in patients with MDD than in healthy controls, indicating they may be probable hereditary risk factors for MDD. HHV-6 positivity was significantly more common in carriers of the G/A genotype (12/15, 80%) than carriers of the G/G genotype (75/363, 20.7%) for rs9383046, implying that genetic variations may affect HHV-6 risk and MDD onset. Similarly, HHV-6 viral loads were significantly higher in carriers of the G/A genotype (99,990.85±118,392.64 copies/ng DNA) than carriers of the G/G genotype (48,249.30±101,216.28 copies/ng DNA) for rs9383046. Whole-exome sequencing identified two SNPs in JARID2 (rs11757092 and rs9383050) associated with MDD, highlighting its genetic complexity. The present study helps explain the complex interactions between HHV-6 infection, genetics and MDD onset, improving understanding of how SNPs in JARID2 contribute to HHV-6 infection and MDD onset; these findings may impact future approaches to diagnosing and treating MDD.
Collapse
Affiliation(s)
- Sureewan Bumrungthai
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surachat Buddhisa
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Sureewan Duangjit
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supaporn Passorn
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Sasiwimon Sumala
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Nattaphol Prakobkaew
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
5
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Guo X, Chen Y, Huang H, Liu Y, Kong L, Chen L, Lyu H, Gao T, Lai J, Zhang D, Hu S. Serum signature of antibodies to Toxoplasma gondii, rubella virus, and cytomegalovirus in females with bipolar disorder: A cross-sectional study. J Affect Disord 2024; 361:82-90. [PMID: 38844171 DOI: 10.1016/j.jad.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIM Immunity alterations have been observed in bipolar disorder (BD). However, whether serum positivity of antibodies to Toxoplasma gondii (T gondii), rubella, and cytomegalovirus (CMV) shared clinical relevance with BD, remains controversial. This study aimed to investigate this association. METHODS Antibody seropositivity of IgM and IgG to T gondii, rubella virus, and CMV of females with BD and controls was extracted based on medical records from January 2018 to January 2023. Family history, type of BD, onset age, and psychotic symptom history were also collected. RESULTS 585 individuals with BD and 800 healthy controls were involved. Individuals with BD revealed a lower positive rate of T gondii IgG in the 10-20 aged group (OR = 0.10), and a higher positive rate of rubella IgG in the 10-20 (OR = 5.44) and 20-30 aged group (OR = 3.15). BD with family history preferred a higher positive rate of T gondii IgG (OR = 24.00). Type-I BD owned a decreased positive rate of rubella IgG (OR = 0.37) and an elevated positive rate of CMV IgG (OR = 2.12) compared to type-II BD, while BD with early onset showed contrast results compared to BD without early onset (Rubella IgG, OR = 2.54; CMV IgG, OR = 0.26). BD with psychotic symptom history displayed a lower positive rate of rubella IgG (OR = 0.50). LIMITATIONS Absence of male evidence and control of socioeconomic status and environmental exposure. CONCLUSIONS Differential antibody seropositive rates of T gondii, rubella, and cytomegalovirus in BD were observed.
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Huimin Huang
- Department of Psychiatry, The Third Affiliated Hospital of Wenzhou Medical University, 325800, Wenzhou, Zhejiang, China.
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lizichen Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| |
Collapse
|
7
|
Zhao H, Liang K, Yu Z, Wen Y, Yu X, Xin J, Zhang T, Zu X, Fang Y. CCR3 knockdown attenuates prolonged underwater operations-induced cognitive impairment via alleviating microglia-mediated neuroinflammation. iScience 2024; 27:110379. [PMID: 39156650 PMCID: PMC11326909 DOI: 10.1016/j.isci.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/17/2024] [Accepted: 06/24/2024] [Indexed: 08/20/2024] Open
Abstract
Maintaining cognitive integrity is crucial during underwater operations, which can significantly impact work performance and risk severe accidents. However, the cognitive effects of underwater operations and their underlying mechanism remain elusive, posing great challenges to the medical protection of professionals concerned. Here, we found that a single underwater operation session affects cognition in a time-dependent model. Prolonged exposure elicits significant cognitive impairment and hippocampal dysfunction, accompanied by increased neuroinflammation. Furthermore, RNA sequencing (RNA-seq) analysis revealed the involvement of neuroinflammation and highlighted the critical role of CCR3. Knockdown of CCR3 significantly rescued cognitive impairment and hippocampal dysfunction and reversed the upregulation of pro-inflammatory cytokines, by switching the activated microglia from a pro-inflammatory to a neuroprotective phenotype. Taken together, these results highlighted the time-dependent effects of a single underwater operation session on cognitive function. Knocking down CCR3 can attenuate neuroinflammation by regulating polarization of activated microglia, thereby alleviating prolonged underwater operations-induced cognitive impairment.
Collapse
Affiliation(s)
- Houyu Zhao
- National Key Laboratory of Immunity and Inflammation, Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Kun Liang
- National Key Laboratory of Immunity and Inflammation, Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Zeyuan Yu
- National Key Laboratory of Immunity and Inflammation, Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yukun Wen
- National Key Laboratory of Immunity and Inflammation, Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Xuhua Yu
- National Key Laboratory of Immunity and Inflammation, Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Jiayun Xin
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tingting Zhang
- National Key Laboratory of Immunity and Inflammation, Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Xianpeng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yiqun Fang
- National Key Laboratory of Immunity and Inflammation, Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
8
|
Li H, Guan M, Zhang NN, Wang Y, Liang T, Wu H, Wang C, Sun T, Liu S. Harnessing nanomedicine for modulating microglial states in the central nervous system disorders: Challenges and opportunities. Biomed Pharmacother 2024; 177:117011. [PMID: 38917758 DOI: 10.1016/j.biopha.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Microglia are essential for maintaining homeostasis and responding to pathological events in the central nervous system (CNS). Their dynamic and multidimensional states in different environments are pivotal factors in various CNS disorders. However, therapeutic modulation of microglial states is challenging due to the intricate balance these cells maintain in the CNS environment and the blood-brain barrier's restriction of drug delivery. Nanomedicine presents a promising avenue for addressing these challenges, offering a method for the targeted and efficient modulation of microglial states. This review covers the challenges faced in microglial therapeutic modulation and potential use of nanoparticle-based drug delivery systems. We provide an in-depth examination of nanoparticle applications for modulating microglial states in a range of CNS disorders, encompassing neurodegenerative and autoimmune diseases, infections, traumatic injuries, stroke, tumors, chronic pain, and psychiatric conditions. This review highlights the recent advancements and future prospects in nanomedicine for microglial modulation, paving the way for future research and clinical applications of therapeutic interventions in CNS disorders.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Meng Guan
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
9
|
Li D, Wu M. Potential value and research frontiers of virus in neuroinflammation: a bibliometric and visualized analysis. Front Immunol 2024; 15:1390149. [PMID: 39021576 PMCID: PMC11251911 DOI: 10.3389/fimmu.2024.1390149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Neuroinflammation represents the immune response of the central nervous system to nerve injury, infection, toxin stimulation, or autoimmunity and is implicated in a wide range of neurological disorders. Viruses play a pivotal role as extrinsic biological drivers in neuroinflammation; however, numerous aspects remain unexplored. In this study, we employed bibliometric analysis to assess the current status of viral research in neuroinflammation and anticipate future research directions and emerging trends. Methods Conduct a comprehensive search for scholarly publications within the Web of Science Core Collection database, with search terms on neuroinflammation and virus. Apply Microsoft Excel Office, Hiplot, R (version 4.3.1), VOSviewer (version 1.6.20) and CiteSpace (6.2.R6, advanced) software for the bibliometric analysis and visualization. Results A total of 4230 articles and reviews on virus and neuroinflammation were identified, demonstrating a consistent upward trend over time. The United States was the country that contributed the most publications. Approximately 22274 authors from 4474 institutions contributed to the research. Johns Hopkins University leads with the highest number of publications and citations. The top three authors with the most published articles on this field are Power, C., Lane, T. E., and Buch, S. The Journal of Neuroinflammation is the most authoritative choice for researchers. The main research focuses in this field include multiple sclerosis, Parkinson's disease, blood-brain barrier, COVID-19, Alzheimer's disease, gene therapy. In recent years, stress have emerged as hot keywords, particularly depression, human immunodeficiency virus-associated neurocognitive disorders, blood-brain barrier, gut microbiota related directions, indicating a potential shift in research focus. Conclusion Research on the virus and neuroinflammation has attracted increasing attention in the past decade. European and American countries have been pivotal in conducting research on virus and neuroinflammation, while China has produced a significant number of publications, its impact is still limited. Stress is likely to emerge as the next area of focus in this field. The association and regulation between viral infection and psychiatric disorders are not fully understood, and further research is needed to explore the role of neuroinflammation caused by different types of viral infection and psychiatric disorders.
Collapse
Affiliation(s)
- Danyang Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Gale SD, Farrer TJ, Erbstoesser R, MacLean S, Hedges DW. Human Cytomegalovirus Infection and Neurocognitive and Neuropsychiatric Health. Pathogens 2024; 13:417. [PMID: 38787269 PMCID: PMC11123947 DOI: 10.3390/pathogens13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
A common infection, human cytomegalovirus (HCMV) has been associated with a variety of human diseases, including cardiovascular disease and possibly certain cancers. HCMV has also been associated with cognitive, psychiatric, and neurological conditions. Children with congenital or early-life HCMV are at risk for microcephaly, cerebral palsy, and sensorineural hearing loss, although in many cases sensorineural loss may resolve. In addition, HCMV can be associated with neurodevelopmental impairment, which may improve with time. In young, middle-aged, and older adults, HCMV has been adversely associated with cognitive function in some but not in all studies. Research has linked HCMV to Alzheimer's and vascular dementia, but again not all findings consistently support these associations. In addition, HCMV has been associated with depressive disorder, bipolar disorder, anxiety, and autism-spectrum disorder, although the available findings are likewise inconsistent. Given associations between HCMV and a variety of neurocognitive and neuropsychiatric disorders, additional research investigating reasons for the considerable inconsistencies in the currently available findings is needed. Additional meta-analyses and more longitudinal studies are needed as well. Research into the effects of antiviral medication on cognitive and neurological outcomes and continued efforts in vaccine development have potential to lower the neurocognitive, neuropsychiatric, and neurological burden of HCMV infection.
Collapse
Affiliation(s)
- Shawn D. Gale
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Thomas J. Farrer
- Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| | - Reagan Erbstoesser
- The Department of Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Scott MacLean
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
| | - Dawson W. Hedges
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
11
|
Wang R, Huang K, Feng Y, Duan J, Ying H, Shi Q, Zhang Y, Jiang R, Yang L. Exo-miR-144-3p as a promising diagnostic biomarker for depressive symptoms in heart failure. Neurobiol Dis 2024; 192:106415. [PMID: 38266934 DOI: 10.1016/j.nbd.2024.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
AIMS The prevalence of depression is higher in heart failure (HF) patients. Early screening of depressive symptoms in HF patients and timely intervention can help to improve patients' quality of life and prognosis. This study aims to explore diagnostic biomarkers by examining the expression profile of serum exosomal miRNAs in HF patients with depressive symptoms. METHODS Serum exosomal RNA was isolated and extracted from 6 HF patients with depressive symptoms (HF-DS) and 6 HF patients without depressive symptoms (HF-NDS). High-throughput sequencing was performed to obtain miRNA expression profiles and target genes were predicted for the screened differentially expressed miRNAs. Biological functions of the target genes were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, we collected serum exosomal RNAs from HF-DS (n = 20) and HF-NDS (n = 20). The differentially expressed miRNAs selected from the sequencing results were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Finally, the diagnostic efficacy of the differentially expressed exosomal miRNAs for HF-DS was evaluated by using receiver operating characteristic (ROC) curves. RESULTS A total of 19 significantly differentially expressed exosomal miRNAs were screened by high-throughput sequencing, consisting of 12 up-regulated and 7 down-regulated exosomal miRNAs. RT-qPCR validation demonstrated that the expression level of exo-miR-144-3p was significantly down-regulated in the HF-DS group, and the expression levels of exo-miR-625-3p and exo-miR-7856-5p were significantly up-regulated. In addition, the expression level of exo-miR-144-3p was negatively correlated with the severity of depressive symptoms in HF patients, and that the area under the curve (AUC) of exo-miR-144-3p for diagnosing HF-DS was 0.763. CONCLUSIONS In this study, we examined the serum exosomal miRNA expression profiles of HF patients with depressive symptoms and found that lower level of exo-miR-144-3p was associated with more severe depressive symptoms. Exo-miR-144-3p is a potential biomarker for the diagnosis of HF-DS.
Collapse
Affiliation(s)
- Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Qianyuan Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
12
|
Munshi S, Alarbi A, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall L, Victor T, Aupperle R, Khalsa S, Paulus M, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. RESEARCH SQUARE 2024:rs.3.rs-3564760. [PMID: 38260352 PMCID: PMC10802690 DOI: 10.21203/rs.3.rs-3564760/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in the endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. ASC and MFN2 were positively correlated with serum C-reactive protein concentrations. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
|
13
|
Zheng H, Savitz J. Herpesviruses and neuropsychiatric disorders: overlooked adversaries or innocent bystanders? Neuropsychopharmacology 2024; 49:313-314. [PMID: 37479858 PMCID: PMC10700328 DOI: 10.1038/s41386-023-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, 74136, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, 74119, USA.
| |
Collapse
|