1
|
Ren P, Bao H, Wang S, Wang Y, Bai Y, Lai J, Yi L, Liu Q, Li W, Zhang X, Sun L, Liu Q, Cui X, Zhang X, Liang P, Liang X. Multi-scale brain attributes contribute to the distribution of diffuse glioma subtypes. Int J Cancer 2024; 155:1670-1683. [PMID: 38949756 DOI: 10.1002/ijc.35068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Gliomas are primary brain tumors and are among the most malignant types. Adult-type diffuse gliomas can be classified based on their histological and molecular signatures as IDH-wildtype glioblastoma, IDH-mutant astrocytoma, and IDH-mutant and 1p/19q-codeleted oligodendroglioma. Recent studies have shown that each subtype of glioma has its own specific distribution pattern. However, the mechanisms underlying the specific distributions of glioma subtypes are not entirely clear despite partial explanations such as cell origin. To investigate the impact of multi-scale brain attributes on glioma distribution, we constructed cumulative frequency maps for diffuse glioma subtypes based on T1w structural images and evaluated the spatial correlation between tumor frequency and diverse brain attributes, including postmortem gene expression, functional connectivity metrics, cerebral perfusion, glucose metabolism, and neurotransmitter signaling. Regression models were constructed to evaluate the contribution of these factors to the anatomic distribution of different glioma subtypes. Our findings revealed that the three different subtypes of gliomas had distinct distribution patterns, showing spatial preferences toward different brain environmental attributes. Glioblastomas were especially likely to occur in regions enriched with synapse-related pathways and diverse neurotransmitter receptors. Astrocytomas and oligodendrogliomas preferentially occurred in areas enriched with genes associated with neutrophil-mediated immune responses. The functional network characteristics and neurotransmitter distribution also contributed to oligodendroglioma distribution. Our results suggest that different brain transcriptomic, neurotransmitter, and connectomic attributes are the factors that determine the specific distributions of glioma subtypes. These findings highlight the importance of bridging diverse scales of biological organization when studying neurological dysfunction.
Collapse
Affiliation(s)
- Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Wang
- Medical Imaging Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Bai
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiacheng Lai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenting Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyu Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Sun
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qiuyi Liu
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xuehua Cui
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiushi Zhang
- Medical Imaging Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
2
|
Lin YC, Wu T, Wu CL. The Neural Correlations of Olfactory Associative Reward Memories in Drosophila. Cells 2024; 13:1716. [PMID: 39451234 PMCID: PMC11506542 DOI: 10.3390/cells13201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Advancing treatment to resolve human cognitive disorders requires a comprehensive understanding of the molecular signaling pathways underlying learning and memory. While most organ systems evolved to maintain homeostasis, the brain developed the capacity to perceive and adapt to environmental stimuli through the continuous modification of interactions within a gene network functioning within a broader neural network. This distinctive characteristic enables significant neural plasticity, but complicates experimental investigations. A thorough examination of the mechanisms underlying behavioral plasticity must integrate multiple levels of biological organization, encompassing genetic pathways within individual neurons, interactions among neural networks providing feedback on gene expression, and observable phenotypic behaviors. Model organisms, such as Drosophila melanogaster, which possess more simple and manipulable nervous systems and genomes than mammals, facilitate such investigations. The evolutionary conservation of behavioral phenotypes and the associated genetics and neural systems indicates that insights gained from flies are pertinent to understanding human cognition. Rather than providing a comprehensive review of the entire field of Drosophila memory research, we focus on olfactory associative reward memories and their related neural circuitry in fly brains, with the objective of elucidating the underlying neural mechanisms, thereby advancing our understanding of brain mechanisms linked to cognitive systems.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
3
|
Seblani M, Brezun JM, Féron F, Hoquet T. Rethinking plasticity: Analysing the concept of "destructive plasticity" in the light of neuroscience definitions. Eur J Neurosci 2024; 60:4798-4812. [PMID: 39092545 DOI: 10.1111/ejn.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
As a multilevel and multidisciplinary field, neuroscience is designed to interact with various branches of natural and applied sciences as well as with humanities and philosophy. The continental tradition in philosophy, particularly over the past 20 years, tended to establish strong connections with biology and neuroscience findings. This cross fertilization can however be impeded by conceptual intricacies, such as those surrounding the concept of plasticity. The use of this concept has broadened as scientists applied it to explore an ever-growing range of biological phenomena. Here, we examine the consequences of this ambiguity in an interdisciplinary context through the analysis of the concept of "destructive plasticity" in the philosophical writings of Catherine Malabou. The term "destructive plasticity" was coined by Malabou in 2009 to refer to all processes leading to psycho-cognitive and emotional alterations following traumatic or nontraumatic brain injuries or resulting from neurodevelopmental disorders. By comparing it with the neuroscientific definitions of plasticity, we discuss the epistemological obstacles and possibilities related to the integration of this concept into neuroscience. Improving interdisciplinary exchanges requires an advanced and sophisticated manipulation of neurobiological concepts. These concepts are not only intended to guide research programmes within neuroscience but also to organize and frame the dialogue between different theoretical backgrounds.
Collapse
Affiliation(s)
- Mostafa Seblani
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| | - Jean-Michel Brezun
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
| | - François Féron
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
| | - Thierry Hoquet
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| |
Collapse
|
4
|
Yeh CH, Lin PC, Tseng RY, Chao YP, Wu CT, Chou TL, Chen RS, Gau SSF, Ni HC, Lin HY. Lack of effects of eight-week left dorsolateral prefrontal theta burst stimulation on white matter macro/microstructure and connection in autism. Brain Imaging Behav 2024; 18:794-807. [PMID: 38492129 DOI: 10.1007/s11682-024-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Whether brain stimulation could modulate brain structure in autism remains unknown. This study explored the impact of continuous theta burst stimulation (cTBS) over the left dorsolateral prefrontal cortex (DLPFC) on white matter macro/microstructure in intellectually able children and emerging adults with autism. Sixty autistic participants were randomized (30 active) and received active or sham cTBS for eight weeks twice per week, 16 total sessions using a double-blind (participant-, rater-, analyst-blinded) design. All participants received high-angular resolution diffusion MR imaging at baseline and week 8. Twenty-eight participants in the active group and twenty-seven in the sham group with good imaging quality entered the final analysis. With longitudinal fixel-based analysis and network-based statistics, we found no significant difference between the active and sham groups in changes of white matter macro/microstructure and connections following cTBS. In addition, we found no association between baseline white matter macro/microstructure and autistic symptom changes from baseline to week 8 in the active group. In conclusion, we did not find a significant impact of left DLPFC cTBS on white matter macro/microstructure and connections in children and emerging adults with autism. These findings need to be interpreted in the context that the current intellectually able cohort in a single university hospital site limits the generalizability. Future studies are required to investigate if higher stimulation intensities and/or doses, other personal factors, or rTMS parameters might confer significant brain structural changes visible on MRI in ASD.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Po-Chun Lin
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Rung-Yu Tseng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Scott DN, Mukherjee A, Nassar MR, Halassa MM. Thalamocortical architectures for flexible cognition and efficient learning. Trends Cogn Sci 2024; 28:739-756. [PMID: 38886139 PMCID: PMC11305962 DOI: 10.1016/j.tics.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The brain exhibits a remarkable ability to learn and execute context-appropriate behaviors. How it achieves such flexibility, without sacrificing learning efficiency, is an important open question. Neuroscience, psychology, and engineering suggest that reusing and repurposing computations are part of the answer. Here, we review evidence that thalamocortical architectures may have evolved to facilitate these objectives of flexibility and efficiency by coordinating distributed computations. Recent work suggests that distributed prefrontal cortical networks compute with flexible codes, and that the mediodorsal thalamus provides regularization to promote efficient reuse. Thalamocortical interactions resemble hierarchical Bayesian computations, and their network implementation can be related to existing gating, synchronization, and hub theories of thalamic function. By reviewing recent findings and providing a novel synthesis, we highlight key research horizons integrating computation, cognition, and systems neuroscience.
Collapse
Affiliation(s)
- Daniel N Scott
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Arghya Mukherjee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Latifi S, Carmichael ST. The emergence of multiscale connectomics-based approaches in stroke recovery. Trends Neurosci 2024; 47:303-318. [PMID: 38402008 DOI: 10.1016/j.tins.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/26/2024]
Abstract
Stroke is a leading cause of adult disability. Understanding stroke damage and recovery requires deciphering changes in complex brain networks across different spatiotemporal scales. While recent developments in brain readout technologies and progress in complex network modeling have revolutionized current understanding of the effects of stroke on brain networks at a macroscale, reorganization of smaller scale brain networks remains incompletely understood. In this review, we use a conceptual framework of graph theory to define brain networks from nano- to macroscales. Highlighting stroke-related brain connectivity studies at multiple scales, we argue that multiscale connectomics-based approaches may provide new routes to better evaluate brain structural and functional remapping after stroke and during recovery.
Collapse
Affiliation(s)
- Shahrzad Latifi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Wilbrecht L, Davidow JY. Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nat Rev Neurosci 2024; 25:176-194. [PMID: 38263216 DOI: 10.1038/s41583-023-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Juliet Y Davidow
- Department of Psychology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Santander EA, Bravo G, Chang-Halabi Y, Olguín-Orellana GJ, Naulin PA, Barrera MJ, Montenegro FA, Barrera NP. The Adsorption of P2X2 Receptors Interacting with IgG Antibodies Revealed by Combined AFM Imaging and Mechanical Simulation. Int J Mol Sci 2023; 25:336. [PMID: 38203505 PMCID: PMC10778698 DOI: 10.3390/ijms25010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The adsorption of proteins onto surfaces significantly impacts biomaterials, medical devices, and biological processes. This study aims to provide insights into the irreversible adsorption process of multiprotein complexes, particularly focusing on the interaction between anti-His6 IgG antibodies and the His6-tagged P2X2 receptor. Traditional approaches to understanding protein adsorption have centered around kinetic and thermodynamic models, often examining individual proteins and surface coverage, typically through Molecular Dynamics (MD) simulations. In this research, we introduce a computational approach employing Autodesk Maya 3D software for the investigation of multiprotein complexes' adsorption behavior. Utilizing Atomic Force Microscopy (AFM) imaging and Maya 3D-based mechanical simulations, our study yields real-time structural and kinetic observations. Our combined experimental and computational findings reveal that the P2X2 receptor-IgG antibody complex likely undergoes absorption in an 'extended' configuration. Whereas the P2X2 receptor is less adsorbed once is complexed to the IgG antibody compared to its individual state, the opposite is observed for the antibody. This insight enhances our understanding of the role of protein-protein interactions in the process of protein adsorption.
Collapse
Affiliation(s)
- Eduardo A. Santander
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Graciela Bravo
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Yuan Chang-Halabi
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Gabriel J. Olguín-Orellana
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Pamela A. Naulin
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Mario J. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Felipe A. Montenegro
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Nelson P. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| |
Collapse
|
10
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|