1
|
Martz J, Shelton MA, Langen TJ, Srinivasan S, Seney ML, Kentner AC. Peripubertal antagonism of corticotropin-releasing factor receptor 1 results in sustained changes in behavioral plasticity and the transcriptomic profile of the amygdala. Neuroscience 2025; 567:261-270. [PMID: 39798835 DOI: 10.1016/j.neuroscience.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered the CRFR1 antagonist (CRFR1a) R121919 to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or prepulse inhibition (PPI). Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for persistent effects of the adolescent treatment. Males continued to experience deficits in PPI while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males. In females, pathways related to central nervous system myelination, cell junction organization, and glutamatergic regulation of synaptic transmission were affected. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for developing adolescents.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Tristen J Langen
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Sakhi Srinivasan
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States.
| |
Collapse
|
2
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Méndez N, Corvalan F, Halabi D, Vasquez A, Vergara K, Noriega H, Ehrenfeld P, Sanhueza K, Seron-Ferre M, Valenzuela GJ, Torres-Farfan C. Sex-Specific Metabolic Effects of Gestational Chronodisruption and Maternal Melatonin Supplementation in Rat Offspring. J Pineal Res 2024; 76:e70015. [PMID: 39648694 DOI: 10.1111/jpi.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
Gestational chronodisruption, increasingly common due to irregular light exposure, disrupts maternal-fetal circadian signaling, leading to long-term health issues in offspring. We utilized a chronic photoperiod shifting model (CPS) in pregnant rats to induce chronodisruption and investigated the potential mitigating effects of maternal melatonin supplementation (CPS + Mel). Male and female offspring were evaluated at 3 ages (90, 200, and 400 days of age) for metabolic profiles, hormonal responses, cytokine levels, and adipose tissue activity. Our findings indicate that gestational chronodisruption leads to increased birth weight by approximately 15% in male and female offspring and increased obesity prevalence in male offspring, accompanied by a 30% reduction in nocturnal melatonin levels and a significant disruption in corticosterone rhythms. Male CPS offspring also exhibited decreased lipolytic activity in white adipose tissue, with a 25% reduction in glycerol release compared to controls, indicating impaired metabolic flexibility. In contrast, female offspring, while less affected metabolically, showed a 25% increase in adipose tissue lipolytic activity and higher levels of pro-inflammatory cytokines such as IL-6 (increased by 40%). Scheduled melatonin supplementation in chronodisrupted mothers, administered throughout gestation, effectively normalized birth weights in both sexes, reduced obesity prevalence in males by 18%, and improved lipolytic activity in male offspring, bringing it closer to control levels. In females, melatonin supplementation moderated cytokine levels, reducing IL-6 by 35% and restoring IL-10 levels to near-control values. These results highlight the importance of sex-specific prenatal interventions, particularly the role of melatonin in preventing disruptions to fetal metabolic and inflammatory pathways caused by gestational chronodisruption. Melatonin treatment would prevent maternal circadian rhythm misalignment, thereby supporting healthy fetal development. This study opens new avenues for developing targeted prenatal care strategies that align maternal and fetal circadian rhythms, mitigating the long-term health risks associated with chronodisruption during pregnancy.
Collapse
Affiliation(s)
- Natalia Méndez
- Escuela de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Departamento de Ciencias Basicas, Universidad Santo Tomas, Valdivia, Chile
| | - Diego Halabi
- Instituto de Odontoestomatología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Abigail Vasquez
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Hector Noriega
- Instituto de Ingeniería Mecánica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Cellular Pathology Laboratory, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile, Chile
| | - Katiushka Sanhueza
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, Colton, California, USA
| | - Claudia Torres-Farfan
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Pando P, Langen TJ, Kentner AC. Neighborly Influence: Intrauterine position accounts for individual variability in a mouse model of maternal immune activation. Brain Behav Immun 2024; 121:72-73. [PMID: 39043343 PMCID: PMC11380580 DOI: 10.1016/j.bbi.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Penelope Pando
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115, USA
| | - Tristen J Langen
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Miller CN, Li Y, Beier KT, Aoto J. Acute stress causes sex-dependent changes to ventral subiculum synapses, circuitry, and anxiety-like behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606264. [PMID: 39131353 PMCID: PMC11312572 DOI: 10.1101/2024.08.02.606264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Experiencing a single severe stressor is sufficient to drive sexually dimorphic psychiatric disease development. The ventral subiculum (vSUB) emerges as a site where stress may induce sexually dimorphic adaptations due to its sex-specific organization and pivotal role in stress integration. Using a 1-hr acute restraint stress model, we uncover that stress causes a net decrease in vSUB activity in females that is potent, long-lasting, and driven by adrenergic receptor signaling. By contrast, males exhibit a net increase in vSUB activity that is transient and driven by corticosterone signaling. We further identified sex-dependent changes in vSUB output to the bed nucleus of the stria terminalis and in anxiety-like behavior in response to stress. These findings reveal striking changes in psychiatric disease-relevant brain regions and behavior following stress with sex-, cell-type, and synapse-specificity that contribute to our understanding of sex-dependent adaptations that may shape stress-related psychiatric disease risk.
Collapse
Affiliation(s)
- Carley N Miller
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuan Li
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA 92697
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA 92697
- Department of Biomedical Engineering, University of California, Irvine, CA, USA 92697
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA 92697
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Schaer R, Mueller FS, Notter T, Weber-Stadlbauer U, Meyer U. Intrauterine position effects in a mouse model of maternal immune activation. Brain Behav Immun 2024; 120:391-402. [PMID: 38897330 DOI: 10.1016/j.bbi.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.
Collapse
Affiliation(s)
- Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Karadag K, Cimen B, Ertunc M, Sara Y. Does steroid increase LPS-induced sickness behaviors? Neuropsychopharmacology 2024; 49:1203. [PMID: 38491123 PMCID: PMC11224229 DOI: 10.1038/s41386-024-01838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Affiliation(s)
- Kubra Karadag
- Department of Medical Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Bariscan Cimen
- Department of Medical Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Turkey
| | - Mert Ertunc
- Department of Medical Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yildirim Sara
- Department of Medical Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Turkey
| |
Collapse
|