1
|
Zhang Y, Zhang F, Liu Z, Li M, Wu G, Li H. P2RX1-blocked neutrophils induce CD8 + T cell dysfunction and affect the immune escape of gastric cancer cells. Cell Immunol 2025; 408:104901. [PMID: 39675308 DOI: 10.1016/j.cellimm.2024.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadly malignancies of the gastrointestinal tract. Research has confirmed the linkage of P2RX1 with immune cell activation and tumor progression. This project focused on the impact of P2RX1 level in neutrophils on the efficacy of immune checkpoint inhibitor (ICI) treatment in GC. METHODS Blood samples from 23 GC patients eligible for camrelizumab treatment were collected. Flow cytometry was carried out to analyze the proportion of P2RX1 in neutrophils. IHC was utilized to detect the expression level of PD-L1. We also evaluated the chemotaxis ability of neutrophils using a Transwell system, assessed the viability and apoptosis rate of GC cells using CCK-8 and flow cytometry, measured the proportions of CD8+PD-1+ and CD8+GZMB+ cells, determined the expression levels of IL-6, TNFα, IFN-γ, IL-8, IL-12, IL-1β, and GZMB by utilizing enzyme-linked immunosorbent assay (ELISA), and examined the expression levels of P2RX1 and PD-L1 using western blot (WB). By establishing a xenograft mouse model, we studied the impact of P2RX1-blocked neutrophils on the efficacy of ICI treatment in the GC microenvironment. RESULTS In GC, clinical analysis revealed increased infiltration of P2RX1-lowly expressed neutrophil subsets and increased expression of PD-L1. In vitro experiments demonstrated that abnormal expression of P2RX1 affected neutrophil function. Furthermore, the blockage or knockdown of P2RX1 in neutrophils modulated CD8+ T cell function, promoting GC progression. In in vivo experiments, the blockage of P2RX1 in neutrophils inhibited the effectiveness of ICI treatment in the GC microenvironment. CONCLUSION This project validated that the loss of P2RX1 in neutrophils induces CD8+ T cell dysfunction and affects the GC development, indicating that P2RX1 may be an accurate biomarker for predicting ICI response, thus providing a theoretical basis for the clinical application of ICI.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China.
| | - Fenglin Zhang
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Zhi Liu
- Department of Pathology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Min Li
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Ge Wu
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Hui Li
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| |
Collapse
|
2
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Chen Y, Ouyang W, Lv H, Chen W. Exploring the mechanisms by which common inhalational anesthetics influence malignant tumor metastasis: A data mining study based on comparative toxicogenomic databases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117660. [PMID: 39765114 DOI: 10.1016/j.ecoenv.2024.117660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Surgery remains the primary treatment for solid malignant tumors, but controlling postoperative tumor recurrence and metastasis continues to be a major challenge. Understanding the factors that influence tumor recurrence and metastasis after surgery, as well as the underlying biological mechanisms, is critical. Previous studies suggest that anesthetic agents may increase the risk of tumor recurrence and metastasis in patients with cancer, but the mechanisms underlying these findings remain unclear. In this study, we utilized toxicogenomics and comparative toxicogenomic databases to analyze data and explore the potential mechanisms by which three commonly used inhalational anesthetics-sevoflurane, isoflurane, and halothane-might promote malignant tumor metastasis. The results identified 18 genes that may be associated with tumor metastasis. Functional enrichment analysis revealed that these anesthetics could influence tumor cell migration by activating signaling pathways such as the IL-17 and tumor necrosis factor signaling pathways, thereby potentially inducing tumor metastasis. Moreover, by constructing a TF-mRNA network, we predicted several transcription factors that might play key roles in anesthetic-induced tumor metastasis. The analysis revealed a total of 87 regulatory relationships between transcription factors and mRNA. These findings offer new insights for future in vivo or in vitro studies and contribute to a better understanding of the relationship between inhalational anesthetics and tumor metastasis, providing valuable reference points for clinical decision-making. The results of this study also provide a reference for the determination of subsequent clinical treatment targets. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.
Collapse
Affiliation(s)
- Yiyu Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wenlan Ouyang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hu Lv
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
4
|
Cheng X, Shao P, Wang X, Jiang J, Chen J, Zhu J, Zhu W, Li Y, Zhang J, Chen J, Huang Z. Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411711. [PMID: 39739231 DOI: 10.1002/advs.202411711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 01/02/2025]
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models. Depletion of MDSCs significantly reduces fibrosis, highlighting their key role in the fibrotic process. Mechanistically, MDSC-derived mCCL6 activates fibroblasts via the CCR1-MAPK signaling, and interventions targeting this axis, including neutralizing antibodies, a CCR1 antagonist, or fibroblast-specific Ccr1 knockout mice reduce fibrosis. In CD patients with stenosis, human CCL15, analogous to mCCL6, is found to be elevated in MDSCs and activated fibroblasts. Additionally, CXCR2 and CCR2 ligands are identified as key mediators of MDSC recruitment in intestinal fibrosis. Blocking MDSC recruitment with CXCR2 and CCR2 antagonists alleviates intestinal fibrosis. These findings suggest that strategies targeting MDSC recruitment and mCCL6/hCCL15 signaling could offer therapeutic benefits for intestinal fibrosis.
Collapse
Affiliation(s)
- Xiaohui Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Pingwen Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - XinTong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiahui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- NJU Xishan Institute of Applied Biotechnology, Xishan District, Wuxi, Jiangsu, 214101, China
| |
Collapse
|
5
|
Wang Y, Wang X, Niu X, Han K, Ru N, Xiang J, Linghu E. Identification of COL3A1 as a candidate protein involved in the crosstalk between obesity and diarrhea using quantitative proteomics and machine learning. Eur J Pharmacol 2024; 981:176881. [PMID: 39127300 DOI: 10.1016/j.ejphar.2024.176881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Increasing epidemiologic studies have shown a positive correlation between obesity and chronic diarrhea. Nevertheless, the precise etiology remains uncertain. METHODS We performed a comprehensive proteomics analysis utilizing the data-independent acquisition (DIA) technique on jejunal tissues from patients with obesity and chronic diarrhea (OD, n = 33), obese patients (OB, n = 10), and healthy controls (n = 8). Differentially expressed proteins (DEPs) in OD vs. control and OD vs. OB comparisons were subjected to pathway enrichment and protein-protein interaction (PPI) network analysis. Machine learning algorithms were adopted on overlapping DEPs in both comparisons. The candidate protein was further validated using Western blot, immunohistochemistry (IHC), and in vitro experiments. RESULTS We identified 189 and 228 DEPs in OD vs. control and OD vs. OB comparisons, respectively. DEPs in both comparisons were co-enriched in extracellular matrix (ECM) organization. Downregulated DEPs were associated with tight junction and ECM-receptor interaction in OD vs. control and OD vs. OB comparisons, respectively. Machine learning algorithms selected 3 proteins from 14 overlapping DEPs in both comparisons, among which collagen alpha-1(III) chain (COL3A1) was identified as a core protein in PPI networks. Western blot and IHC verified the expression of COL3A1. Moreover, the tight junction-related proteins decreased after the knockdown of COL3A1 in Caco2 intestinal cells upon PA challenge, consistent with the proteomics results. CONCLUSIONS We generated in-depth profiling of a proteomic dataset from samples of OD patients and provided unique insights into disease pathogenesis. COL3A1 was involved in the crosstalk between obesity and intestinal homeostasis via the ECM-receptor interaction pathway.
Collapse
Affiliation(s)
- Yan Wang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiangyao Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaotong Niu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Ke Han
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingyuan Xiang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Enqiang Linghu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Lafzi A, Borrelli C, Baghai Sain S, Bach K, Kretz JA, Handler K, Regan-Komito D, Ficht X, Frei A, Moor A. Identifying Spatial Co-occurrence in Healthy and InflAmed tissues (ISCHIA). Mol Syst Biol 2024; 20:98-119. [PMID: 38225383 PMCID: PMC10897385 DOI: 10.1038/s44320-023-00006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Sequencing-based spatial transcriptomics (ST) methods allow unbiased capturing of RNA molecules at barcoded spots, charting the distribution and localization of cell types and transcripts across a tissue. While the coarse resolution of these techniques is considered a disadvantage, we argue that the inherent proximity of transcriptomes captured on spots can be leveraged to reconstruct cellular networks. To this end, we developed ISCHIA (Identifying Spatial Co-occurrence in Healthy and InflAmed tissues), a computational framework to analyze the spatial co-occurrence of cell types and transcript species within spots. Co-occurrence analysis is complementary to differential gene expression, as it does not depend on the abundance of a given cell type or on the transcript expression levels, but rather on their spatial association in the tissue. We applied ISCHIA to analyze co-occurrence of cell types, ligands and receptors in a Visium dataset of human ulcerative colitis patients, and validated our findings at single-cell resolution on matched hybridization-based data. We uncover inflammation-induced cellular networks involving M cell and fibroblasts, as well as ligand-receptor interactions enriched in the inflamed human colon, and their associated gene signatures. Our results highlight the hypothesis-generating power and broad applicability of co-occurrence analysis on spatial transcriptomics data.
Collapse
Affiliation(s)
- Atefeh Lafzi
- Roche Pharma Research and Early Development, Immunology Infectious Diseases and Ophthalmology Discovery and Translational Area, Grenzacherstrasse 124, 4070, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Simona Baghai Sain
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Karsten Bach
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Regan-Komito
- Roche Pharma Research and Early Development, Immunology Infectious Diseases and Ophthalmology Discovery and Translational Area, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Andreas Frei
- Roche Pharma Research and Early Development, Immunology Infectious Diseases and Ophthalmology Discovery and Translational Area, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
8
|
Ding M, Wang C, Hu J, She J, Shi R, Liu Y, Sun Q, Xu H, Zhou G, Wu W, Xia H. PLOD3 facilitated T cell activation in the colorectal tumor microenvironment and liver metastasis by the TNF-α/ NF-κB pathway. J Transl Med 2024; 22:30. [PMID: 38184566 PMCID: PMC10771005 DOI: 10.1186/s12967-023-04809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has been the third most prevalent cancer worldwide. Liver metastasis is the critical factor for the poor prognosis of CRC. Here, we investigated the expression and role of PLOD3 in CRC. METHODS Different liver metastasis models were established by injecting PLOD3 stable knockdown or overexpression CT26 or MC38 mouse CRC cells into the spleen of mice to verify the tumorigenicity and metastasis ability in vivo. RESULTS We identified PLOD3 is significantly overexpressed in liver metastasis samples of CRC. High expression of PLOD3 was significantly associated with poor survival of CRC patients. The knockdown of PLOD3 exhibited remarkable inhibition of proliferation, migration, and invasion in CRC cells, while the opposite results could be found in different PLOD3-overexpressed CRC cells. Stable knockdown of PLOD3 also significantly inhibited liver metastasis of CRC cells in different xenografts models, while stable overexpression of PLOD3 promotes liver metastasis and tumor progression. Further studies showed that PLOD3 facilitated the T cell activation in the tumor microenvironment and affected the TNF-α/ NF-κB pathway. CONCLUSIONS This study revealed the essential biological functions of PLOD3 in colon cancer progression and metastasis, suggesting that PLOD3 is a promising translational medicine target and bioengineering targeting PLOD3 overcomes CRC liver metastasis.
Collapse
Affiliation(s)
- Min Ding
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Cheng Wang
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junjun She
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruoyu Shi
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Yixuan Liu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Haojun Xu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Wenlan Wu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Hongping Xia
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China.
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China.
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
Du J. Study of Therapeutic Mechanisms of Bupi Yichang Formula against Colon Cancer Based on Network Pharmacology, Machine Learning, and Experimental Verification. Crit Rev Immunol 2024; 44:67-87. [PMID: 38421706 DOI: 10.1615/critrevimmunol.2023051509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bupi Yichang formula (BPYCF) has shown the anti-cancer potential; however, its effects on colon cancer and the mechanisms remain unknown. This study intended to explore the effects of BPYC on colon cancer and its underlying mechanisms. BPYCF-related and colon cancer-related targets were acquired from public databases, followed by differentially expressed genes (DEG) identification. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using clusterProfiler. A protein-protein interaction (PPI) network was constructed using STRING database. CytoHubba and MCODE to screen the hub targets. A diagnostic model was built using random forest algorithm. Molecular docking was conducted using PyMOL and AutoDock. High-performance liquid chromatograph-mass spectrometry (HPLC-MS) analysis and in vitro validation were performed. Forty-six overlapping targets of BPYCF-related, colon cancer-related targets, and DEGs were obtained. GO and KEGG analyses showed that the targets were mainly enriched in response to lipopolysaccharide, neuronal cell body, protein serine/threonine/tyrosine, as well as C-type lectin receptor, NOD-like receptor, and TNF signaling pathways. Five targets were identified as the pivotal targets, among which, NOS3, CASP8, RIPK3, and TNFRSF10B were stably docked with the core active component, naringenin. Naringenin was also identified from the BPYCF sample through HPLC-MS analysis. In vitro experiments showed that BPYCF inhibited cell viability, reduced NOS3 expression, and elevated CASP8, RIPK3, and TNFRSF10B expression in colon cancer cells. BPYCF might treat colon cancer mainly by regulating NOS3, CASP8, RIPK3, and TN-FRSF10B. This study first revealed the therapeutic effects and mechanisms of BPYCF against colon cancer, paving the path for the development of targeted therapeutic strategies for this cancer in the clinic.
Collapse
Affiliation(s)
- Juan Du
- Beijing Friendship Hospital, Capital Medical University
| |
Collapse
|
10
|
Yue M, Chen MM, Zhang B, Wang Y, Li P, Zhao Y. The functional roles of chemokines and chemokine receptors in colorectal cancer progression. Biomed Pharmacother 2024; 170:116040. [PMID: 38113624 DOI: 10.1016/j.biopha.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Colorectal cancer is a common malignancy with significant rates of morbidity and mortality. A number of factors, including the tumor microenvironment, chemokines, the inflammatory response, have an impact on the development of colorectal cancer. A critical component of the tumor microenvironment is chemokines. Various cell subsets are attracted to the tumor microenvironment through interactions with chemokine receptors. These cells have varying effects on the development of the tumor and the effectiveness of treatment. Additionally, chemokines can participate in inflammatory processes and have effects that are either pro- or anti-tumor. Chemokines can be exploited as targets for medication resistance and treatment in colorectal cancer. In this review, we discuss the expression of chemokines and chemokine receptors, and their relationship with immune cells in the tumor microenvironment. At the same time, we also collect and discuss the significance of chemokines and chemokine receptors in colorectal cancer progression, and their potential as molecular targets for CRC treatment.
Collapse
Affiliation(s)
- Mingli Yue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Meng-Meng Chen
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266021, China; Qingdao Restore Biotechnology Co., Ltd., Qingdao, Shandong 266111, PR China
| | - Bingqiang Zhang
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yi Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Shandong Province, China.
| |
Collapse
|
11
|
Rajgopal S, Nakano K, Cook LM. Beyond the horizon: Neutrophils leading the way in the evolution of immunotherapy. Cancer Med 2023; 12:21885-21904. [PMID: 38062888 PMCID: PMC10757139 DOI: 10.1002/cam4.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/31/2023] Open
Abstract
Cancer is a complex and dynamic disease, initiated by a multitude of intrinsic mutations and progressed with the assistance of the tissue microenvironment, encompassed by stromal cells including immune cell infiltration. The novel finding that tumors can evade anti-cancer immune functions shaped the field of immunotherapy, which has been a revolutionary approach for the treatment of cancers. However, the development of predominantly T cell-targeted immunotherapy approaches, such as immune checkpoint inhibition, also brought about an accumulation of evidence demonstrating other immune cell drivers of tumor progression, such as innate immune cells and notably, neutrophils. In the past decade, neutrophils have emerged to be primary mediators of multiple cancer types and even in recent years, are gaining attention for their potential use in the next generation of immunotherapies. Here, we review current immunotherapy strategies and thoroughly discuss the roles of neutrophils in cancer and novel neutrophil-targeted methods for treating cancer.
Collapse
Affiliation(s)
- Sanjana Rajgopal
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kosuke Nakano
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Leah M. Cook
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterOmahaNebraskaUSA
| |
Collapse
|
12
|
Mao P, Wang T, Du CW, Yu X, Wang MD. CXCL5 promotes tumorigenesis and angiogenesis of glioblastoma via JAK-STAT/NF-κb signaling pathways. Mol Biol Rep 2023; 50:8015-8023. [PMID: 37541997 DOI: 10.1007/s11033-023-08671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The tumor microenvironment contains chemokines that play a crucial role in various processes, such as tumorigenesis, inflammation, and therapy resistance, in different types of cancer. CXCL5 is a significant chemokine that has been shown to promote tumor proliferation, invasion, angiogenesis, and therapy resistance when overexpressed in various types of cancer. This research aims to investigate the impact of CXCL5 on the biological functions of glioblastoma (GBM). METHODS The TCGA GBM and GEO databases were utilized to perform transcriptome microarray analysis and oncogenic signaling pathway analysis of CXCL5 in GBM. Validation of CXCL5 expression was performed using RT-qPCR and Western Blot. The impact of CXCL5 on cell proliferation, tumorigenesis, and angiogenesis in GBM was assessed through various methods, including cell proliferation assay, cloning assay, intracranial xenograft tumor models, and tube formation assay. Clinical prognosis was evaluated in 59 samples of gliomas with varying degrees of malignancy (grades 2, 3, and 4) and the TCGA GBM database, based on CXCL5 expression levels. The activities of the JAK-STAT and NF-κB signaling pathways were detected using Western Blot. RESULTS The expression of CXCL5 was highly enriched in GBM. Moreover, the inhibition of CXCL5 showed a significant efficacy in suppressing cellular proliferation and angiogenesis, resulting in extended survival rates in xenograft mouse models in comparison to the control group. Notably, pretreatment with dapsone exhibited a reversal of the impact of CXCL5 on the formation of colonies and tubes in GBM cells. Elevated expression of CXCL5 was correlated with poor outcomes in GBM patients. Furthermore, the overexpression of CXCL5 has been associated with the activation of JAK-STAT and NF-κB signaling pathways. CONCLUSIONS CXCL5 plays an important role in tumorigenesis and angiogenesis, indicating the potential for novel therapies targeting CXCL5 in GBM.
Collapse
Affiliation(s)
- Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
13
|
Wen H, Tang J, Cui Y, Hou M, Zhou J. m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle 2023; 22:100-116. [PMID: 35949109 PMCID: PMC9769451 DOI: 10.1080/15384101.2022.2109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The aim is to explore the underlying mechanism of basic leucine zipper ATF-like transcription factor 2 (BATF2) in tongue squamous cell carcinoma (TSCC). The expression of BATF2 in TSCC tissues and corresponding adjacent normal TSCC tissues, human TSCC cell lines (SCC-15 and CAL-27) and human normal tongue epithelial cells NTEC was detected. Then, SCC-15 cells with stable BATF2 knockdown and CAL-27 cells with BATF2 overexpression were established to investigate the functional effect of BATF2 on TSCC. Thereafter, the effect of BATF2 on TSCC angiogenesis and BATF2 m6A methylation was also examined. BATF2 was significantly downregulated in TSCC tissues and cell lines, and BATF2 overexpression could suppress growth, metastasis and angiogenesis of TSCC. Mechanistically, vascular endothelial growth factor A (VEGFA) was identified as a downstream gene of BATF2, and it was confirmed that BATF2 suppressed growth, metastasis and angiogenesis of TSCC via inhibiting VEGFA. In addition, the N6-methyladenosine (m6A) modification of BATF2 mRNA mediated by METTL14 suppressed its expression in TSCC. METTL14/BATF2 axis could serve as a novel promising therapeutic candidate against angiogenesis for TSCC.
Collapse
Affiliation(s)
- Haojie Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Jinyong Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Yi Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Minhua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Juan Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| |
Collapse
|
14
|
Jothimani G, Ganesan H, Pathak S, Banerjee A. Molecular Characterization of Primary and Metastatic Colon Cancer Cells to Identify Therapeutic Targets with Natural Compounds. Curr Top Med Chem 2022; 22:2598-2615. [PMID: 35366775 DOI: 10.2174/1568026622666220401161511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Metastasis is the world's leading cause of colon cancer morbidity. Due to its heterogeneity, it has been challenging to understand primary to metastatic colon cancer progression and find a molecular target for colon cancer treatment. OBJECTIVES The current investigation aimed to characterize the immune and genotypic profiles of primary and metastatic colon cancer cell lines and identify a molecular target for colon cancer treatment. METHODS Colony-forming potential, migration and invasion potential, cytokine profiling, miRNA, and mRNA expression were examined. Molecular docking for the Wnt signaling proteins with various plant compounds was performed. RESULTS Colony formation, migration, and invasion potential were significantly higher in metastatic cells. The primary and metastatic cells' local immune and genetic status revealed TGF β-1, IL-8, MIP-1b, I-TAC, GM-CSF, and MCP-1 were highly expressed in all cancer cells. RANTES, IL-4, IL- 6, IFNγ, and G-CSF were less expressed in cancer cell lines. mRNA expression analysis displayed significant overexpression of proliferation, cell cycle, and oncogenes, whereas apoptosis cascade and tumor suppressor genes were significantly down-regulated in metastatic cells more evidently. Most importantly, the results of molecular docking with dysregulated Wnt signaling proteins shows that peptide AGAP and coronaridine had maximum hydrogen bonds to β-catenin and GSK3β with a better binding affinity. CONCLUSION This study emphasized genotypic differences between the primary and metastatic colon cancer cells, delineating the intricate mechanisms to understand the primary to metastatic advancement. The molecular docking aided in understanding the future molecular targets for bioactive- based colon cancer therapeutic interventions.
Collapse
Affiliation(s)
- Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
15
|
Shen Z, Luo W, Tan B, Nie K, Deng M, Wu S, Xiao M, Wu X, Meng X, Tong T, Zhang C, Ma K, Liao Y, Xu J, Wang X. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn's disease. EBioMedicine 2022; 85:104285. [PMID: 36182776 PMCID: PMC9526137 DOI: 10.1016/j.ebiom.2022.104285] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
16
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Neutrophil-Epithelial Crosstalk During Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2022; 14:1257-1267. [PMID: 36089244 PMCID: PMC9583449 DOI: 10.1016/j.jcmgh.2022.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/31/2023]
Abstract
Neutrophils are the most abundant leukocyte population in the human circulatory system and are rapidly recruited to sites of inflammation. Neutrophils play a multifaceted role in intestinal inflammation, as they contribute to the elimination of invading pathogens. Recently, their role in epithelial restitution has been widely recognized; however, they are also associated with bystander tissue damage. The intestinal epithelium provides a physical barrier to prevent direct contact of luminal contents with subepithelial tissues, which is extremely important for the maintenance of intestinal homeostasis. Numerous studies have demonstrated that transepithelial migration of neutrophils is closely related to disease symptoms and disruption of crypt architecture in inflammatory bowel disease and experimental colitis. There has been growing interest in how neutrophils interact with the epithelium under inflammatory conditions. Most studies focus on the effects of neutrophils on intestinal epithelial cells; however, the effects of intestinal epithelial cells on neutrophils during intestinal inflammation need to be well-established. Based on these data, we have summarized recent articles on the role of neutrophil-epithelial interactions in intestinal inflammation, particularly highlighting the epithelium-derived molecular regulators that mediate neutrophil recruitment, transepithelial migration, and detachment from the epithelium, as well as the functional consequences of their crosstalk. A better understanding of these molecular events may help develop novel therapeutic targets for mitigating the deleterious effects of neutrophils in inflammatory bowel disease.
Collapse
|
18
|
Deng J, Jiang R, Meng E, Wu H. CXCL5: A coachman to drive cancer progression. Front Oncol 2022; 12:944494. [PMID: 35978824 PMCID: PMC9376318 DOI: 10.3389/fonc.2022.944494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokines are a class of pro-inflammatory cytokines that can recruit and activate chemotactic cells. C‐X‐C motif chemokine ligand 5 (CXCL5) is a member of the chemokine family binding CXCR2 (C-X-C Motif Chemokine Receptor 2), a G-protein coupled receptor. Accumulated evidence has shown that dysregulated CXCL5 participates in tumor metastasis and angiogenesis in human malignant tumors. In this review, we summarized the advances in research on CXCL5, including its dysregulation in different tumors and the mechanism associated with tumor behavior (formation of the immunosuppressive microenvironment, promotion of tumor angiogenesis, and metastasis). We also summarized and discussed the perspective about the potential application of CXCL5 in tumor therapy targeting the tumor inflammatory microenvironment.
Collapse
|
19
|
Hamade H, Stamps JT, Stamps DT, More SK, Thomas LS, Blackwood AY, Lahcene NL, Castanon SL, Salumbides BC, Shimodaira Y, Goodridge HS, Targan SR, Michelsen KS. BATF3 Protects Against Metabolic Syndrome and Maintains Intestinal Epithelial Homeostasis. Front Immunol 2022; 13:841065. [PMID: 35812447 PMCID: PMC9257242 DOI: 10.3389/fimmu.2022.841065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal immune system and microbiota are emerging as important contributors to the development of metabolic syndrome, but the role of intestinal dendritic cells (DCs) in this context is incompletely understood. BATF3 is a transcription factor essential in the development of mucosal conventional DCs type 1 (cDC1). We show that Batf3-/- mice developed metabolic syndrome and have altered localization of tight junction proteins in intestinal epithelial cells leading to increased intestinal permeability. Treatment with the glycolysis inhibitor 2-deoxy-D-glucose reduced intestinal inflammation and restored barrier function in obese Batf3-/- mice. High-fat diet further enhanced the metabolic phenotype and susceptibility to dextran sulfate sodium colitis in Batf3-/- mice. Antibiotic treatment of Batf3-/- mice prevented metabolic syndrome and impaired intestinal barrier function. Batf3-/- mice have altered IgA-coating of fecal bacteria and displayed microbial dysbiosis marked by decreased obesity protective Akkermansia muciniphila, and Bifidobacterium. Thus, BATF3 protects against metabolic syndrome and preserves intestinal epithelial barrier by maintaining beneficial microbiota.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shyam K. More
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anna Y. Blackwood
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nawele L. Lahcene
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sofi L. Castanon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosuke Shimodaira
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S. Goodridge
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
20
|
Sena P, Mancini S, Pedroni M, Reggiani Bonetti L, Carnevale G, Roncucci L. Expression of Autophagic and Inflammatory Markers in Normal Mucosa of Individuals with Colorectal Adenomas: A Cross Sectional Study among Italian Outpatients Undergoing Colonoscopy. Int J Mol Sci 2022; 23:ijms23095211. [PMID: 35563601 PMCID: PMC9104783 DOI: 10.3390/ijms23095211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) ranks among the three most common cancers in terms of both cancer incidence and cancer-related deaths in Western industrialized countries. Lifetime risk of colorectal cancer may reach 6% of the population living in developed countries. In the current era of personalized medicine, CRC is no longer considered as a single entity. In more recent years many studies have described the distinct differences in epidemiology, pathogenesis, genetic and epigenetic alterations, molecular pathways and outcome depending on the anatomical site. The aim of our study is to assess in a multidimensional model the association between metabolic status and inflammatory and autophagic changes in the normal colorectal mucosa classified as right-sided, left-sided and rectum, and the presence of adenomas. One hundred and sixteen patients undergoing colonoscopy were recruited and underwent a complete serum lipid profile, immunofluorescence analysis of colonic biopsies for MAPLC3 and myeloperoxidase expression, matched with clinical and anthropometric characteristics. Presence of adenomas correlated with cholesterol (total and LDL) levels, IL-6 levels, and MAPLC3 tissue expression, especially in the right colon. In conclusion, serum IL-6 amount and autophagic markers could be good predictors of the presence of colorectal adenomas.
Collapse
Affiliation(s)
- Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
- Correspondence:
| | - Stefano Mancini
- Department of Internal Medicine and Rehabilitation, Santa Maria Bianca Hospital, Mirandola 6, 41037 Modena, Italy;
| | - Monica Pedroni
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.P.); (L.R.B.); (L.R.)
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.P.); (L.R.B.); (L.R.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.P.); (L.R.B.); (L.R.)
| |
Collapse
|
21
|
Lu Q, Yin H, Deng Y, Chen W, Diao W, Ding M, Cao W, Fu Y, Mo W, Chen X, Zhang Q, Zhao X, Guo H. circDHTKD1 promotes lymphatic metastasis of bladder cancer by upregulating CXCL5. Cell Death Dis 2022; 8:243. [PMID: 35504887 PMCID: PMC9065127 DOI: 10.1038/s41420-022-01037-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Lymph node (LN) metastasis is associated with unfavorable prognosis of bladder cancer (BCa). Although lymphangiogenesis is functionally important in LN metastasis of tumors, the potential mechanism in BCa remains unclear. Here, we clarified a regulatory mechanism of circRNA-mediated lymphangiogenesis and LN metastasis in BCa based on next-generation sequencing data. We revealed that circDHTKD1 was positively associated with LN metastasis and significantly upregulated in BCa. By analyzing the co-expression patterns of circDHTKD1 and differentially expressed mRNAs, we identified that circDHTKD1 facilitated lymphangiogenesis by upregulating CXCL5. Mechanistically, circDHTKD1 directly interacted with miR-149-5p, and antagonized the repression of miR-149-5p on CXCL5. Furthermore, circDHTKD1-induced CXCL5 expression recruited and activated neutrophils, which participated in lymphangiogenesis by secreting VEGF-C. Our study supports circDHTKD1 as a promising diagnostic and therapeutic target for LN metastasis in BCa.
Collapse
Affiliation(s)
- Qun Lu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Haoli Yin
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Yongming Deng
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Wenli Diao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Meng Ding
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Wenmin Cao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Yao Fu
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjing Mo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoqing Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaozhi Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Yin S, Li X, Xiong Z, Xie M, Jin L, Chen H, Mao C, Zhang F, Lian L. A novel ceRNA-immunoregulatory axis based on immune cell infiltration in ulcerative colitis-associated colorectal carcinoma by integrated weighted gene co-expression network analysis. BMC Gastroenterol 2022; 22:188. [PMID: 35428188 PMCID: PMC9013140 DOI: 10.1186/s12876-022-02252-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Patients with ulcerative colitis are at an increased risk of developing colorectal cancer with a prolonged disease course. Many studies have shown that alterations in the immune microenvironment play a key role in ulcerative colitis-associated colorectal cancer. Additionally, competing endogenous RNAs have important functions in immunoregulation, affecting inflammation and tumorigenesis. However, the complexity and behavioral characteristics of the competing endogenous RNA immunoregulatory network in ulcerative colitis-associated colorectal cancer remain unclear. We constructed a competing endogenous RNA immunoregulatory network to discover and validate a novel competing endogenous RNA immunoregulatory axis to provide insight into ulcerative colitis-associated colorectal cancer progression. Methods The competing endogenous RNA immunoregulatory network was constructed using differential expression analysis, weighted gene co-expression network analysis, and immune-related genes. Cmap was used to identify small-molecule drugs with therapeutic potential in ulcerative colitis-associated colorectal cancer. The ulcerative colitis-associated colorectal cancer-related pathways were identified by gene set variation and enrichment analysis. CIBERSORT, single-sample Gene Set Enrichment Analysis, and xCell were used to evaluate the infiltration of immune cells and screen hub immunocytes. The competing endogenous RNA immunoregulatory axis was identified by correlation analysis. Results We identified 130 hub immune genes and constructed a competing endogenous RNA immunoregulatory network consisting of 56 long non-coding RNAs, four microRNAs, and six targeted hub immune genes. Four small-molecule drugs exerted potential therapeutic effects by reversing the expression of hub immune genes. Pathway analysis showed that the NF-κB pathway was significantly enriched. Neutrophils were identified as hub immunocytes, and IL6ST was significantly positively correlated with the neutrophil count. In addition, NEAT1 may serve as a competing endogenous RNA to sponge miR-1-3p and promote IL6ST expression. Conclusions The competing endogenous RNA immunoregulatory axis may regulate neutrophil infiltration, affecting the occurrence of ulcerative colitis-associated colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02252-7.
Collapse
|
23
|
Liang F, Xu Y, Chen Y, Zhong H, Wang Z, Nong T, Zhong J. Immune Signature-Based Risk Stratification and Prediction of Immunotherapy Efficacy for Bladder Urothelial Carcinoma. Front Mol Biosci 2022; 8:673918. [PMID: 35004839 PMCID: PMC8739239 DOI: 10.3389/fmolb.2021.673918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Immune-related genes (IRGs) are closely related to tumor progression and the immune microenvironment. Few studies have investigated the effect of tumor immune microenvironment on the survival and response to immune checkpoint inhibitors of patients with bladder urothelial carcinoma (BLCA). We constructed two IRG-related prognostic signatures based on gene–immune interaction for predicting risk stratification and immunotherapeutic responses. We also verified their predictive ability on internal and overall data sets. Patients with BLCA were divided into high- and low-risk groups. The high-risk group had poor survival, enriched innate immune-related cell subtypes, low tumor mutation burden, and poor response to anti-PD-L1 therapy. Our prognostic signatures can be used as reliable prognostic biomarkers, which may be helpful to screen the people who will benefit from immunotherapy and guide the clinical decision-making of patients with BLCA.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yansong Xu
- Emergency Department, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yi Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Huage Zhong
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Zhen Wang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Tianwen Nong
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jincai Zhong
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| |
Collapse
|
24
|
Frigerio S, Lartey DA, D’Haens GR, Grootjans J. The Role of the Immune System in IBD-Associated Colorectal Cancer: From Pro to Anti-Tumorigenic Mechanisms. Int J Mol Sci 2021; 22:12739. [PMID: 34884543 PMCID: PMC8657929 DOI: 10.3390/ijms222312739] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) have increased incidence of colorectal cancer (CRC). IBD-associated cancer follows a well-characterized sequence of intestinal epithelial changes, in which genetic mutations and molecular aberrations play a key role. IBD-associated cancer develops against a background of chronic inflammation and pro-inflammatory immune cells, and their products contribute to cancer development and progression. In recent years, the effect of the immunosuppressive microenvironment in cancer development and progression has gained more attention, mainly because of the unprecedented anti-tumor effects of immune checkpoint inhibitors in selected groups of patients. Even though IBD-associated cancer develops in the background of chronic inflammation which is associated with activation of endogenous anti-inflammatory or suppressive mechanisms, the potential role of an immunosuppressive microenvironment in these cancers is largely unknown. In this review, we outline the role of the immune system in promoting cancer development in chronic inflammatory diseases such as IBD, with a specific focus on the anti-inflammatory mechanisms and suppressive immune cells that may play a role in IBD-associated tumorigenesis.
Collapse
Affiliation(s)
- Sofía Frigerio
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Dalia A. Lartey
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
| | - Joep Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|