1
|
Porras A, Rodney-Hernández P, Jackson J, Nguyen CH, Rincón-Cortés M. Sex-dependent effects of early life sensory overstimulation on later life behavioral function in rats. Sci Rep 2024; 14:27650. [PMID: 39532944 PMCID: PMC11557974 DOI: 10.1038/s41598-024-78928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Children today are immersed in electronic technology shortly after birth as they now begin regularly watching television earlier than they did in the past. Many new programs geared towards infants contain lots of lights, color, and sounds, which may constitute a form of sensory overstimulation (SOS) that leads to cognitive and behavioral changes in children and adolescents. Here, we examined the impact of early life SOS exposure on later life behavioral and cognitive function in rodents by exposing developing male and female rats to excessive audiovisual stimulation from postnatal days (PND) 10-40 and assessing anxiety-like behavior, social motivation, compulsive behavior, and spatial learning/cognition from PND 50-60. To evaluate potential SOS effects on hypothalamic-pituitary-adrenal (HPA)-axis function, levels of the stress hormone corticosterone (CORT) were measured at 3 timepoints (e.g., PND 23, 41, 61) post-SOS exposure. Sensory overstimulated males exhibited reduced anxiety-like and compulsive behavior compared to controls, whereas females exhibited reduced social motivation but enhanced spatial learning/cognition compared to controls. No differences in baseline CORT levels were found at any age tested, suggesting no impact of early life SOS on later life basal HPA-axis function. Our results demonstrate sex-specific effects of early life SOS on distinct behavioral domains in early adult rats.
Collapse
Affiliation(s)
- Abishag Porras
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Paolaenid Rodney-Hernández
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jeffy Jackson
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Christine H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Millie Rincón-Cortés
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
2
|
Basmadjian OM, Occhieppo VB, Montemerlo AE, Rivas GA, Rubianes MD, Baiardi G, Bregonzio C. Angiotensin II involvement in the development and persistence of amphetamine-induced sensitization: Striatal dopamine reuptake implications. Eur J Neurosci 2024; 59:2450-2464. [PMID: 38480476 DOI: 10.1111/ejn.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María D Rubianes
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Shen ZC, Liu JM, Zheng JY, Li MD, Tian D, Pan Y, Tao WC, Gao SQ, Xia ZX. Regulation of anxiety-like behaviors by S-palmitoylation and S-nitrosylation in basolateral amygdala. Biomed Pharmacother 2023; 169:115859. [PMID: 37948993 DOI: 10.1016/j.biopha.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.
Collapse
Affiliation(s)
- Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China.
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China
| | - Shuang-Qi Gao
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
4
|
Rincón-Cortés M, Grace AA. Sex-dependent emergence of prepubertal social dysfunction and augmented dopamine activity in a neurodevelopmental rodent model relevant for schizophrenia. Schizophr Res 2023; 262:32-39. [PMID: 37922841 DOI: 10.1016/j.schres.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Schizophrenia is a neurodevelopmental psychiatric disorder that often emerges in adolescence, is characterized by social dysfunction, and has an earlier onset in men. These features have been replicated in rats exposed to the mitotoxin methylazoxymethanol acetate (MAM) on gestational day (GD) 17, which as adults exhibit behavioral impairments and dopamine (DA) system changes consistent with a schizophrenia-relevant rodent model. In humans, social withdrawal is a negative symptom that often precedes disease onset and DA system dysfunction and is more pronounced in men. Children and adolescents at high-risk for schizophrenia exhibit social deficits prior to psychotic symptoms (i.e., prodromal phase), which can be used as a predictive marker for future psychopathology. Adult MAM rats also exhibit deficient social interaction, but less is known regarding the emergence of social dysfunction in this model, whether it varies by sex, and whether it is linked to disrupted DA function. To this end, we characterized the ontogeny of social and DA dysfunction in male and female MAM rats during the prepubertal period (postnatal days 33-43) and found sex-specific changes in motivated social behaviors (play, approach) and DA function. Male MAM rats exhibited reduced social approach and increased VTA DA neuron activity compared to saline-treated (SAL) males, whereas female MAM rats exhibited enhanced play behaviors compared to SAL females but no changes in social approach or VTA population activity during this period. These findings demonstrate sex differences in the emergence of social and DA deficits in the MAM model, in which females exhibit delayed emergence.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
5
|
Ye H, Cao T, Shu Q, Chen Y, Lu Y, He Z, Li Z. Blockade of orexin receptor 1 attenuates morphine protracted abstinence-induced anxiety-like behaviors in male mice. Psychoneuroendocrinology 2023; 151:106080. [PMID: 36931057 DOI: 10.1016/j.psyneuen.2023.106080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
One negative emotional state from morphine protracted abstinence is anxiety which can drive craving and relapse risk in opioid addicts. Although the orexinergic system has been reported to be important in mediating emotion processing and addiction, the role of orexinergic system in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, western blot, electrophysiology and virus-mediated regulation of orexin receptor 1 (OX1R), we found that: (1) Intraperitoneal and intra-VTA administration of a selective OX1R antagonist SB334867 alleviated anxiety-like behaviors in open field test (OFT) but not in elevated plus maze test (EPM) in morphine protracted abstinent male mice. (2) OX1R expression in the VTA was upregulated by morphine withdrawal. (3) Virus-mediated knockdown of OX1R in the VTA prevented morphine abstinence-induced anxiety-like behaviors and virus-mediated overexpression of OX1R in the VTA was sufficient to produce anxiety-like behaviors in male mice. (4) The VTA neuronal activity was increased significantly induced by morphine protracted abstinence, which was mediated by OX1R. (5) OX1R was widely distributed in the neuronal soma and processes of dopaminergic and non-dopaminergic neurons in the VTA. The findings revealed that the OX1R mediates morphine abstinence-induced anxiety-like behaviors and the VTA plays a critical role in this effect.
Collapse
Affiliation(s)
- Hongming Ye
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Tong Cao
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qigang Shu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Yue Chen
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Yongli Lu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Zhi He
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.
| | - Zicheng Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.
| |
Collapse
|
6
|
Transgenerational transmission of aspartame-induced anxiety and changes in glutamate-GABA signaling and gene expression in the amygdala. Proc Natl Acad Sci U S A 2022; 119:e2213120119. [PMID: 36459641 PMCID: PMC9894161 DOI: 10.1073/pnas.2213120119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We report the effects of aspartame on anxiety-like behavior, neurotransmitter signaling and gene expression in the amygdala, a brain region associated with the regulation of anxiety and fear responses. C57BL/6 mice consumed drinking water containing 0.015% or 0.03% aspartame, a dose equivalent of 8 to 15% of the FDA recommended maximum human daily intake, or plain drinking water. Robust anxiety-like behavior (evaluated using open field test and elevated zero maze) was observed in male and female mice consuming the aspartame-containing water. Diazepam, an allosteric modulator of the GABA-A receptor, alleviated the anxiety-like behavior. RNA sequencing of the amygdala followed by KEGG biological pathway analysis of differentially expressed genes showed glutamatergic and GABAergic synapse pathways as significantly enriched. Quantitative PCR showed upregulation of mRNA for the glutamate NMDA receptor subunit 2D (Grin2d) and metabotropic receptor 4 (Grm4) and downregulation of the GABA-A receptor associated protein (Gabarap) mRNA. Thus, taken together, our diazepam and gene expression data show that aspartame consumption shifted the excitation-inhibition equilibrium in the amygdala toward excitation. Even more strikingly, the anxiety-like behavior, its response to diazepam, and changes in amygdala gene expression were transmitted to male and female offspring in two generations descending from the aspartame-exposed males. Extrapolation of the findings to humans suggests that aspartame consumption at doses below the FDA recommended maximum daily intake may produce neurobehavioral changes in aspartame-consuming individuals and their descendants. Thus, human population at risk of aspartame's potential mental health effects may be larger than current expectations, which only include aspartame-consuming individuals.
Collapse
|
7
|
Adult stress exposure blunts dopamine system hyperresponsivity in a neurodevelopmental rodent model of schizophrenia. SCHIZOPHRENIA 2022; 8:30. [PMID: 35338155 PMCID: PMC8956652 DOI: 10.1038/s41537-022-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Stress is a major risk factor for the development of both schizophrenia and depression, and comorbidity between the two is common in schizoaffective disorders. However, the effects of stress exposure (i.e. chronic mild stress-CMS) on depression-related phenotypes in a neurodevelopmental model relevant to schizophrenia (i.e. methylazoxymethanol acetate—MAM) have yet to be explored and could provide insight into shared mechanisms of disease. To this end, we combined the prenatal MAM model with adult CMS exposure and explored the resultant pathophysiology using the social approach test (SAT), immobility in the forced swim test (FST) and amphetamine-induced hyperlocomotion (AIH) as depression- and schizophrenia-related endophenotypes and performed extracellular recordings of ventral tegmental area (VTA) DA neurons. MAM rats exhibited a reduction in social approach and increased VTA DA neuron activity compared to SAL rats or CMS groups. Separate cohorts of MAM animals were subjected to FST and AIH testing (counterbalanced order) or FST only. CMS groups exhibited increased FST immobility. Post-FST, both MAM groups (MAM-CON, MAM-CMS) exhibited blunted locomotor response to amphetamine compared with their SAL counterparts exposed to the same tests. Post-FST, MAM rats exhibited comparable VTA population activity to SAL rats, and CMS groups exhibited attenuated VTA population activity. Apomorphine administration results were consistent with the model suggesting that reductions in VTA DA neuron activity in MAM rats following FST exposure resulted from over-excitation, or depolarization block. These data suggest stress-induced DA downregulation in MAM rats, as FST exposure was sufficient to block the DA hyperresponsivity phenotype.
Collapse
|
8
|
Liu Y, Pan Y, Curtis TJ, Wang Z. Amphetamine exposure alters behaviors, and neuronal and neurochemical activation in the brain of female prairie voles. Neuroscience 2022; 498:73-84. [PMID: 35798262 PMCID: PMC9420825 DOI: 10.1016/j.neuroscience.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that 3-day d-amphetamine (AMPH) treatment effectively induced conditioned place preferences (CPP) and impaired pair bonding behaviors in prairie voles (Microtus ochrogaster). Using this established animal model and treatment regimen, we examined the effects of the demonstrated threshold rewarding dose of AMPH on various behaviors and their potential underlying neurochemical systems in the brain of female prairie voles. Our data show that 3-day AMPH injections (0.2 mg/kg/day) impaired social recognition and decreased depressive-like behavior in females without affecting their locomotion and anxiety-like behaviors. AMPH treatment also decreased neuronal activation indicated by the labeling of the early growth response protein 1 (Egr-1) as well as the number of neurons double-labeled for Egr-1 and corticotrophin-releasing hormone (CRH) in the dentate gyrus (DG) of the hippocampus and paraventricular nucleus of the hypothalamus (PVN) in the brain. Further, AMPH treatment decreased the number of neurons double-labeled for Egr-1 and tyrosine hydroxylase (TH) but did not affect oxytocinergic neurons in the PVN or cell proliferation and neurogenesis markers in the DG. These data not only demonstrate potential roles of the brain CRH and dopamine systems in mediating disrupted social recognition and depressive-like behaviors by AMPH in female prairie voles, but also further confirm the utility of the prairie vole model for studying interactions between psychostimulants and social behaviors.
Collapse
Affiliation(s)
- Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yongliang Pan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Thomas J Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
9
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022; 61:e202117125. [PMID: 35238468 DOI: 10.1002/anie.202117125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/31/2022]
Abstract
For the reliable determination of trace chemicals in the brain, we created a SERS platform based on a functionalized AuNPs array formed at a liquid/liquid interface in a uniform fashion over a large substrate area through ternary regulations for real-time quantification of trace norepinephrine (NE). The rigid molecule, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1) was designed and co-assembled at AuNPs with 4-mercaptophenylboronic acid (MPBA) to chemically define NE via dual recognition. Meanwhile, the rigid structure assembly of RP1 and MPBA efficiently fixed the interparticle gap, guaranteeing reproducible SERS analysis. Furthermore, the Raman peak of C≡C group in the silent region was taken as a response element to further improve the accuracy. Combined with microdialysis, this SERS platform was developed for in-the-field testing of NE in rat brain microdialysates following anxiety.
Collapse
Affiliation(s)
- Lu Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
10
|
Liu X, Song M, Chen X, Sun Y, Fan R, Wang L, Lin W, Hu Z, Zhao H. Activation of Estrogen Receptor β in the Lateral Habenula Improves Ovariectomy-Induced Anxiety-Like Behavior in Rats. Front Behav Neurosci 2022; 16:817859. [PMID: 35615566 PMCID: PMC9126050 DOI: 10.3389/fnbeh.2022.817859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Loss of estrogen due to menopause or ovarian resection is involved in the development of anxiety, which negatively impacts work productivity and quality of life. Estrogen modulates mood by binding to estrogen receptors in the brain. Estrogen receptor beta (ERβ) is highly expressed in the lateral habenula (LHb), a key site for controlling the activities of dopaminergic neurons in the ventral tegmental area (VTA) and serotoninergic neurons in the dorsal raphe nucleus (DRN) that are known to be involved in anxiety. Methods In this study, we examined the role of LHb in the anxiolytic-like effect of estrogen in ovariectomized (OVX) rats. The establishment of OVX anxiety model was validated in behavioral tests, including elevated plus maze (EPM) and mirror chamber maze (MCM) tasks. The expression of c-Fos in the LHb neurons was analyzed by immunohistochemistry, and monoamine neurotransmitter levels in related nuclei were analyzed using high-performance liquid chromatography (HPLC). Results Estrogen-treated OVX rats showed a lower degree of anxiety-like behavior than OVX rats. OVX rats showed anxiety-like behavior and low monoamine levels in the DRN and VTA compared with sham operated and estrogen-treated OVX rats. c-Fos expression in the LHb was higher than that in the sham operated and estrogen-treated OVX rats. Intra-LHb injection of the ERβ-selective agonist diarylprepionitrile (DPN) reduced expression of c-Fos (a neuronal activity marker) and anxiety-like behavior in OVX rats, but not in normal rats, as evidenced by increased time spent in EPM open areas and the MCM mirror chamber. These changes coincided with higher levels of serotonin and dopamine in the DRN and higher dopamine levels in the VTA in OVX rats receiving intra-LHb DPN compared with those receiving vehicle injection. Conclusion These results suggest that OVX-induced anxiety-like behavior may be associated with increased LHb activity. DPN may inhibit LHb activity to improve anxiety-like behavior in OVX rats by increasing monoamine neurotransmitter levels in the DRN and VTA.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Meiying Song
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaowei Chen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanfei Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Renfei Fan
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liping Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weihong Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- *Correspondence: Zheng Hu,
| | - Hua Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Hua Zhao,
| |
Collapse
|
11
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lu Shi
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Mengmeng Liu
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 shanghai CHINA
| | - Limin Zhang
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Yang Tian
- East China Normal University Dept. of Chemistry Dongchuan Road 500 200062 Shanghai CHINA
| |
Collapse
|
12
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
13
|
Papanna B, Lazzari C, Kulkarni K, Perumal S, Nusair A. Pregabalin abuse and dependence during insomnia and protocol for short-term withdrawal management with diazepam: examples from case reports. Sleep Sci 2022; 14:193-197. [PMID: 35082992 PMCID: PMC8764940 DOI: 10.5935/1984-0063.20200129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction: Pregabalin (PGN) is an anxiolytic, analgesic, antiepileptic, and hypnotic medication. There are concerns about its abuse in the community for managing chronic insomnia and other risks when assumed in overdose or combination with other abuse substances. PGN is classified as a controlled medication. While its discontinuation is accompanied by rebound insomnia and other neurological symptoms, cross-tapering PGN with short-term diazepam (DZ) during inpatient admissions has shown promising results in dealing with PGN withdrawal symptoms accompanied by rebound insomnia. Material and Methods: We report three cases that began abusing their prescribed PGN. During hospital admission, our teams used a protocol for cross-tapering PGN with DZ to reduce withdrawal symptoms. Other sedative medications are suspended while alcohol is not allowed if patients are on leave from the hospital. Standardized scales for assessment were clinical global impression scale-severity (CGI-S), generalized anxiety disorder scale (GAD-7), and insomnia severity index (ISI). Results: The cross-tapering PGN with DZ showed similar clinical outcomes with reduced withdrawal symptoms and rebound insomnia during two weeks of cross-tapering. Eventually, DZ, too, is stopped in the hospital to avoid another dependence syndrome. Conclusion: As emerging in the current study, PGN has strong addictive effects in people who have insomnia and is mostly abused for its hypnotic or sleep-inducing properties when other medications have failed. As applied in the current study, DZ can manage PGN withdrawal symptoms with rebound insomnia while cross-tapering. DZ is then discontinued.
Collapse
Affiliation(s)
- Basavaraja Papanna
- Essex Partnership University NHS Foundation Trust, Psychiatry - Colchester - Essex - United Kingdom
| | - Carlo Lazzari
- South-West Yorkshire NHS Trust, Psychiatric Intensive Care Unit - Wakefield - South Yorkshire - United Kingdom
| | - Kapil Kulkarni
- Essex Partnership University NHS Foundation Trust, Psychiatry - Colchester - Essex - United Kingdom
| | - Sivasankar Perumal
- Essex Partnership University NHS Foundation Trust, Psychiatry - Colchester - Essex - United Kingdom
| | - Abdul Nusair
- South-West Yorkshire NHS Trust, Psychiatric Intensive Care Unit - Wakefield - South Yorkshire - United Kingdom
| |
Collapse
|
14
|
Distribution visualization of the chlorinated disinfection byproduct of diazepam in zebrafish with desorption electrospray ionization mass spectrometry imaging. Talanta 2022; 237:122919. [PMID: 34736655 DOI: 10.1016/j.talanta.2021.122919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Diazepam (DZP) was routinely prescribed to a large population troubled with anxiety disorders. However, due to the overuse and misuse, DZP and its chlorination disinfection byproduct 2-methylamino-5-chlorobenzophenone (MACB) caused environmental pollution and can be detected ubiquitously in drinking water in Beijing, China. However, little information is known about the metabolic dynamics of MACB. Here, we established desorption electrospray ionization mass spectrometry (DESI-MS) imaging method to visually and quantitatively assess the distribution and metabolism of MACB in zebrafish. The results showed that MACB specifically accumulated in spinal cord particularly in female zebrafish. Meanwhile, the accumulation of MACB could pass through the blood-brain barrier (BBB) and induced microglial phagocytosis of neurons. Therefore, the intervention strategies should be explored to restrict the release of such substances, eliminating the potential risks for both human beings and the eco-environment.
Collapse
|
15
|
Lv Y, Fan Y, Tian X, Yu B, Song C, Feng C, Zhang L, Ji X, Zablotskii V, Zhang X. The Anti-Depressive Effects of Ultra-High Static Magnetic Field. J Magn Reson Imaging 2021; 56:354-365. [PMID: 34921571 DOI: 10.1002/jmri.28035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ultra-high field magnetic resonance imaging (MRI) has obvious advantages in acquiring high-resolution images. 7 T MRI has been clinically approved and 21.1 T MRI has also been tested on rodents. PURPOSE To examine the effects of ultra-high field on mice behavior and neuron activity. STUDY TYPE Prospective, animal model. ANIMAL MODEL Ninety-eight healthy C57BL/6 mice and 18 depression model mice. FIELD STRENGTH 11.1-33.0 T SMF (static magnetic field) for 1 hour and 7 T for 8 hours. Gradients were not on and no imaging sequence was used. ASSESSMENT Open field test, elevated plus maze, three-chambered social test, Morris water maze, tail suspension test, sucrose preference test, blood routine, biochemistry examinations, enzyme-linked immunosorbent assay, immunofluorescent assay. STATISTICAL TESTS The normality of the data was assessed by Shapiro-Wilk test, followed by Student's t test or the Mann-Whitney U test for statistical significance. The statistical cut-off line is P < 0.05. RESULTS Compared to the sham group, healthy C57/6 mice spent more time in the center area (35.12 ± 4.034, increased by 47.19%) in open field test and improved novel index (0.6201 ± 0.02522, increased by 16.76%) in three-chambered social test a few weeks after 1 hour 11.1-33.0 T SMF exposure. 7 T SMF exposure for 8 hours alleviated the depression state of depression mice, including less immobile time in tail suspension test (58.32% reduction) and higher sucrose preference (increased by 8.80%). Brain tissue analysis shows that 11.1-33.0 T and 7 T SMFs can increase oxytocin by 164.65% and 36.03%, respectively. Moreover, the c-Fos level in hippocampus region was increased by 14.79%. DATA CONCLUSION 11.1-33.0 T SMFs exposure for 1 hour or 7 T SMF exposure for 8 hours did not have detrimental effects on healthy or depressed mice. Instead, these ultra-high field SMFs have anti-depressive potentials. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yue Lv
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xiaofei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Vitalii Zablotskii
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.,International Magnetobiology Frontier Research Center, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.,International Magnetobiology Frontier Research Center, Hefei, China
| |
Collapse
|
16
|
Ztaou S, Oh SJ, Tepler S, Fleury S, Matamales M, Bertran-Gonzalez J, Chuhma N, Rayport S. Single Dose of Amphetamine Induces Delayed Subregional Attenuation of Cholinergic Interneuron Activity in the Striatum. eNeuro 2021; 8:ENEURO.0196-21.2021. [PMID: 34462310 PMCID: PMC8454923 DOI: 10.1523/eneuro.0196-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 01/15/2023] Open
Abstract
Psychostimulants such as amphetamine (AMPH) target dopamine (DA) neuron synapses to engender drug-induced plasticity. While DA neurons modulate the activity of striatal (Str) cholinergic interneurons (ChIs) with regional heterogeneity, how AMPH affects ChI activity has not been elucidated. Here, we applied quantitative fluorescence imaging approaches to map the dose-dependent effects of a single dose of AMPH on ChI activity at 2.5 and 24 h after injection across the mouse Str using the activity-dependent marker phosphorylated ribosomal protein S6 (p-rpS6240/244). AMPH did not affect the distribution or morphology of ChIs in any Str subregion. While AMPH at either dose had no effect on ChI activity after 2.5 h, ChI activity was dose dependently reduced after 24 h specifically in the ventral Str/nucleus accumbens (NAc), a critical site of psychostimulant action. AMPH at either dose did not affect the spontaneous firing of ChIs. Altogether this work demonstrates that a single dose of AMPH has delayed regionally heterogeneous effects on ChI activity, which most likely involves extra-Str synaptic input.
Collapse
Affiliation(s)
- Samira Ztaou
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Soo Jung Oh
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Sophia Tepler
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Sixtine Fleury
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Miriam Matamales
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jesus Bertran-Gonzalez
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| |
Collapse
|
17
|
Rincón-Cortés M, Grace AA. Early Pup Removal Leads to Social Dysfunction and Dopamine Deficit in Late Postpartum Rats: Prevention by Social Support. Front Glob Womens Health 2021; 2. [PMID: 34414389 PMCID: PMC8373044 DOI: 10.3389/fgwh.2021.694808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Offspring interaction is among the most highly motivated behaviors in maternal mammals and is mediated by mesolimbic dopamine (DA) system activation. Disruption or loss of significant social relationships is among the strongest individual predictors of affective dysregulation and depression onset in humans. However, little is known regarding the effects of disrupted mother–infant attachment (pup removal) in rat dams. Here, we tested the effects of permanent pup removal in rat dams, which were assigned to one of three groups on postpartum day (PD) 1: pups; pups removed, single-housed; or pups removed, co-housed with another dam who also had pups removed; and underwent a behavioral test battery during PD 21–23. In vivo electrophysiological recordings of ventral tegmental area (VTA) DA neurons were performed on PD 22 and 23 in a subset of animals. Pup removal did not impact sucrose consumption or anxiety-like behavior, but increased passive forced swim test (FST) coping responses. Pup-removal effects on social behavior and VTA activity were sensitive to social buffering: only single-housed dams exhibited reduced social motivation and decreased numbers of active DA neurons. Dams that had pups removed and were co-housed did not exhibit changes in social behavior or VTA function. Moreover, no changes in social behavior, FST coping, or VTA activity were found in socially isolated adult virgin females, indicating that effects observed in dams are specific to pup loss. This study showed that deprivation of species-expected social relationships (pups) during the postpartum precipitates an enduring negative affect state (enhanced passive coping, blunted social motivation) and attenuated VTA DA function in the dam, and that a subset of these effects is partially ameliorated through social buffering.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
El-Akhal J, Humulescu I, Ionita R, Postu PA, Ungureanu E, Hancianu M, Bencheikh R, Robu S, Cioanca O, Hritcu L. Anxiolytic and Antidepressant-Like Effects of Conyza canadensis Aqueous Extract in the Scopolamine Rat Model. PLANTS 2021; 10:plants10040645. [PMID: 33805374 PMCID: PMC8067281 DOI: 10.3390/plants10040645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022]
Abstract
Conyza canadensis is a plant widely used in traditional medicine in Morocco for the treatment of varied health challenges. However, to the best of our knowledge, there is no scientific study justifying the traditional use of Conyza extract as an anxiolytic and antidepressant agent. Moreover, data regarding the polyphenolic fraction is limited. Therefore, the present study was conducted to investigate the chemical composition of an aqueous extract obtained from the aerial parts of Conyza, its antioxidant potential, and the anxiolytic and antidepressant-like effects of the sample (100 and 200 mg/kg body weight (bw)) in the scopolamine (Sco) (0.7 mg/kg bw) rat model. To achieve this purpose, a variety of antioxidant tests (including free radical-scavenging activity and lipoxygenase-inhibitory potential assays) and behavioral procedures, such as the elevated plus-maze and forced swimming tests, were performed. The results demonstrated that the aqueous extract of Conyza canadensis is rich in catechins and flavonoids which possess good antioxidant activity. Additionally, concentrations of 100 and 200 mg/kg of the extract exhibited significant anxiolytic and antidepressant-like profiles following scopolamine treatment. Therefore, we propose that the use of Conyza canadensis could be a new pharmacological target for the amelioration of major depression.
Collapse
Affiliation(s)
- Jamila El-Akhal
- Bioactive Molecules Laboratory, Faculty of Sciences and Technologies Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202 Fez, Morocco; (J.E.-A.); (R.B.)
| | - Ioana Humulescu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (I.H.); (M.H.)
| | - Radu Ionita
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (R.I.); (P.A.P.); (E.U.); (L.H.)
| | - Paula Alexandra Postu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (R.I.); (P.A.P.); (E.U.); (L.H.)
| | - Eugen Ungureanu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (R.I.); (P.A.P.); (E.U.); (L.H.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (I.H.); (M.H.)
| | - Rachid Bencheikh
- Bioactive Molecules Laboratory, Faculty of Sciences and Technologies Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202 Fez, Morocco; (J.E.-A.); (R.B.)
| | - Silvia Robu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 35 Al. I. Cuza Street, 800010 Galati, Romania;
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (I.H.); (M.H.)
- Correspondence:
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (R.I.); (P.A.P.); (E.U.); (L.H.)
| |
Collapse
|
19
|
Sousa B, Nunes B. Reliability of behavioral test with fish: How neurotransmitters may exert neuromodulatory effects and alter the biological responses to neuroactive agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139372. [PMID: 32480229 DOI: 10.1016/j.scitotenv.2020.139372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Toxic agents such as pharmaceuticals and pesticides are continuously dispersed especially in the aquatic environment, as a result of human use. Their presence in the environment presents serious concerns, since these compounds interfere with the normal function of the central nervous system (CNS), causing behavior alterations, whose consequences are difficult to predict. However, behavioral responses, even those that occur after exposure to neurotoxic agents, might be modulated by the release of neurotransmitters in the brain of exposed organisms, making even more difficult to ascertain the real consequences of pollution by neurotoxic or neuroactive agents. This study aimed to understand the potential of dopamine as neuromodulator in cases of acute exposure to a pesticide (the carbamate carbofuran) and to a therapeutic agent (the benzodiazepinic drug diazepam) in the freshwater fish Gambusia holbrooki. After acute exposure to both carbofuran and to diazepam it was possible to observe deleterious alterations in the motor function, reflected by significant reductions of both average speed and distance in exposed animals. These changes were later diminished and reverted by dopamine exposure. Despite the indications obtained from our experiments, more research is needed to clarify the consequences of these behavior alterations in a more integrative perspective, namely by adding behavioral endpoints of increased ecological relevance to the adopted experimental design.
Collapse
Affiliation(s)
- Beatriz Sousa
- Departamento de Biologia da Universidade de Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Fernández-Teruel A, Tobeña A. Revisiting the role of anxiety in the initial acquisition of two-way active avoidance: pharmacological, behavioural and neuroanatomical convergence. Neurosci Biobehav Rev 2020; 118:739-758. [PMID: 32916193 DOI: 10.1016/j.neubiorev.2020.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Two-way active avoidance (TWAA) acquisition constitutes a particular case of approach -avoidance conflict for laboratory rodents. The present article reviews behavioural, psychopharmacological and neuroanatomical evidence accumulated along more than fifty years that provides strong support to the contention that anxiety is critical in the transition from CS (conditioned stimulus)-induced freezing to escape/avoidance responses during the initial stages of TWAA acquisition. Thus, anxiolytic drugs of different types accelerate avoidance acquisition, anxiogenic drugs impair it, and avoidance during these initial acquisition stages is negatively associated with other typical measures of anxiety. In addition behavioural and developmental treatments that reduce or increase anxiety/stress respectively facilitate or impair TWAA acquisition. Finally, evidence for the regulation of TWAA acquisition by septo-hippocampal and amygdala-related mechanisms is discussed. Collectively, the reviewed evidence gives support to the initial acquisition of TWAA as a paradigm with considerable predictive and (in particular) construct validity as an approach-avoidance conflict-based rodent anxiety model.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Rincón-Cortés M, Grace AA. Postpartum changes in affect-related behavior and VTA dopamine neuron activity in rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109768. [PMID: 31655159 PMCID: PMC6910715 DOI: 10.1016/j.pnpbp.2019.109768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
The onset of motherhood is accompanied by alterations in emotional and affective behaviors. Many new mothers experience transient and mild depressive symptoms that typically resolve spontaneously (i.e. postpartum blues) but increase the risk for postpartum depression (PPD). There is little data regarding the neural adaptations occurring in response to parturition and shortly after birth that may be associated with these affective changes. Although the dopamine (DA) system is involved in affect, maternal motivation and PPD, little is known about postpartum DA function. We compared affective behavior in virgin and postpartum adult female rats at early and late time points. In vivo extracellular recordings of VTA DA neurons were performed to evaluate 3 parameters: number of active DA neurons (i.e. population activity), firing rate, and firing pattern. Compared with virgins, postpartum rats exhibited increased anxiety-like behavior in the elevated plus maze at 1-day postpartum; reduced social motivation at 1- and 3-days postpartum, reduced anxiety-like behavior in the novelty suppressed feeding test throughout the first week postpartum and increased forced swim test immobility at 1-day postpartum. 1- and 3-day postpartum females exhibited attenuated VTA population activity without changes in firing rate or pattern. None of these effects were observed in late postpartum females when compared with virgins. These data suggest that parturition induces time-dependent changes in a subset of affect-related behaviors and DA function during the postpartum period in rodents, with early postpartum females exhibiting depression-related phenotypes (i.e. low social motivation, higher immobility, blunted DA activity).
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| | | |
Collapse
|
22
|
Li Y, Lu X, Nie J, Hu P, Ge F, Yuan TF, Guan X. MicroRNA134 of Ventral Hippocampus Is Involved in Cocaine Extinction-Induced Anxiety-like and Depression-like Behaviors in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:937-950. [PMID: 32004865 PMCID: PMC6994828 DOI: 10.1016/j.omtn.2019.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022]
Abstract
We previously found that cocaine abuse could increase microRNA134 (miR134) levels in the hippocampus; yet the roles of miR134 in cocaine-related abnormal psychiatric outcomes remain unknown. In this study, using the cocaine-induced conditioned place preference (CPP) mice model, we found that mice exhibit enhanced anxiety-like and depression-like behaviors during the cocaine extinction (CE) period of CPP, accompanied by obviously increased miR134 levels and decreased levels of 19 genes that are associated with synaptic plasticity, glia activity, and neurochemical microenvironments, in the ventral hippocampus (vHP). Knockdown of miR134 in vHP in vivo reversed the changes in 15 of 19 potential gene targets of miR134 and rescued the abnormal anxiety-like and depression-like behavioral outcomes in CE mice. In parallel, knockdown of miR134 reversed CE-induced changes in dendritic spines and synaptic proteins and increased the field excitatory postsynaptic potential (fEPSP) of CA1 pyramidal neurons in the vHP of CE mice. In addition, knockdown of miR134 suppressed the CE-enhanced microglia activity, inflammatory, apoptotic, and oxidative stress statuses in the vHP. With the data taken together, miR134 may be involved in cocaine-associated psychiatric problems, potentially via regulating the expressions of its gene targets that are related to synaptic plasticity and neurochemical microenvironments.
Collapse
Affiliation(s)
- Yuehan Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxun Nie
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Panpan Hu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
23
|
Musco S, McAllister V, Caudle I. Dopamine-receptor blocking agent-associated akathisia: a summary of current understanding and proposal for a rational approach to treatment. Ther Adv Psychopharmacol 2020; 10:2045125320937575. [PMID: 32922732 PMCID: PMC7457694 DOI: 10.1177/2045125320937575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Dopamine-receptor blocking agent-associated akathisia (DRBA-A) is an adverse effect that can significantly limit the use of these important medications for the treatment of a variety of psychiatric diseases, yet there is no unifying theory regarding its pathophysiology. This knowledge gap limits clinicians' ability to effectively manage DRBA-A and mitigate negative outcomes in an already vulnerable patient population. Based on a review of the current literature on the subject, it is hypothesized that dopaminergic and noradrenergic signaling is perturbed in DRBA-A. Accordingly, it is proposed that the optimal agent to manage this extrapyramidal symptom should increase dopamine signaling in the affected areas of the brain and counteract compensatory noradrenergic signaling via antagonism of adrenergic or serotonergic receptors.
Collapse
Affiliation(s)
- Shaina Musco
- Department of Clinical Sciences, High Point University Fred Wilson School of Pharmacy, One University Parkway, High Point, NC 27262, USA
| | - Vivian McAllister
- High Point University David R. Hayworth College of Arts and Sciences, One University Parkway, High Point, NC, USA
| | - Ian Caudle
- High Point University Fred Wilson School of Pharmacy, One University Parkway, High Point, NC, USA
| |
Collapse
|
24
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
25
|
Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res 2019; 379:112367. [PMID: 31739001 DOI: 10.1016/j.bbr.2019.112367] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Depression, the most prevalent psychiatric disorder, is characterized by increased negative affect (i.e. depressed mood) and reduced positive affect (i.e. anhedonia). Stress is a risk factor for depression in humans, and animal models of chronic stress are typically used to study neurobehavioral alterations relevant to depression. Common behavioral outcomes in rodent models of chronic stress include anhedonia, social dysfunction and behavioral despair. For example, chronically stressed rodents exhibit reduced reward preference, as measured by a loss of preference for sucrose solutions and time spent interacting with a novel conspecific, while also exhibiting less time struggling against inescapable stressors (e.g. forced swim, tail suspension). In both humans and rodents, anhedonia is associated with dysfunction of the dopamine (DA) system. Unlike traditional antidepressants, which are limited by inadequate efficacy and delayed therapeutic response, acute ketamine administration rapidly alleviates depressive symptoms in humans and reverses stress-induced changes in animal models. These effects are partially mediated via actions on the DA system. This review summarizes the clinical effects of ketamine, the neurobiological underpinnings of depression with a focus on DA dysfunction, as well as antidepressant effects of ketamine on depression-related endophenotypes (i.e. anhedonia, despair) and ventral tegmental area (VTA) activity in rodent models of repeated stress. Moreover, we discuss evidence regarding sex differences in ketamine's antidepressant effects, wherein females appear to be more sensitive to lower dose ketamine, as well as novel findings suggesting that ketamine has prophylactic effects with regard to protection against the neurobehavioral impact of future stressors.
Collapse
|
26
|
Klinger K, Gomes FV, Rincón-Cortés M, Grace AA. Female rats are resistant to the long-lasting neurobehavioral changes induced by adolescent stress exposure. Eur Neuropsychopharmacol 2019; 29:1127-1137. [PMID: 31371105 PMCID: PMC6773464 DOI: 10.1016/j.euroneuro.2019.07.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Abstract
Stress during adolescence is a risk factor for neuropsychiatric diseases, including schizophrenia. We recently observed that peripubertal male rats exposed to a combination of daily footshock plus restraint stress exhibited schizophrenia-like changes. However, numerous studies have shown sex differences in neuropsychiatric diseases as well as on the impact of coping with stress. Thus, we decided to evaluate, in adolescent female rats, the impact of different stressors (restraint stress [RS], footshock [FS], or the combination of FS and RS [FS+RS]) on social interaction (3-chamber social approach test/SAT), anxiety responses (elevated plus-maze/EPM), cognitive function (novel object recognition test/NOR), and dopamine (DA) system responsivity by evaluating locomotor response to amphetamine and in vivo extracellular single unit recordings of DA neurons in the ventral tegmental area (VTA) in adulthood. The impact of FS+RS during early adulthood was also investigated. Adolescent stress had no impact on social behavior, anxiety, cognition and locomotor response to amphetamine. In addition, adolescent stress did not induce long-lasting changes in VTA DA system activity. However, a decrease in the firing rate of VTA DA neurons was found 1-2 weeks post-adolescent stress. Similar to adolescent stress, adult stress did not induce long-lasting behavioral deficits and changes in VTA DA system activity, but FS+RS decreased VTA DA neuron population activity 1-2 weeks post-adult stress. Our results are consistent with previous studies showing that female rodents appear to be more resilient to developmental stress-induced persistent changes than males and may contribute to the delayed onset and lesser severity of schizophrenia in females.
Collapse
Affiliation(s)
- Katharina Klinger
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA; Institute of Genetic and Molecular Neurobiology, Otto-von-Guericke University, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Bandeirantes Ave, Ribeirao Preto, SP, 14049-900, Brazil
| | - Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|