1
|
Pastre M, Occéan B, Boudousq V, Conejero I, Fabbro‐Peray P, Collombier L, Mallet L, Lopez‐Castroman J. Serotonergic underpinnings of obsessive-compulsive disorder: A systematic review and meta-analysis of neuroimaging findings. Psychiatry Clin Neurosci 2025; 79:48-59. [PMID: 39511769 PMCID: PMC11789457 DOI: 10.1111/pcn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a frequent and disabling condition, with many patients being treatment-resistant. Improved understanding of its neurobiology is vital for better therapies. Evidence is still conflicting regarding specific serotonergic-related dysfunctions in OCD. We systematically reviewed the literature to provide a quantitative assessment of the role of serotonin (5-HT) in patients with untreated OCD through imaging. We searched for neuroimaging studies investigating central 5-HT tonus in unmedicated patients with OCD, excluding studies comprising treated patients to prevent bias from antidepressant-induced changes in serotonergic tonus. We also conducted a meta-analysis using a homogeneous group of positron emission tomography and single photon emission computed tomography articles that compared 5-HT transporter (SERT) and 5-HT2A receptor (HT2AR) binding potential in different brain regions of patients with untreated OCD and healthy controls. The systematic review encompassed 18 articles, with 13 included in the subsequent meta-analysis. Risk of bias was assessed by a revised form of the Newcastle-Ottawa Scale. We provided standardized mean difference (SMD) values for SERT and 5-HT2AR binding potential measures across 15 different brain regions. Patients with OCD showed lower SERT binding potential in the brainstem (SMD = -1.13, 95% CI [-1.81 to -0.46]), midbrain (SMD = -0.54, 95% CI [-0.92 to -0.16]), and thalamus/hypothalamus regions (SMD = -0.58, 95% CI [-0.99 to -0.18]) with neglectable to moderate heterogeneity. By combining results from 2 decades of molecular imaging studies, we show that individuals with OCD exhibit lower SERT binding potential in specific brain regions, providing compelling evidence of a 5-HT system dysfunction. However, the exact mechanisms underlying this phenotype remain elusive. The limitations include heterogeneity across studies in populations, imaging techniques, and radiotracer usage.
Collapse
Affiliation(s)
| | - Bob‐Valéry Occéan
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique Innovation et Méthodologie (BESPIM)CHU NimesNimesFrance
| | - Vincent Boudousq
- Département de Médecine Nucléaire et Biophysique MédicaleCHU NimesNimesFrance
| | | | - Pascale Fabbro‐Peray
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique Innovation et Méthodologie (BESPIM)CHU NimesNimesFrance
| | - Laurent Collombier
- Département de Médecine Nucléaire et Biophysique MédicaleCHU NimesNimesFrance
| | - Luc Mallet
- Université Paris‐Est Créteil, DMU IMPACT, Département Médical‐Universitaire de Psychiatrie et d'AddictologieHôpitaux Universitaires Henri Mondor‐Albert Chenevier, Assistance Publique‐Hôpitaux de ParisCréteilFrance
- Institut du Cerveau‐Paris Brain Institute–ICMSorbonne Université, Inserm, CNRSParisFrance
- Department of Mental Health and Psychiatry, Global Health InstituteUniversity of GenevaGenevaSwitzerland
| | - Jorge Lopez‐Castroman
- Department of PsychiatryCHU NimesNimesFrance
- CIBERSAM, ISCIIIMadridSpain
- Department of Psychiatry, Radiology, Public Health, Nursing and MedicineUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
2
|
Owe-Larsson M, Kamińska K, Buchalska B, Mirowska-Guzel D, Cudnoch-Jędrzejewska A. Psilocybin in pharmacotherapy of obsessive-compulsive disorder. Pharmacol Rep 2024; 76:911-925. [PMID: 39088105 PMCID: PMC11387457 DOI: 10.1007/s43440-024-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic mental disease that affects approximately 2% of the population. Obsessions and compulsions are troublesome for patients and may disturb their everyday activities. The pathogenesis of this disease is still not fully elucidated, but dysfunctions of serotonin-, dopamine- and glutamate-mediated neurotransmission together with early maladaptive schemas seem of importance. Pharmacological treatment includes drugs affecting the serotoninergic, dopaminergic, and glutamatergic systems, such as selective serotonin reuptake inhibitors (SSRIs). Providing that up to 40% of patients with OCD are resistant to the currently available medications, there is a need for novel and effective therapies. Recent discoveries suggest that psilocybin, a non-physically addictive psychoactive substance, may ameliorate disease symptoms. When used in appropriate doses and under strict clinical control, psilocybin appears as a valuable treatment for OCD. This narrative article provides a thorough overview of OCD's etiology, current treatment options, and the emerging evidence supporting psilocybin's efficacy in managing OCD symptoms.
Collapse
Affiliation(s)
- Maja Owe-Larsson
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland.
| | - Katarzyna Kamińska
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland.
| | - Barbara Buchalska
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland
| |
Collapse
|
3
|
Hearne LJ, Yeo BTT, Webb L, Zalesky A, Fitzgerald PB, Murphy OW, Tian Y, Breakspear M, Hall CV, Choi S, Kim M, Kwon JS, Cocchi L. Distinct cognitive and functional connectivity features from healthy cohorts can identify clinical obsessive-compulsive disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312960. [PMID: 39281735 PMCID: PMC11398446 DOI: 10.1101/2024.09.02.24312960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Improving diagnostic accuracy of obsessive-compulsive disorder (OCD) using models of brain imaging data is a key goal of the field, but this objective is challenging due to the limited size and phenotypic depth of clinical datasets. Leveraging the phenotypic diversity in large non-clinical datasets such as the UK Biobank (UKBB), offers a potential solution to this problem. Nevertheless, it remains unclear whether classification models trained on non-clinical populations will generalise to individuals with clinical OCD. This question is also relevant for the conceptualisation of OCD; specifically, whether the symptomology of OCD exists on a continuum from normal to pathological. Here, we examined a recently published "meta-matching" model trained on functional connectivity data from five large normative datasets (N=45,507) to predict cognitive, health and demographic variables. Specifically, we tested whether this model could classify OCD status in three independent clinical datasets (N=345). We found that the model could identify out-of-sample OCD individuals. Notably, the most predictive functional connectivity features mapped onto known cortico-striatal abnormalities in OCD and correlated with genetic brain expression maps previously implicated in the disorder. Further, the meta-matching model relied upon estimates of cognitive functions, such as cognitive flexibility and inhibition, to successfully predict OCD. These findings suggest that variability in non-clinical brain and behavioural features can discriminate clinical OCD status. These results support a dimensional and transdiagnostic conceptualisation of the brain and behavioural basis of OCD, with implications for research approaches and treatment targets.
Collapse
Affiliation(s)
- Luke J Hearne
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Paul B Fitzgerald
- School of Medicine and Psychology, Australian National University, Canberra, Australia
| | - Oscar W Murphy
- Central Clinical School, Monash University, Clayton, Australia
- Bionics Institute, East Melbourne, Australia
| | - Ye Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, Australia
- School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, Australia
- Program of Neuromodulation, Hunter Medical Research Institute, New Lambton, Australia
| | - Caitlin V Hall
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Republic of Korea
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Yan H, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Cerebellar functional connectivity and its associated genes: A longitudinal study in drug-naive patients with obsessive-compulsive disorder. J Psychiatr Res 2024; 177:378-391. [PMID: 39083996 DOI: 10.1016/j.jpsychires.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The role of cerebellar-cerebral functional connectivity (CC-FC) in obsessive-compulsive disorder (OCD), its trajectory post-pharmacotherapy, and its potential as a prognostic biomarker and genetic mechanism remain uncertain. To address these gaps, this study included 37 drug-naive OCD patients and 37 healthy controls (HCs). Participants underwent baseline functional magnetic resonance imaging (fMRI), followed by four weeks of paroxetine treatment for patients with OCD, and another fMRI scan post-treatment. We examined seed-based CC-FC differences between the patients and HCs, and pre- and post-treatment patients. Support vector regression (SVR) based on CC-FC was performed to predict treatment response. Correlation analysis explored associations between CC-FC and clinical features, as well as gene profiles. Compared to HCs, drug-naive OCD patients exhibited reduced CC-FC in executive, affective-limbic, and sensorimotor networks, with specific genetic profiles associated with altered CC-FC. Gene enrichment analyses highlighted the involvement of these genes in various biological processes, molecular functions, and pathways. Post-treatment, the patients showed partial clinical improvement and partial restoration of the previously decreased CC-FC. Abnormal CC-FC at baseline correlated negatively with compulsions severity and social functional impairment, while changes in CC-FC correlated with cognitive function changes post-treatment. CC-FC emerged as a potential predictor of symptom severity in patients following paroxetine treatment. This longitudinal resting-state fMRI study underscores the crucial role of CC-FC in the neuropsychological mechanisms of OCD and its pharmacological treatment. Transcriptome-neuroimaging spatial correlation analyses provide insight into the neurobiological mechanisms underlying OCD pathology. Furthermore, SVR analyses hold promise for advancing precision medicine approaches in treating patients with OCD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Seyedmirzaei H, Bayan N, Ohadi MAD, Cattarinussi G, Sambataro F. Effects of antidepressants on brain structure and function in patients with obsessive-compulsive disorder: A review of neuroimaging studies. Psychiatry Res Neuroimaging 2024; 342:111842. [PMID: 38875766 DOI: 10.1016/j.pscychresns.2024.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Obsessive-compulsive disorder (OCD) affects 2-3% of people worldwide. Although antidepressants are the standard pharmachological treatment of OCD, their effect on the brain of individuals with OCD has not yet been fully clarified. We conducted a systematic search on PubMed, Scopus, Embase, and Web of Science to explore the effects of antidepressants on neuroimaging findings in OCD. Thirteen neuroimaging investigations were included. After antidepressant treatment, structural magnetic resonance imaging studies suggested thalamic, amygdala, and pituitary volume changes in patients. In addition, the use of antidepressants was associated with alterations in diffusion tensor imaging metrics in the left striatum, the right midbrain, and the posterior thalamic radiation in the right parietal lobe. Finally, functional magnetic resonance imaging highlighted possible changes in the ventral striatum, frontal, and prefrontal cortex. The small number of included studies and sample sizes, short durations of follow-up, different antidepressants, variable regions of interest, and heterogeneous samples limit the robustness of the findings of the present review. In conclusion, our review suggests that antidepressant treatment is associated with brain changes in individuals with OCD, and these results may help to deepen our knowledge of the pathophysiology of OCD and the brain mechanisms underlying the effects of antidepressants.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Bayan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Dabbagh Ohadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran; Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
6
|
Perera MPN, Gotsis ES, Bailey NW, Fitzgibbon BM, Fitzgerald PB. Exploring functional connectivity in large-scale brain networks in obsessive-compulsive disorder: a systematic review of EEG and fMRI studies. Cereb Cortex 2024; 34:bhae327. [PMID: 39152672 PMCID: PMC11329673 DOI: 10.1093/cercor/bhae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition that is difficult to treat due to our limited understanding of its pathophysiology. Functional connectivity in brain networks, as evaluated through neuroimaging studies, plays a pivotal role in understanding OCD. While both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been extensively employed in OCD research, few have fully synthesized their findings. To bridge this gap, we reviewed 166 studies (10 EEG, 156 fMRI) published up to December 2023. In EEG studies, OCD exhibited lower connectivity in delta and alpha bands, with inconsistent findings in other frequency bands. Resting-state fMRI studies reported conflicting connectivity patterns within the default mode network (DMN) and sensorimotor cortico-striato-thalamo-cortical (CSTC) circuitry. Many studies observed decreased resting-state connectivity between the DMN and salience network (SN), implicating the 'triple network model' in OCD. Task-related hyperconnectivity within the DMN-SN and hypoconnectivity between the SN and frontoparietal network suggest OCD-related cognitive inflexibility, potentially due to triple network dysfunction. In conclusion, our review highlights diverse connectivity differences in OCD, revealing complex brain network interplay that contributes to symptom manifestation. However, the presence of conflicting findings underscores the necessity for targeted research to achieve a comprehensive understanding of the pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Efstathia S Gotsis
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Neil W Bailey
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Bernadette M Fitzgibbon
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Paul B Fitzgerald
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| |
Collapse
|
7
|
Kwon H, Ha M, Choi S, Park S, Jang M, Kim M, Kwon JS. Resting-state functional connectivity of amygdala subregions across different symptom subtypes of obsessive-compulsive disorder patients. Neuroimage Clin 2024; 43:103644. [PMID: 39042954 PMCID: PMC11325364 DOI: 10.1016/j.nicl.2024.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
AIM Obsessive-compulsive disorder (OCD) is a heterogeneous condition characterized by distinct symptom subtypes, each with varying pathophysiologies and treatment responses. Recent research has highlighted the role of the amygdala, a brain region that is central to emotion processing, in these variations. However, the role of amygdala subregions with distinct functions has not yet been fully elucidated. In this study, we aimed to clarify the biological mechanisms underlying OCD subtype heterogeneity by investigating the functional connectivity (FC) of amygdala subregions across distinct OCD symptom subtypes. METHODS Resting-state functional magnetic resonance images were obtained from 107 medication-free OCD patients and 110 healthy controls (HCs). Using centromedial, basolateral, and superficial subregions of the bilateral amygdala as seed regions, whole-brain FC was compared between OCD patients and HCs and among patients with different OCD symptom subtypes, which included contamination fear and washing, obsessive (i.e., harm due to injury, aggression, sexual, and religious), and compulsive (i.e., symmetry, ordering, counting, and checking) subtypes. RESULTS Compared to HCs, compulsive-type OCD patients exhibited hypoconnectivity between the left centromedial amygdala (CMA) and bilateral superior frontal gyri. Compared with patients with contamination fear and washing OCD subtypes, patients with compulsive-type OCD showed hypoconnectivity between the left CMA and left frontal cortex. CONCLUSIONS CMA-frontal cortex hypoconnectivity may contribute to the compulsive presentation of OCD through impaired control of behavioral responses to negative emotions. Our findings underscored the potential significance of the distinct neural underpinnings of different OCD manifestations, which could pave the way for more targeted treatment strategies in the future.
Collapse
Affiliation(s)
- Harah Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Moonyoung Jang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Shivakumar AB, Kumari S, Mehak SF, Gangadharan G. Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:773-784. [PMID: 37881551 PMCID: PMC10593884 DOI: 10.1016/j.bpsgos.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods We have addressed this issue in an amyloid-β 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sparsha Kumari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Shi Y, Wang M, Xiao L, Gui L, Zheng W, Bai L, Su B, Li B, Xu Y, Pan W, Zhang J, Wang W. Potential therapeutic mechanism of deep brain stimulation of the nucleus accumbens in obsessive-compulsive disorder. Front Cell Neurosci 2023; 16:1057887. [PMID: 36687525 PMCID: PMC9845878 DOI: 10.3389/fncel.2022.1057887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Deep brain stimulation (DBS) of the nucleus accumbens (NAc) (NAc-DBS) is an effective solution to refractory obsessive-compulsive disorder (OCD). However, evidence for the neurobiological mechanisms of OCD and the effect of NAc-DBS is still lacking. One hypothesis is that the electrophysiological activities in the NAc are modulated by DBS, and another hypothesis is that the activities of neurotransmitters in the NAc are influenced by DBS. To investigate these potential alterations, rats with quinpirole (QNP)- induced OCD were treated with DBS of the core part of NAc. Then, extracellular spikes (SPK) and local field potentials (LFP) in the NAc were recorded, and the levels of relevant neurotransmitters and related proteins were measured. Analysis of SPK revealed that the firing rate was decreased and the firing pattern was changed after NAc-DBS, and analysis of LFP showed that overall power spectral density (PSD) levels were reduced after NAc-DBS. Additionally, we found that the relative powers of the theta band, alpha band and beta band were increased in OCD status, while the relative powers of the delta band and gamma band were decreased. This pathological pattern of power distribution was reformed by NAc-DBS. Furthermore, we found that the local levels of monoamines [dopamine (DA) and serotonin (5-HT)] and amino acids [glutamate (Glu) and gamma-aminobutyric acid (GABA)] in the NAc were increased in OCD status, and that the expression of the two types of DA receptors in the NAc exhibited an opposite change. These abnormalities could be reversed by NAc-DBS. These findings provide a more comprehensive understanding about the function of the NAc in the pathophysiology of OCD and provide more detailed evidence for the potential effect of NAc-DBS.
Collapse
Affiliation(s)
- Yifeng Shi
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luolan Gui
- Laboratory of Clinical Proteomics and Metabolomics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Institutes for Systems Genetics, Sichuan University, Chengdu, Sichuan, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Institutes for Systems Genetics, Sichuan University, Chengdu, Sichuan, China
| | - Lin Bai
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Su
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Wei Wang,
| |
Collapse
|
10
|
Kim A, Ha M, Kim T, Park S, Lho SK, Moon SY, Kim M, Kwon JS. Triple-Network Dysconnectivity in Patients With First-Episode Psychosis and Individuals at Clinical High Risk for Psychosis. Psychiatry Investig 2022; 19:1037-1045. [PMID: 36588438 PMCID: PMC9806514 DOI: 10.30773/pi.2022.0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE In the triple-network model, the salience network (SN) plays a crucial role in switching between the default-mode network (DMN) and the central executive network (CEN). Aberrant patterns of triple-network connectivity have been reported in schizophrenia patients, while findings have been less consistent for patients in the early stages of psychotic disorders. Thus, the present study examined the connectivity among the SN, DMN, and CEN in first-episode psychosis (FEP) patients and individuals at clinical high risk (CHR) for psychosis. METHODS Thirty-nine patients with FEP, 78 patients with CHR for psychosis, and 110 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. We compared the SN, DMN, and CEN connectivity patterns of the three groups. The role of the SN in networks with significant connectivity differences was examined by mediation analysis. RESULTS FEP patients showed lower SN-DMN and SN-CEN (cluster-level F=5.83, false discovery rate [FDR] corrected-p=0.001) connectivity than HCs. There was lower SN-DMN connectivity (cluster-level F=3.06, FDR corrected-p=0.053) at a trend level in CHR subjects compared to HCs. Between HCs and FEP patients, mediation analysis showed that SN-DMN connectivity was a mediator between group and SN-CEN connectivity. Additionally, SN-CEN connectivity functioned as a mediator between group and SN-DMN connectivity. CONCLUSION Aberrant connectivity between the SN and DMN/CEN suggests disrupted network switching in FEP patients, although CHR subjects showed trend-level SN-DMN dysconnectivity. Our findings suggest that dysfunctional triple-network dynamics centered on the SN can appear in patients in the early stages of psychotic disorders.
Collapse
Affiliation(s)
- Ahra Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Psychiatry, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
11
|
Li P, Cheng J, Fan Q, Lin L, Zhou S, Gao J, Tang Y, Yuan T, Wang Z. The functional connectivity predictor of therapeutic effect of continuous theta burst stimulation on obsessive-compulsive disorder: A preliminary study. J Affect Disord 2022; 311:231-238. [PMID: 35605703 DOI: 10.1016/j.jad.2022.05.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the efficacy of continuous theta burst stimulation (cTBS) on the bilateral supplementary motor area (SMA) among patients with obsessive-compulsive disorder (OCD) and to explore the potential predictors of cTBS outcome based on neuroimaging. METHODS 29 OCD patients and 29 healthy controls (HCs) were enrolled in this pilot study. Twenty consecutive cTBS intervention targeting at bilateral SMA was applied. MRI scan was carried out before cTBS and 15 regions in the executive control and sensorimotor network were chosen and analyzed using MATLAB, DPABI, and SPM12. RESULTS 11 out of 29 patients responded to cTBS (37.93%), and the clinical symptom of OCD patients was significantly relieved after receiving regular cTBS. Also, the FC between Cerebelum_Crus2_L and Frontal_Inf_Tri_L of OCD patients showed positive prognosis for the efficacy of cTBS, with the area under the curve (AUC) of 0.85 (95% confidence interval: 0.718-0.989, p = 0.002). None of the patients had any serious adverse event. CONCLUSION cTBS intervention on bilateral SMA can significantly improve the symptoms of medicated OCD patients with moderate severity. And the pretherapy FC could be a valuable potential predictor of the cTBS treatment outcome among OCD patients.
Collapse
Affiliation(s)
- Puyu Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jiayue Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Liangjun Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuangyi Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jian Gao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai, PR China.
| |
Collapse
|
12
|
Endres D, Domschke K, Schiele MA. [Neurobiology of obsessive-compulsive disorder]. DER NERVENARZT 2022; 93:670-677. [PMID: 35725830 DOI: 10.1007/s00115-022-01331-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a frequent mental disorder that leads to an enormous impairment in the quality of life. Cognitive-behavioral explanatory approaches are well established. Scientific research on the underlying neurobiology has increased in recent years. OBJECTIVE This article reviews current research findings and the etiopathophysiological considerations derived from them. MATERIAL AND METHODS An overview of the genetic, epigenetic, structural, functional, and neurochemical alterations in OCD is presented. Additionally, the possible organic causes that can trigger obsessive-compulsive symptoms are summarized. RESULTS With respect to OCD a moderate heritability is assumed. On a molecular level, genetic variants and epigenetic variations in the serotonergic, dopaminergic and glutamatergic systems in particular seem to play a role in the pathogenesis of the disease and affect the corresponding neurotransmission. Cortico-striatal-thalamo-cortical loops are neurochemically modulated, and predominance of the activity of the direct excitatory pathway is hypothesized in OCD. Recent research also provides evidence for the involvement of frontoparietal and frontolimbic networks. Obsessive-compulsive symptoms may also have different organic (e.g., immunological) causes. CONCLUSION The neurobiology of OCD is partially understood and categorized in an integrative neurobiological model. For the rare secondary immunological causes the concept of "autoimmune OCD" has recently been proposed. The better understanding of the neurobiology of OCD might allow for individualized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Dominique Endres
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hauptstr. 5, 79104, Freiburg, Deutschland.
| | - Katharina Domschke
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hauptstr. 5, 79104, Freiburg, Deutschland.,Center for Basics in NeuroModulation, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland
| | - Miriam A Schiele
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hauptstr. 5, 79104, Freiburg, Deutschland
| |
Collapse
|
13
|
Gupta R, Mehan S, Sethi P, Prajapati A, Alshammari A, Alharbi M, Al-Mazroua HA, Narula AS. Smo-Shh Agonist Purmorphamine Prevents Neurobehavioral and Neurochemical Defects in 8-OH-DPAT-Induced Experimental Model of Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12030342. [PMID: 35326298 PMCID: PMC8946713 DOI: 10.3390/brainsci12030342] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Obsessive-compulsive disorder is a mental disorder characterized by repetitive, unwanted thoughts and behavior due to abnormal neuronal corticostriatal-thalamocortical pathway and other neurochemical changes. Purmorphamine is a smoothened-sonic-hedgehog agonist that has a protective effect against many neurological diseases due to its role in maintaining functional connectivity during CNS development and its anti-inflammatory and antioxidant properties. As part of our current research, we investigated the neuroprotective effects of PUR against behavioral and neurochemical changes in 8-hydroxy-2-(di-n-propylamino)-tetralin-induced obsessive-compulsive disorder in rats. Additionally, the effect of PUR was compared with the standard drug for OCD, i.e., fluvoxamine. The intra-dorsal raphe-nucleus injection of 8-OH-DPAT in rats for seven days significantly showed OCD-like repetitive and compulsive behavior along with increased oxidative stress, inflammation, apoptosis, as well as neurotransmitter imbalance. These alterations were dose-dependently attenuated by long-term purmorphamine treatment at 5 mg/kg and 10 mg/kg i.p. In this study, we assessed the level of various neurochemical parameters in different biological samples, including brain homogenate, blood plasma, and CSF, to check the drug’s effect centrally and peripherally. These effects were comparable to the standard oral treatment withfluvoxamine at 10 mg/kg. However, when fluvoxamine was given in combination with purmorphamine, there was a more significant restoration of these alterations than the individualtreatmentswithfluvoxamine and purmorphamine. All the above findings demonstrate that the neuroprotective effect of purmorphamine in OCD can be strong evidence for developing a new therapeutic target for treating and managing OCD.
Collapse
Affiliation(s)
- Ria Gupta
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
- Correspondence:
| | - Pranshul Sethi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Aradhana Prajapati
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| |
Collapse
|
14
|
Liu J, Cao L, Li H, Gao Y, Bu X, Liang K, Bao W, Zhang S, Qiu H, Li X, Hu X, Lu L, Zhang L, Hu X, Huang X, Gong Q. Abnormal resting-state functional connectivity in patients with obsessive-compulsive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 135:104574. [DOI: 10.1016/j.neubiorev.2022.104574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
|
15
|
Kim M, Shin W, Lee TH, Kim T, Hwang WJ, Kwon JS. Eye movement as a biomarker of impaired organizational strategies during visual memory encoding in obsessive-compulsive disorder. Sci Rep 2021; 11:18402. [PMID: 34526587 PMCID: PMC8443551 DOI: 10.1038/s41598-021-97885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/31/2021] [Indexed: 12/01/2022] Open
Abstract
The symptoms of obsessive–compulsive disorder (OCD) are largely related to impaired executive functioning due to frontostriatal dysfunction. To better treat OCD, the development of biomarkers to bridge the gap between the symptomatic-cognitive phenotype and brain abnormalities is warranted. Therefore, we aimed to identify biomarkers of impaired organizational strategies during visual encoding processes in OCD patients by developing an eye tracking-based Rey–Osterrieth complex figure test (RCFT). In 104 OCD patients and 114 healthy controls (HCs), eye movements were recorded during memorization of the RCFT figure, and organizational scores were evaluated. Kullback–Leibler divergence (KLD) scores were calculated to evaluate the distance between a participant’s eye gaze distribution and a hypothetical uniform distribution within the RCFT figure. Narrower gaze distributions within the RCFT figure, which yielded higher KLD scores, indicated that the participant was more obsessed with detail and had less organizational strategy. The OCD patients showed lower organizational scores than the HCs. Although no group differences in KLD scores were noted, KLD scores were significantly associated with organization T scores in the OCD group. The current study findings suggest that eye tracking biomarkers of visual memory encoding provide a rapidly determined index of executive functioning, such as organizational strategies, in OCD patients.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-no, Chongno-gu, Seoul, 03080, Republic of Korea
| | - Woncheol Shin
- Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tak Hyung Lee
- Healthcare Sensor Laboratory, Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-no, Chongno-gu, Seoul, 03080, Republic of Korea. .,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Shephard E, Stern ER, van den Heuvel OA, Costa DL, Batistuzzo MC, Godoy PB, Lopes AC, Brunoni AR, Hoexter MQ, Shavitt RG, Reddy JY, Lochner C, Stein DJ, Simpson HB, Miguel EC. Toward a neurocircuit-based taxonomy to guide treatment of obsessive-compulsive disorder. Mol Psychiatry 2021; 26:4583-4604. [PMID: 33414496 PMCID: PMC8260628 DOI: 10.1038/s41380-020-01007-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
An important challenge in mental health research is to translate findings from cognitive neuroscience and neuroimaging research into effective treatments that target the neurobiological alterations involved in psychiatric symptoms. To address this challenge, in this review we propose a heuristic neurocircuit-based taxonomy to guide the treatment of obsessive-compulsive disorder (OCD). We do this by integrating information from several sources. First, we provide case vignettes in which patients with OCD describe their symptoms and discuss different clinical profiles in the phenotypic expression of the condition. Second, we link variations in these clinical profiles to underlying neurocircuit dysfunctions, drawing on findings from neuropsychological and neuroimaging studies in OCD. Third, we consider behavioral, pharmacological, and neuromodulatory treatments that could target those specific neurocircuit dysfunctions. Finally, we suggest methods of testing this neurocircuit-based taxonomy as well as important limitations to this approach that should be considered in future research.
Collapse
Affiliation(s)
- Elizabeth Shephard
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil. .,Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.
| | - Emily R. Stern
- Department of Psychiatry, The New York University School of Medicine, New York, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Odile A. van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Daniel L.C. Costa
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo C. Batistuzzo
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Priscilla B.G. Godoy
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio C. Lopes
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Andre R. Brunoni
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Q. Hoexter
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roseli G. Shavitt
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Janardhan Y.C Reddy
- Department of Psychiatry OCD Clinic, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Christine Lochner
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - H. Blair Simpson
- Center for OCD and Related Disorders, New York State Psychiatric Institute and the Department of Psychiatry, Columbia University Irving Medical Center, New York New York
| | - Euripedes C. Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Eroglu FC, Gediz BS, Ozturk M, Kazancı B. Association Between Dry Eye Disease and Newly Diagnosed Obsessive-Compulsive Disorder. Cornea 2021; 40:817-821. [PMID: 33859092 DOI: 10.1097/ico.0000000000002724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the association between dry eye disease and patients with newly diagnosed obsessive-compulsive disorder (OCD). METHODS Thirty treatment-naive patients with OCD and 30 healthy controls were included in this prospective study. The Ocular Surface Disease Index, tear breakup time, Schirmer I test, corneal and conjunctival staining grade (Oxford scale), and neutrophil-to-leucocyte ratio values were obtained for all participants. RESULTS The comparison of the patients with OCD and healthy controls showed significantly higher values in Ocular Surface Disease Index (34.8 vs. 20.8, P = 0.001), corneal Oxford scoring (0.9 vs. 0.6, P = 0.02), and conjunctival Oxford scoring (0.8 vs. 0.5, P = 0.04), with consistently lower values in the Schirmer I test (15.7 vs. 18.8, P = 0.043) and tear breakup time (9.1 vs. 12.9, P = 0.001). The mean neutrophil-to-leucocyte ratio values were significantly higher in the OCD group compared with the controls (2.4 ± 0.9 vs. 1.6 ± 0.4, respectively; P = 0.001). CONCLUSIONS Our study showed a relation between dry eye disease and patients with newly diagnosed OCD who were not using any psychiatric drug. Our findings suggest that inflammation, which plays an important role in the pathogenesis of both diseases, may be responsible for this relationship.
Collapse
Affiliation(s)
- Fatma Corak Eroglu
- Department of Ophthalmology, University of Health Science, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey; and
| | - Berrak Sekeryapan Gediz
- Department of Ophthalmology, University of Health Science, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey; and
| | - Mehmet Ozturk
- Department of Psychiatry, University of Health Science, Ankara Training and Research Hospital, Ankara, Turkey
| | - Burcu Kazancı
- Department of Ophthalmology, University of Health Science, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey; and
| |
Collapse
|
18
|
Shi TC, Pagliaccio D, Cyr M, Simpson HB, Marsh R. Network-based functional connectivity predicts response to exposure therapy in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 2021; 46:1035-1044. [PMID: 33446895 PMCID: PMC8115173 DOI: 10.1038/s41386-020-00929-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Obsessive-compulsive disorder (OCD) is associated with alterations in cortico-striato-thalamo-cortical brain networks, but some resting-state functional magnetic resonance imaging studies report more diffuse alterations in brain connectivity. Few studies have assessed functional connectivity within or between networks across the whole brain in unmedicated OCD patients or how patterns of connectivity predict response to exposure and ritual prevention (EX/RP) therapy, a first-line treatment for OCD. Herein, multiband resting-state functional MRI scans were collected from unmedicated, adult patients with OCD (n = 41) and healthy participants (n = 36); OCD patients were then offered twice weekly EX/RP (17 sessions). A whole-brain-network-based statistic approach was used to identify group differences in resting-state connectivity. We detected altered pre-treatment functional connectivity between task-positive regions in the temporal gyri (middle and superior) and regions of the cingulo-opercular and default networks in individuals with OCD. Signal extraction was performed using a reconstruction independent components analysis and isolated two independent subcomponents (IC1 and IC2) within this altered connectivity. In the OCD group, linear mixed-effects models tested whether IC1 or IC2 values predicted the slope of change in Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores across EX/RP treatment. Lower (more different from controls) IC2 score significantly predicted greater symptom reduction with EX/RP (Bonferroni-corrected p = 0.002). Collectively, these findings suggest that an altered balance between task-positive and task-negative regions centered around temporal gyri may contribute to difficulty controlling intrusive thoughts or urges to perform ritualistic behaviors.
Collapse
Affiliation(s)
- Tracey C. Shi
- grid.413734.60000 0000 8499 1112Department of Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA
| | - David Pagliaccio
- grid.413734.60000 0000 8499 1112Department of Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA
| | - Marilyn Cyr
- grid.413734.60000 0000 8499 1112Department of Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA
| | - H. Blair Simpson
- grid.413734.60000 0000 8499 1112Department of Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA
| | - Rachel Marsh
- grid.413734.60000 0000 8499 1112Department of Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, Unit 74, New York, NY 10032 USA
| |
Collapse
|
19
|
Abstract
Effective pharmacological and psychotherapeutic treatments are well established for obsessive-compulsive disorder (OCD). Serotonin reuptake inhibitors (SRIs) are first-line treatment and are of benefit to about half of patients. Augmentation of SRI treatment with low-dose neuroleptics is an evidence-based second-line strategy. Specialty psychotherapy is also used as both first-line and second-line treatment and can benefit many. However, a substantial number of patients do not respond to these treatments. New alternatives are urgently needed. This review summarizes evidence for these established pharmacotherapeutic strategies, and for others that have been investigated in refractory disease but are not supported by the same level of evidence. We focus on three neurotransmitter systems in the brain: serotonin, dopamine, and glutamate. We summarize evidence from genetic, neuroimaging, animal model, and other lines of investigation that probe these three systems in patients with OCD. We also review recent work on predictors of response to current treatments. While many studies suggest abnormalities that may provide insight into the pathophysiology of the disorder, most studies have been small, and non-replication of reported findings has been common. Nevertheless, the gradual accrual of evidence for neurotransmitter dysregulation may in time lead the way to new pharmacological strategies.
Collapse
|
20
|
Abstract
In the last 20 years, functional magnetic resonance imaging (fMRI) has been extensively used to investigate system-level abnormalities in the brain of patients with obsessive-compulsive disorder (OCD). In this chapter, we start by reviewing the studies assessing regional brain differences between patients with OCD and healthy controls in task-based fMRI. Specifically, we review studies on executive functioning and emotional processing, protocols in which these patients have been described to show alterations at the behavioral level, as well as research using symptom provocation protocols. Next, we review studies on brain connectivity alterations, focusing on resting-state studies evaluating disruptions in fronto-subcortical functional connectivity and in cortical networks. Likewise, we also review research on effective connectivity, which, different from functional connectivity, allows for ascertaining the directionality of inter-regional connectivity alterations. We conclude by reviewing the most significant findings on a topic of translational impact, such as the use of different fMRI measurements to predict response across a variety of treatment approaches. Overall, results suggest that there exists a pattern of regions, involving, but not limited to, different nodes of the cortico-striatal-thalamo-cortical circuits, showing robust evidence of functional alteration across studies, although the nature of the alterations critically depends on the specific tasks and their particular demands. Moreover, such findings have been, to date, poorly translated into clinical practice. It is suggested that this may be partially accounted for by the difficulty to integrate into a common framework results obtained under a wide variety of analysis approaches.
Collapse
Affiliation(s)
- Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain. .,Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Yao JQ, Liu C, Jin ZL, Liu YQ, Yin YY, Fang XX, Ran YH, Zhang LM, Li YF. Serotonergic transmission is required for the anxiolytic-like behavioral effects of YL-IPA08, a selective ligand targeting TSPO. Neuropharmacology 2020; 178:108230. [PMID: 32693005 DOI: 10.1016/j.neuropharm.2020.108230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are the most prevalent group of mental disorders globally, leading to considerable losses in health, functioning and increase of medical costs. Till now, the search for novel pharmacological treatments is driven by the growing medical need to improve on the effectiveness and the side effect profile of existing drugs. In central nervous system, the mitochondrially located translocator protein (18 kDa, TSPO) serves as the rate-limiting step for neurosteroidogenesis and influences GABAergic transmission. Since 5-HT is one of the most comprehensively studied neurotransmitter systems in the anxiety field, in the present study, we want to investigate whether 5-HT system is involved in the anxiolytic-like effects of YL-IPA08, a novel TSPO ligand designed and synthesized at our institute. Our data showed that YL-IPA08 could potentiate the 5-HTP-induced head-twitch response, and the anxiolytic-like effect of YL-IPA08 was abolished by pCPA or 5,7-DHT pretreatment in mice. Furthermore, we found that YL-IPA08 increased the extracellular levels of 5-HT in the rat ventral hippocampus in freely moving rat using the rapid and validated HPLC coupled with microdialysis. In addition, 5-HT level was positively correlated with the level of allopregnanolone. The above results suggest that 5-HT neurotransmission may play a critical role in the anxiolytic-like effects of YL-IPA08.
Collapse
Affiliation(s)
- Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Chang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Nanlou Pharmacy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zeng-Liang Jin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China; School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan-Qin Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Xin-Xin Fang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
22
|
Bär KJ, Köhler S, Cruz FDL, Schumann A, Zepf FD, Wagner G. Functional consequences of acute tryptophan depletion on raphe nuclei connectivity and network organization in healthy women. Neuroimage 2019; 207:116362. [PMID: 31743788 DOI: 10.1016/j.neuroimage.2019.116362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Previous research on central nervous serotonin (5-HT) function provided evidence for a substantial involvement of 5-HT in the regulation of brain circuitries associated with cognitive and affective processing. The underlying neural networks comprise core subcortical/cortical regions such as amygdala and medial prefrontal cortex, which are assumed to be modulated amongst others by 5-HT. Beside the use of antidepressants, acute tryptophan depletion (ATD) is a widely accepted technique to manipulate of 5-HT synthesis and its respective metabolites in humans by means of a dietary and non-pharmacological tool. We used a double-blind, randomized, cross-over design with two experimental challenge conditions, i.e. ATD and tryptophan (TRP) supplementation (TRYP+) serving as a control. The aim was to perturb 5-HT synthesis and to detect its impact on brain functional connectivity (FC) of the upper serotonergic raphe nuclei, the amygdala and the ventromedial prefrontal cortex as well as on network organization using resting state fMRI. 30 healthy adult female participants (age: M = 24.5 ± 4.4 yrs) were included in the final analysis. ATD resulted in a 90% decrease of TRP in the serum relative to baseline. Compared to TRYP + for the ATD condition a significantly lower FC of the raphe nucleus to the frontopolar cortex was detected, as well as greater functional coupling between the right amygdala and the ventromedial prefrontal cortex. FC of the raphe nucleus correlated significantly with the magnitude of TRP changes for both challenge conditions (ATD & TRYP+). Network-based statistical analysis using time series from 260 independent anatomical ROIs revealed significantly greater FC after ATD compared to TRYP+ in several brain regions being part of the default-mode (DMN) and the executive-control networks (ECN), but also of salience or visual networks. Finally, we observed an impact of ATD on the rich-club organization in terms of decreased rich-club coefficients compared to TRYP+. In summary we could confirm previous findings that the putative decrease in brain 5-HT synthesis via ATD significantly alters FC of the raphe nuclei as well as of specific subcortical/cortical regions involved in affective, but also in cognitive processes. Moreover, an ATD-effect on the so-called rich-club organization of some nodes with the high degree was demonstrated. This may indicate effects of brain 5-HT on the integration of information flow from several brain networks.
Collapse
Affiliation(s)
- Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Stefanie Köhler
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Feliberto de la Cruz
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Florian D Zepf
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, 07743, Jena, Germany
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| |
Collapse
|