1
|
Tian M, Wei JS, Cheuk ATC, Milewski D, Zhang Z, Kim YY, Chou HC, Liu C, Badr S, Pope EG, Rahmy A, Wu JT, Kelly MC, Wen X, Khan J. CAR T-cells targeting FGFR4 and CD276 simultaneously show potent antitumor effect against childhood rhabdomyosarcoma. Nat Commun 2024; 15:6222. [PMID: 39043633 PMCID: PMC11266617 DOI: 10.1038/s41467-024-50251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cells targeting Fibroblast Growth Factor Receptor 4 (FGFR4), a highly expressed surface tyrosine receptor in rhabdomyosarcoma (RMS), are already in the clinical phase of development, but tumour heterogeneity and suboptimal activation might hamper their potency. Here we report an optimization strategy of the co-stimulatory and targeting properties of a FGFR4 CAR. We replace the CD8 hinge and transmembrane domain and the 4-1BB co-stimulatory domain with those of CD28. The resulting CARs display enhanced anti-tumor activity in several RMS xenograft models except for an aggressive tumour cell line, RMS559. By searching for a direct target of the RMS core-regulatory transcription factor MYOD1, we identify another surface protein, CD276, as a potential target. Bicistronic CARs (BiCisCAR) targeting both FGFR4 and CD276, containing two distinct co-stimulatory domains, have superior prolonged persistent and invigorated anti-tumor activities compared to the optimized FGFR4-specific CAR and the other BiCisCAR with the same 4-1BB co-stimulatory domain. Our study thus lays down the proof-of-principle for a CAR T-cell therapy targeting both FGFR4 and CD276 in RMS.
Collapse
MESH Headings
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Rhabdomyosarcoma/therapy
- Rhabdomyosarcoma/immunology
- Rhabdomyosarcoma/genetics
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Mice
- Immunotherapy, Adoptive/methods
- B7 Antigens/metabolism
- B7 Antigens/immunology
- B7 Antigens/genetics
- MyoD Protein/metabolism
- MyoD Protein/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Child
- Female
- Mice, SCID
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Meijie Tian
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam Tai-Chi Cheuk
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Milewski
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhongmei Zhang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yong Yean Kim
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hsien-Chao Chou
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Sherif Badr
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eleanor G Pope
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdelrahman Rahmy
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jerry T Wu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Gupta AA, Xue W, Harrison DJ, Hawkins DS, Dasgupta R, Wolden S, Shulkin B, Qumseya A, Routh JC, MacDonald T, Feinberg S, Crompton B, Rudzinski ER, Arnold M, Venkatramani R. Addition of temsirolimus to chemotherapy in children, adolescents, and young adults with intermediate-risk rhabdomyosarcoma (ARST1431): a randomised, open-label, phase 3 trial from the Children's Oncology Group. Lancet Oncol 2024; 25:912-921. [PMID: 38936378 PMCID: PMC11550893 DOI: 10.1016/s1470-2045(24)00255-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The Children's Oncology Group defines intermediate-risk rhabdomyosarcoma as unresected FOXO1 fusion-negative disease arising at an unfavourable site or non-metastatic FOXO1 fusion-positive disease. Temsirolimus in combination with chemotherapy has shown promising activity in patients with relapsed or refractory rhabdomyosarcoma. We aimed to compare event-free survival in patients with intermediate-risk rhabdomyosarcoma treated with vincristine, actinomycin, and cyclophosphamide alternating with vincristine and irinotecan (VAC/VI) combined with temsirolimus followed by maintenance therapy versus VAC/VI alone with maintenance therapy. METHODS ARST1431 was a randomised, open-label, phase 3 trial conducted across 210 institutions in Australia, Canada, New Zealand, and the USA. Eligible patients were those aged 40 years or younger with non-metastatic FOXO1-positive rhabdomyosarcoma or unresected FOXO1-negative rhabdomyosarcoma disease from unfavourable sites. Two other groups of patients were also eligible: those who had FOXO1-negative disease at a favourable site (excluding orbit) that was unresected; and those who were aged younger than 10 years with stage IV FOXO1-negative disease with distant metastases. Eligible patients had to have a Lansky performance status score of 50 or higher if 16 years or younger and a Karnofsky performance status score of 50 or higher if older than 16 years; all patients were previously untreated. Patients were randomised (1:1) in blocks of four and stratified by histology, stage, and group. Patients received intravenous VAC/VI chemotherapy with a cyclophosphamide dose of 1·2 g/m2 per dose per cycle with or without a reducing dose of intravenous weekly temsirolimus starting at 15 mg/m2 or 0·5 mg/kg per dose for those who weighed less than 10 kg. The total duration of therapy was 42 weeks followed by 6 months of maintenance therapy with oral cyclophosphamide plus intravenous vinorelbine for all patients. Temsirolimus was withheld during radiotherapy and for 2 weeks before any major surgical procedure. The primary endpoint was 3-year event-free survival. Data were analysed with a revised intention-to-treat approach. The study is registered with ClinicalTrials.gov (NCT02567435) and is complete. FINDINGS Between May 23, 2016, and Jan 1, 2022, 325 patients were enrolled. In 297 evaluable patients (148 assigned to VAC/VI alone and 149 assigned to VAC/VI with temsirolimus), the median age was 6·3 years (IQR 3·0-11·3); 33 (11%) patients were aged 18 years or older; 179 (60%) of 297 were male. 113 (77%) of 148 patients were FOXO1 negative in the VAC/VI group, and 108 (73%) of 149 were FOXO1 negative in the VAC/VI with temsirolimus group. With a median follow-up of 3·6 years (IQR 2·8-4·5), 3-year event-free survival did not differ significantly between the two groups (64·8% [95% CI 55·5-74·1] in the VAC/VI group vs 66·8% [57·5-76·2] in the VAC/VI plus temsirolimus group (hazard ratio 0·86 [95% CI 0·58-1·26]; log-rank p=0·44). The most common grade 3-4 adverse events were anaemia (62 events in 60 [41%] of 148 patients in the VAC/VI group vs 89 events in 87 [58%] of 149 patients in the VAC/VI with temsirolimus group), lymphopenia (83 events in 65 [44%] vs 99 events in 71 [48%]), neutropenia (160 events in 99 [67%] vs 164 events in 105 [70%]), and leukopenia (121 events in 86 [58%] vs 132 events in 93 [62%]). There was one treatment-related death in the VAC/VI with temsirolimus group, categorised as not otherwise specified. INTERPRETATION Addition of temsirolimus to VAC/VI did not improve event-free survival in patients with intermediate-risk rhabdomyosarcoma defined by their FOXO1 translocation status and clinical factors. Novel biology-based strategies are needed to improve outcomes in this population. FUNDING The Children's Oncology Group (supported by the US National Cancer Institute, US National Institutes of Health).
Collapse
Affiliation(s)
- Abha A Gupta
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada.
| | - Wei Xue
- COG Data Center, Gainesville, FL, USA
| | - Douglas J Harrison
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas S Hawkins
- Seattle Children's Hospital and University of Washington Medical Center, Seattle, WA, USA
| | - Roshni Dasgupta
- Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, USA
| | - Suzanne Wolden
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barry Shulkin
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jonathan C Routh
- Department of Diagnostic Imaging, Duke University School of Medicine, Durham, NC, USA
| | | | - Shari Feinberg
- Maimonides Cancer Center at Maimonides Medical Center and Children's Hospital, Brooklyn, NY, USA
| | - Brian Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erin R Rudzinski
- Seattle Children's Hospital and University of Washington Medical Center, Seattle, WA, USA
| | | | - Raj Venkatramani
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Tseng CY, Fu YH, Ou DL, Lu JW, Hou HA, Lin LI. Anti-leukemia effects of omipalisib in acute myeloid leukemia: inhibition of PI3K/AKT/mTOR signaling and suppression of mitochondrial biogenesis. Cancer Gene Ther 2023; 30:1691-1701. [PMID: 37821641 DOI: 10.1038/s41417-023-00675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Omipalisib (GSK2126458), a potent dual PI3K/mTOR inhibitor, is reported to exhibit anti-tumor effect in several kinds of cancers. More than 50% of acute myeloid leukemia (AML) patients display a hyperactivation of PI3K/AKT/mTOR signaling. We investigated the anti-proliferative effect of omipalisib in AML cell lines with varied genetic backgrounds. The OCI-AML3 and THP-1 cell lines had a significant response to omipalisib, with IC50 values of 17.45 nM and 8.93 nM, respectively. We integrated transcriptomic profile and metabolomic analyses, and followed by gene set enrichment analysis (GSEA) and metabolite enrichment analysis. Our findings showed that in addition to inhibiting PI3K/AKT/mTOR signaling and inducing cell cycle arrest at the G0/G1 phase, omipalisib also suppressed mitochondrial respiration and biogenesis. Furthermore, omipalisib downregulated several genes associated with serine, glycine, threonine, and glutathione metabolism, and decreased their protein and glutathione levels. In vivo experiments revealed that omipalisib significantly inhibited tumor growth and prolonged mouse survival without weight loss. Gedatolisib and dactolisib, another two PI3K/mTOR inhibitors, exerted similar effects without affecting mitochondria biogenesis. These results highlight the multifaceted anti-leukemic effect of omipalisib, revealing its potential as a novel therapeutic agent in AML treatment.
Collapse
Affiliation(s)
- Chi-Yang Tseng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Fu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, 2200, Denmark
- The Finsen Laboratory, Rigs Hospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Hsin-An Hou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
5
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Salucci S, Bavelloni A, Stella AB, Fabbri F, Vannini I, Piazzi M, Volkava K, Scotlandi K, Martinelli G, Faenza I, Blalock W. The Cytotoxic Effect of Curcumin in Rhabdomyosarcoma Is Associated with the Modulation of AMPK, AKT/mTOR, STAT, and p53 Signaling. Nutrients 2023; 15:nu15030740. [PMID: 36771452 PMCID: PMC9920154 DOI: 10.3390/nu15030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Approximately 7% of cancers arising in children and 1% of those arising in adults are soft tissue sarcomas (STS). Of these malignancies, rhabdomyosarcoma (RMS) is the most common. RMS survival rates using current therapeutic protocols have remained largely unchanged in the past decade. Thus, it is imperative that the main molecular drivers in RMS tumorigenesis are defined so that more precise, effective, and less toxic therapies can be designed. Curcumin, a common herbal supplement derived from plants of the Curcuma longa species, has an exceptionally low dietary biotoxicity profile and has demonstrated anti-tumorigenic benefits in vitro. In this study, the anti-tumorigenic activity of curcumin was assessed in rhabdomyosarcoma cell lines and used to identify the major pathways responsible for curcumin's anti-tumorigenic effects. Curcumin treatment resulted in cell cycle arrest, inhibited cell migration and colony forming potential, and induced apoptotic cell death. Proteome profiler array analysis demonstrated that curcumin treatment primarily influenced flux through the AKT-mammalian target of rapamycin (mTOR), signal transducer and activator of transcription (STAT), AMP-dependent kinase (AMPK), and p53 associated pathways in a rhabdomyosarcoma subtype-specific manner. Thus, the strategic, combinational therapeutic targeting of these pathways may present the best option to treat this group of tumors.
Collapse
Affiliation(s)
- Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40126 Bologna, Italy
| | - Francesco Fabbri
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Manuela Piazzi
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Karyna Volkava
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, 40126 Bologna, Italy
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Martinelli
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| | - William Blalock
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| |
Collapse
|
7
|
Milewski D, Jung H, Brown GT, Liu Y, Somerville B, Lisle C, Ladanyi M, Rudzinski ER, Choo-Wosoba H, Barkauskas DA, Lo T, Hall D, Linardic CM, Wei JS, Chou HC, Skapek SX, Venkatramani R, Bode PK, Steinberg SM, Zaki G, Kuznetsov IB, Hawkins DS, Shern JF, Collins J, Khan J. Predicting Molecular Subtype and Survival of Rhabdomyosarcoma Patients Using Deep Learning of H&E Images: A Report from the Children's Oncology Group. Clin Cancer Res 2023; 29:364-378. [PMID: 36346688 PMCID: PMC9843436 DOI: 10.1158/1078-0432.ccr-22-1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is an aggressive soft-tissue sarcoma, which primarily occurs in children and young adults. We previously reported specific genomic alterations in RMS, which strongly correlated with survival; however, predicting these mutations or high-risk disease at diagnosis remains a significant challenge. In this study, we utilized convolutional neural networks (CNN) to learn histologic features associated with driver mutations and outcome using hematoxylin and eosin (H&E) images of RMS. EXPERIMENTAL DESIGN Digital whole slide H&E images were collected from clinically annotated diagnostic tumor samples from 321 patients with RMS enrolled in Children's Oncology Group (COG) trials (1998-2017). Patches were extracted and fed into deep learning CNNs to learn features associated with mutations and relative event-free survival risk. The performance of the trained models was evaluated against independent test sample data (n = 136) or holdout test data. RESULTS The trained CNN could accurately classify alveolar RMS, a high-risk subtype associated with PAX3/7-FOXO1 fusion genes, with an ROC of 0.85 on an independent test dataset. CNN models trained on mutationally-annotated samples identified tumors with RAS pathway with a ROC of 0.67, and high-risk mutations in MYOD1 or TP53 with a ROC of 0.97 and 0.63, respectively. Remarkably, CNN models were superior in predicting event-free and overall survival compared with current molecular-clinical risk stratification. CONCLUSIONS This study demonstrates that high-risk features, including those associated with certain mutations, can be readily identified at diagnosis using deep learning. CNNs are a powerful tool for diagnostic and prognostic prediction of rhabdomyosarcoma, which will be tested in prospective COG clinical trials.
Collapse
Affiliation(s)
| | - Hyun Jung
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - G. Thomas Brown
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Artificial Intelligence Resource, NCI, NIH, Bethesda, Maryland
| | - Yanling Liu
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Curtis Lisle
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- KnowledgeVis, LLC, Altamonte Springs, Florida
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Erin R. Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Children's Oncology Group, Monrovia, California
| | - Tammy Lo
- Children's Oncology Group, Monrovia, California
| | - David Hall
- Children's Oncology Group, Monrovia, California
| | - Corinne M. Linardic
- Departments of Pediatrics and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jun S. Wei
- Genetics Branch, NCI, NIH, Bethesda, Maryland
| | | | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Peter K. Bode
- Institut für Pathologie, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - George Zaki
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Igor B. Kuznetsov
- Department of Epidemiology & Biostatistics, School of Public Health, University at Albany, Rensselaer, New York
| | - Douglas S. Hawkins
- Chair of Children's Oncology Group, Department of Pediatrics, Seattle Children's Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Jack Collins
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
8
|
Chen X, Chen J, Feng W, Huang W, Wang G, Sun M, Luo X, Wang Y, Nie Y, Fan D, Wu K, Xia L. FGF19-mediated ELF4 overexpression promotes colorectal cancer metastasis through transactivating FGFR4 and SRC. Theranostics 2023; 13:1401-1418. [PMID: 36923538 PMCID: PMC10008733 DOI: 10.7150/thno.82269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Metastasis accounts for the high lethality of colorectal cancer (CRC) patients. Unfortunately, the molecular mechanism manipulating metastasis in CRC is still elusive. Here, we investigated the function of E74-like factor 4 (ELF4), an ETS family member, in facilitating CRC progression. Methods: The expression of ELF4 in human CRC samples and CRC cell lines was determined by quantitative real-time PCR, immunohistochemistry and immunoblotting. The migratory and invasive phenotypes of CRC cells were evaluated by in vitro transwell assays and in vivo metastatic models. The RNA sequencing was used to explore the downstream targets of ELF4. The luciferase reporter assays and chromatin immunoprecipitation assays were used to ascertain the transcriptional regulation related to ELF4. Results: We found elevated ELF4 was positively correlated with distant metastasis, advanced AJCC stages, and dismal outcomes in CRC patients. ELF4 expression was also an independent predictor of poor prognosis. Overexpression of ELF4 boosted CRC metastasis via transactivating its downstream target genes, fibroblast growth factor receptor 4 (FGFR4) and SRC proto-oncogene, non-receptor tyrosine kinase, SRC. Fibroblast growth factor 19 (FGF19) upregulated ELF4 expression through the ERK1/2/SP1 axis. Clinically, ELF4 expression had a positive correlation with FGF19, FGFR4 and SRC, and CRC patients who positively coexpressed FGF19/ELF4, ELF4/FGFR4, or ELF4/SRC exhibited the worst clinical outcomes. Furthermore, the combination of the FGFR4 inhibitor BLU-554 and the SRC inhibitor KX2-391 dramatically suppressed ELF4-mediated CRC metastasis. Conclusions: We demonstrated the essentiality of ELF4 in the metastatic process of CRC, and targeting the ELF4-relevant positive feedback circuit might represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Xilang Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Guodong Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- ✉ Corresponding authors: Dr. Limin Xia, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Phone: 86 27 6937 8507; Fax: 86 27 8366 2832; Dr. Kaichun Wu, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China; Dr. Daiming Fan, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China;
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- ✉ Corresponding authors: Dr. Limin Xia, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Phone: 86 27 6937 8507; Fax: 86 27 8366 2832; Dr. Kaichun Wu, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China; Dr. Daiming Fan, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China;
| | - Limin Xia
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- ✉ Corresponding authors: Dr. Limin Xia, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Phone: 86 27 6937 8507; Fax: 86 27 8366 2832; Dr. Kaichun Wu, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China; Dr. Daiming Fan, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China;
| |
Collapse
|
9
|
Strategies to inhibit FGFR4 V550L-driven rhabdomyosarcoma. Br J Cancer 2022; 127:1939-1953. [PMID: 36097178 PMCID: PMC9681859 DOI: 10.1038/s41416-022-01973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is a paediatric cancer driven either by fusion proteins (e.g., PAX3-FOXO1) or by mutations in key signalling molecules (e.g., RAS or FGFR4). Despite the latter providing opportunities for precision medicine approaches in RMS, there are currently no such treatments implemented in the clinic. METHODS We evaluated biologic properties and targeting strategies for the FGFR4 V550L activating mutation in RMS559 cells, which have a high allelic fraction of this mutation and are oncogenically dependent on FGFR4 signalling. Signalling and trafficking of FGFR4 V550L were characterised by confocal microscopy and proteomics. Drug effects were determined by live-cell imaging, MTS assay, and in a mouse model. RESULTS Among recently developed FGFR4-specific inhibitors, FGF401 inhibited FGFR4 V550L-dependent signalling and cell proliferation at low nanomolar concentrations. Two other FGFR4 inhibitors, BLU9931 and H3B6527, lacked potent activity against FGFR4 V550L. Alternate targeting strategies were identified by RMS559 phosphoproteomic analyses, demonstrating that RAS/MAPK and PI3K/AKT are essential druggable pathways downstream of FGFR4 V550L. Furthermore, we found that FGFR4 V550L is HSP90-dependent, and HSP90 inhibitors efficiently impeded RMS559 proliferation. In a RMS559 mouse xenograft model, the pan-FGFR inhibitor, LY2874455, did not efficiently inhibit growth, whereas FGF401 potently abrogated growth. CONCLUSIONS Our results pave the way for precision medicine approaches against FGFR4 V550L-driven RMS.
Collapse
|
10
|
Codenotti S, Zizioli D, Mignani L, Rezzola S, Tabellini G, Parolini S, Giacomini A, Asperti M, Poli M, Mandracchia D, Vezzoli M, Bernardi S, Russo D, Mitola S, Monti E, Triggiani L, Tomasini D, Gastaldello S, Cassandri M, Rota R, Marampon F, Fanzani A. Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors. Cells 2022; 11:cells11182859. [PMID: 36139434 PMCID: PMC9497225 DOI: 10.3390/cells11182859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Davide Tomasini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai 264003, China
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717567
| |
Collapse
|
11
|
Yoon HY, Maron BY, Girald-Berlingeri S, Gasilina A, Gollin JC, Jian X, Akpan I, Yohe ME, Randazzo PA, Chen PW. ERK phosphorylation is dependent on cell adhesion in a subset of pediatric sarcoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119264. [PMID: 35381293 DOI: 10.1016/j.bbamcr.2022.119264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Osteosarcoma (OS) and Pax-Foxo1 fusion negative rhabdomyosarcoma (FN-RMS) are pediatric sarcomas with poor prognoses in patients with advanced disease. In both malignancies, an actin binding protein has been linked to poor prognosis. Integrin adhesion complexes (IACs) are closely coupled to actin networks and IAC-mediated signaling has been implicated in the progression of carcinomas. However, the relationship of IACs and actin cytoskeleton remodeling with cell signaling is understudied in pediatric sarcomas. Here, we tested the hypothesis that IAC dynamics affect ERK activation in OS and FN-RMS cell lines. Adhesion dependence of ERK activation differed among the OS and FN-RMS cells examined. In the OS cell lines, adhesion did not have a consistent effect on phospho-ERK (pERK). ERK phosphorylation in response to fetal calf serum or 1 ng/ml EGF was nearly as efficient in OS cell lines and one FN-RMS cell line in suspension as cells adherent to poly-l-lysine (PL) or fibronectin (FN). By contrast, adhesion to plastic, PL or FN increased ERK phosphorylation and was greater than additive with a 15 min exposure to 1 ng/ml EGF in three FN-RMS cell lines. Increases in pERK were partly dependent on FAK and PAK1/2 but independent of IAC maturation. As far as we are aware, this examination of adhesion-dependent signaling is the first in pediatric sarcomas and has led to the discovery of differences from the prevailing paradigms and differences in the degree of coupling between components in the signaling pathways among the cell lines.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Ben Y Maron
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Sofia Girald-Berlingeri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Josephine C Gollin
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| |
Collapse
|
12
|
Singh S, Abu-Zaid A, Jin H, Fang J, Wu Q, Wang T, Feng H, Quarni W, Shao Y, Maxham L, Abdolvahabi A, Yun MK, Vaithiyalingam S, Tan H, Bowling J, Honnell V, Young B, Guo Y, Bajpai R, Pruett-Miller SM, Grosveld GC, Hatley M, Xu B, Fan Y, Wu G, Chen EY, Chen T, Lewis PW, Rankovic Z, Li Y, Murphy AJ, Easton J, Peng J, Chen X, Wang R, White SW, Davidoff AM, Yang J. Targeting KDM4 for treating PAX3-FOXO1-driven alveolar rhabdomyosarcoma. Sci Transl Med 2022; 14:eabq2096. [PMID: 35857643 PMCID: PMC9548378 DOI: 10.1126/scitranslmed.abq2096] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Waise Quarni
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lily Maxham
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alireza Abdolvahabi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Protein Technologies Center, Molecular Interaction Analysis, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Bowling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Victoria Honnell
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yian Guo
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark Hatley
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Ave., Suite 500, Memphis, TN 38163, USA
| |
Collapse
|
13
|
Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, Ruhen O, Shern JF, Khan J, Kovach AR, Lupo PJ, Gatz SA, Schäfer BW, Volchenboum S, Minard-Colin V, Koscielniak E, Hawkins DS, Bisogno G, Sparber-Sauer M, Venkatramani R, Merks JHM, Shipley J. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer 2022; 172:367-386. [PMID: 35839732 DOI: 10.1016/j.ejca.2022.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas in children/adolescents less than 18 years of age with an annual incidence of 1-2/million. Inter/intra-tumour heterogeneity raise challenges in clinical, pathological and biological research studies. Risk stratification in European and North American clinical trials previously relied on clinico-pathological features, but now, incorporates PAX3/7-FOXO1-fusion gene status in the place of alveolar histology. International working groups propose a coordinated approach through the INternational Soft Tissue SaRcoma ConsorTium to evaluate the specific genetic abnormalities and generate and integrate molecular and clinical data related to patients with RMS across different trial settings. We review relevant data and present a consensus view on what molecular features should be assessed. In particular, we recommend the assessment of the MYOD1-LR122R mutation for risk escalation, as it has been associated with poor outcomes in spindle/sclerosing RMS and rare RMS with classic embryonal histopathology. The prospective analyses of rare fusion genes beyond PAX3/7-FOXO1 will generate new data linked to outcomes and assessment of TP53 mutations and CDK4 amplification may confirm their prognostic value. Pathogenic/likely pathogenic germline variants in TP53 and other cancer predisposition genes should also be assessed. DNA/RNA profiling of tumours at diagnosis/relapse and serial analyses of plasma samples is recommended where possible to validate potential molecular biomarkers, identify new biomarkers and assess how liquid biopsy analyses can have the greatest benefit. Together with the development of new molecularly-derived therapeutic strategies that we review, a synchronised international approach is expected to enhance progress towards improved treatment assignment, management and outcomes for patients with RMS.
Collapse
Affiliation(s)
- Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Corinne M Linardic
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Anna Kelsey
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, UK
| | - Erin R Rudzinski
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Olivia Ruhen
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA; Pediatric Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Alexander R Kovach
- Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Ewa Koscielniak
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gianni Bisogno
- Hematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Monika Sparber-Sauer
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Rajkumar Venkatramani
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
| |
Collapse
|
14
|
Zhang Y, Wu T, Li F, Cheng Y, Han Q, Lu X, Lu S, Xia W. FGF19 Is Coamplified With CCND1 to Promote Proliferation in Lung Squamous Cell Carcinoma and Their Combined Inhibition Shows Improved Efficacy. Front Oncol 2022; 12:846744. [PMID: 35463335 PMCID: PMC9021371 DOI: 10.3389/fonc.2022.846744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 12/09/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) remains as a major cause of cancer-associated mortality with few therapeutic options. Continued research on new driver genes is particularly important. FGF19, a fibroblast growth factor, is frequently observed as amplified in human LUSC, which is also associated with multiple genomic gains and losses. However, the importance of these associated changes is largely unknown. In this study, we aimed to clarify a novel mechanism that link neighboring oncogene co-amplification in the development of LUSC. We found that FGF19 was co-amplified and co-expressed with its neighboring gene CCND1 in a subset of LUSC patients and associated with poor prognosis. Moreover, FGF19 combined with CCND1 promoted the cell cycle progression of LUSC cells. Mechanistically, FGF19 also enhanced CCND1 expression by activating FGFR4-ERK1/2 signaling and strengthening CCND1-induced phosphorylation and inactivation of retinoblastoma (RB). In a murine model of lung orthotopic cancer, knockdown of CCND1 was found to prolong survival by attenuating FGF19-induced cell proliferation. Furthermore, the combination treatment of the FGFR4 inhibitor BLU9931 and the CDK4/6 inhibitor palbociclib potentiated the growth inhibition and arrested cells in G1 phase. In vivo, co-targeting FGFR4 and CDK4/6 also showed marked inhibition of tumor growth than single agent treatment. These findings further elucidate the oncogenic role of FGF19 in LUSC and provide insights into how the co-amplification of neighboring genes synergistically function to promote cancer growth, and combined inhibition against both FGF19 and CCND1 is more effective.
Collapse
Affiliation(s)
- Yanshuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tingyu Wu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yirui Cheng
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Han
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Lu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Piazzi M, Bavelloni A, Cenni V, Salucci S, Bartoletti Stella A, Tomassini E, Scotlandi K, Blalock WL, Faenza I. Combined Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy in Human Rhabdomyosarcoma Cells. Molecules 2022; 27:molecules27092742. [PMID: 35566091 PMCID: PMC9104989 DOI: 10.3390/molecules27092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer arising from skeletal muscle myogenic progenitors. Recent studies have shown an important role for AKT signaling in RMS progression. Aberrant activation of the PI3K/AKT axis is one of the most frequent events occurring in human cancers and serves to disconnect the control of cell growth, survival, and metabolism from exogenous growth stimuli. In the study reported here, a panel of five compounds targeting the catalytic subunits of the four class I PI3K isoforms (p110α, BYL-719 inhibitor; p110β, TGX-221 inhibitor; p110γ, CZC24832; p110δ, CAL-101 inhibitor) and the dual p110α/p110δ, AZD8835 inhibitor, were tested on the RMS cell lines RD, A204, and SJCRH30. Cytotoxicity, cell cycle, apoptosis, and the activation of downstream targets were analyzed. Of the individual inhibitors, BYL-719 demonstrated the most anti-tumorgenic properties. BYL-719 treatment resulted in G1/G0 phase cell cycle arrest and apoptosis. When combined with CAL-101, BYL-719 decreased cell viability and induced apoptosis in a synergistic manner, equaling or surpassing results achieved with AZD8835. In conclusion, our findings indicate that BYL-719, either alone or in combination with the p110δ inhibitor, CAL-101, could represent an efficient treatment for human rhabdomyosarcoma presenting with aberrant upregulation of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - Vittoria Cenni
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Enrica Tomassini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - William L. Blalock
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (W.L.B.); (I.F.)
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
- Correspondence: (W.L.B.); (I.F.)
| |
Collapse
|
16
|
Chelsky ZL, Paulson VA, Chen EY. Molecular analysis of 10 pleomorphic rhabdomyosarcomas reveals potential prognostic markers and druggable targets. Genes Chromosomes Cancer 2021; 61:138-147. [PMID: 34773670 DOI: 10.1002/gcc.23013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 02/04/2023] Open
Abstract
Pleomorphic rhabdomyosarcoma (PRMS) is a rare and aggressive adult sarcoma with a median overall survival of less than 2 years. Most PRMS do not respond to conventional chemotherapy and/or radiation, and targeted therapies are nonexistent as few PRMS have undergone the molecular characterization necessary to identify therapeutic options. To date, complex structural and few recurrent regional copy alterations have been reported in the PRMS cases evaluated by cytogenetic and comparative genomic hybridization. Thus, there remains an urgent need for more comprehensive molecular profiling to both understand disease pathogenesis and to identify potentially actionable targets. Ten PRMS resection cases were retrieved from institutional archives and clinicopathologic demographics were recorded. All tumors were subjected to DNA-based targeted next-generation sequencing (NGS) of 340 cancer-related genes while a subset (six cases) underwent gene-expression profiling of 770 genes. Alterations identified by NGS included genes involved in cell cycle regulation (90%), the RAS/MAPK and AKT pathways (80%), telomere maintenance (40%), chromatin remodeling (40%), and DNA repair (20%), as well as the cAMP-signaling pathway (10%). Microsatellite instability was absent in all cases, and tumor mutational burden was predominantly low. Gene expression profiling revealed up-regulation of many of the same pathways, including the RTK/MAPK, AKT/PIK3CA/mTOR, Wnt, Hedgehog and JAK/STAT pathways. Survival analysis demonstrated patients with concurrent biallelic inactivation of CDKN2A and TP53 showed significantly shorter overall survival (median: 2 vs. 50 months). Our integrated molecular characterization identified not only potentially targetable alterations, but also prognostic markers for stratification of PRMS patients.
Collapse
Affiliation(s)
- Zachary L Chelsky
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.,Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
De Vita A, Ferrari A, Miserocchi G, Vanni S, Domizio C, Fonzi E, Fausti V, Recine F, Bassi M, Campobassi A, Liverani C, Spadazzi C, Cocchi C, De Luca G, Pieri F, Gurrieri L, Di Menna G, Calpona S, Bongiovanni A, Martinelli G, Ibrahim T, Mercatali L. Identification of a novel RAB3IP-HMGA2 fusion transcript in an adult head and neck rhabdomyosarcoma. Oral Dis 2021; 28:2052-2054. [PMID: 34592033 DOI: 10.1111/odi.14036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro De Vita
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Domizio
- Biosciences Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Fausti
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy.,Medical Oncology Unit, Azienda Ospedaliera San Giovanni Addolorata, Roma, Italy
| | - Massimo Bassi
- Maxillofacial Surgery Unit, Bufalini Hospital, Cesena, Italy
| | | | - Chiara Liverani
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Lorena Gurrieri
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giandomenico Di Menna
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sebastiano Calpona
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
18
|
Genetic Characterization, Current Model Systems and Prognostic Stratification in PAX Fusion-Negative vs. PAX Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021; 12:genes12101500. [PMID: 34680895 PMCID: PMC8535289 DOI: 10.3390/genes12101500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents and accounts for approximately 2% of soft tissue sarcomas in adults. It is subcategorized into distinct subtypes based on histological features and fusion status (PAX-FOXO1/VGLL2/NCOA2). Despite advances in our understanding of the pathobiological and molecular landscape of RMS, the prognosis of these tumors has not significantly improved in recent years. Developing a better understanding of genetic abnormalities and risk stratification beyond the fusion status are crucial to developing better therapeutic strategies. Herein, we aim to highlight the genetic pathways/abnormalities involved, specifically in fusion-negative RMS, assess the currently available model systems to study RMS pathogenesis, and discuss available prognostic factors as well as their importance for risk stratification to achieve optimal therapeutic management.
Collapse
|
19
|
Langdon CG, Gadek KE, Garcia MR, Evans MK, Reed KB, Bush M, Hanna JA, Drummond CJ, Maguire MC, Leavey PJ, Finkelstein D, Jin H, Schreiner PA, Rehg JE, Hatley ME. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun 2021; 12:5520. [PMID: 34535684 PMCID: PMC8448747 DOI: 10.1038/s41467-021-25829-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
PTEN promoter hypermethylation is nearly universal and PTEN copy number loss occurs in ~25% of fusion-negative rhabdomyosarcoma (FN-RMS). Here we show Pten deletion in a mouse model of FN-RMS results in less differentiated tumors more closely resembling human embryonal RMS. PTEN loss activated the PI3K pathway but did not increase mTOR activity. In wild-type tumors, PTEN was expressed in the nucleus suggesting loss of nuclear PTEN functions could account for these phenotypes. Pten deleted tumors had increased expression of transcription factors important in neural and skeletal muscle development including Dbx1 and Pax7. Pax7 deletion completely rescued the effects of Pten loss. Strikingly, these Pten;Pax7 deleted tumors were no longer FN-RMS but displayed smooth muscle differentiation similar to leiomyosarcoma. These data highlight how Pten loss in FN-RMS is connected to a PAX7 lineage-specific transcriptional output that creates a dependency or synthetic essentiality on the transcription factor PAX7 to maintain tumor identity.
Collapse
Affiliation(s)
- Casey G Langdon
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine E Gadek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew R Garcia
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Myron K Evans
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristin B Reed
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Rhodes College, Memphis, TN, 38112, USA
| | - Madeline Bush
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Jason A Hanna
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Purdue Center for Cancer Research, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Catherine J Drummond
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pathology, University of Otago, Dunedin, Otago, New Zealand
| | - Matthew C Maguire
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick J Leavey
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick A Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
20
|
Yoon C, Lu J, Ryeom SW, Simon MC, Yoon SS. PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death Dis 2021; 12:749. [PMID: 34321458 PMCID: PMC8319167 DOI: 10.1038/s41419-021-04036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
To identify drivers of sarcoma cancer stem-like cells (CSCs), we compared gene expression using RNA sequencing between HT1080 fibrosarcoma and SK-LMS-1 leiomyosarcoma spheroids (which are enriched for CSCs) compared with the parent populations. The most overexpressed survival signaling-related gene in spheroids was phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of PI3K, which functions in tumorigenesis and metastasis. In a human sarcoma microarray, PIK3R3 was also overexpressed by 4.1-fold compared with normal tissues. PIK3R3 inhibition using shRNA in the HT1080, SK-LMS-1, and DDLS8817 dedifferentiated liposarcoma in spheroids and in CD133+ cells (a CSC marker) reduced expression of CD133 and the stem cell factor Nanog and blocked spheroid formation by 61-71%. Mechanistic studies showed that in spheroid cells, PIK3R3 activated AKT and ERK signaling. Inhibition of PIK3R3, AKT, or ERK using shRNA or inhibitors decreased expression of Nanog, spheroid formation by 68-73%, and anchorage-independent growth by 76-91%. PIK3R3 or ERK1/2 inhibition similarly blocked sarcoma spheroid cell migration, invasion, secretion of MMP-2, xenograft invasion into adjacent normal tissue, and chemotherapy resistance. Together, these results show that signaling through the PIK3R3/ERK/Nanog axis promotes sarcoma CSC phenotypes such as migration, invasion, and chemotherapy resistance, and identify PIK3R3 as a potential therapeutic target in sarcoma.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10:cells10061533. [PMID: 34204560 PMCID: PMC8235236 DOI: 10.3390/cells10061533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies originating from mesenchymal tissues with limited therapeutic options. Recently, alterations in components of the fibroblast growth factor receptor (FGFR) signaling pathway have been identified in a range of different sarcoma subtypes, most notably gastrointestinal stromal tumors, rhabdomyosarcomas, and liposarcomas. These alterations include genetic events such as translocations, mutations, and amplifications as well as transcriptional overexpression. Targeting FGFR has therefore been proposed as a novel potential therapeutic approach, also in light of the clinical activity shown by multi-target tyrosine kinase inhibitors in specific subtypes of sarcomas. Despite promising preclinical evidence, thus far, clinical trials have enrolled very few sarcoma patients and the efficacy of selective FGFR inhibitors appears relatively low. Here, we review the known alterations of the FGFR pathway in sarcoma patients as well as the preclinical and clinical evidence for the use of FGFR inhibitors in these diseases. Finally, we discuss the possible reasons behind the current clinical data and highlight the need for biomarker stratification to select patients more likely to benefit from FGFR targeted therapies.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- Department of Medical Oncology, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alexandra E. Ostler
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Correspondence: ; Tel.: +44-207-153-5554
| |
Collapse
|
23
|
Liu Y, Wang C, Li J, Zhu J, Zhao C, Xu H. Novel Regulatory Factors and Small-Molecule Inhibitors of FGFR4 in Cancer. Front Pharmacol 2021; 12:633453. [PMID: 33981224 PMCID: PMC8107720 DOI: 10.3389/fphar.2021.633453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is a tyrosine kinase receptor that is a member of the fibroblast growth factor receptor family and is stimulated by highly regulated ligand binding. Excessive expression of the receptor and its ligand, especially FGF19, occurs in many types of cancer. Abnormal FGFR4 production explains these cancer formations, and therefore, this receptor has emerged as a potential target for inhibiting cancer development. This review discusses the diverse mechanisms of oncogenic activation of FGFR4 and highlights some currently available inhibitors targeting FGFR4.
Collapse
Affiliation(s)
- Yanan Liu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Canwei Wang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jifa Li
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiandong Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huanhai Xu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Juan Ribelles A, Gargallo P, Berlanga P, Segura V, Yáñez Y, Juan B, Salom M, Llavador M, Font de Mora J, Castel V, Cañete A. Next-Generation Sequencing Identifies Potential Actionable Targets in Paediatric Sarcomas. J Pers Med 2021; 11:jpm11040268. [PMID: 33916788 PMCID: PMC8067272 DOI: 10.3390/jpm11040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Bone and soft-tissue sarcomas represent 13% of all paediatric malignancies. International contributions to introduce next-generation sequencing (NGS) approaches into clinical application are currently developing. We present the results from the Precision Medicine program for children with sarcomas at a reference centre. Results: Samples of 70 paediatric sarcomas were processed for histopathological analysis, reverse transcriptase polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS) with a consensus gene panel. Pathogenic alterations were reported and, if existing, targeted recommendations were translated to the clinic. Seventy paediatric patients with sarcomas from 10 centres were studied. Median age was 11.5 years (range 1–18). Twenty-two (31%) had at least one pathogenic alteration by NGS. Thirty pathogenic mutations in 18 different genes were detected amongst the 22 patients. The most frequent alterations were found in TP53, followed by FGFR4 and CTNNB1. Combining all biological studies, 18 actionable variants were detected and six patients received targeted treatment observing a disease control rate of 78%. Extrapolating the results to the whole cohort, 23% of the patients would obtain clinical benefit from this approach. Conclusions: Paediatric sarcomas have a different genomic landscape when compared to adult cohorts. Incorporating NGS targets into paediatric sarcomas’ therapy is feasible and allows personalized treatments with clinical benefit in the relapse setting.
Collapse
Affiliation(s)
- Antonio Juan Ribelles
- Paediatric Oncology and Hematology Unit, Hospital U I P La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain;
- Correspondence: ; Tel.: +34-411532
| | - Pablo Gargallo
- Clinical and Translational Oncology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (P.G.); (V.S.); (Y.Y.); (J.F.d.M.); (V.C.)
| | - Pablo Berlanga
- Department of Child and Adolescent Cancer, Institute Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France;
| | - Vanessa Segura
- Clinical and Translational Oncology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (P.G.); (V.S.); (Y.Y.); (J.F.d.M.); (V.C.)
| | - Yania Yáñez
- Clinical and Translational Oncology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (P.G.); (V.S.); (Y.Y.); (J.F.d.M.); (V.C.)
| | - Bárbara Juan
- Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain;
| | - Marta Salom
- Paediatric Orthopedic Surgery, Hospital U i P La Fe, 46026 Valencia, Spain;
| | | | - Jaime Font de Mora
- Clinical and Translational Oncology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (P.G.); (V.S.); (Y.Y.); (J.F.d.M.); (V.C.)
| | - Victoria Castel
- Clinical and Translational Oncology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (P.G.); (V.S.); (Y.Y.); (J.F.d.M.); (V.C.)
| | - Adela Cañete
- Paediatric Oncology and Hematology Unit, Hospital U I P La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain;
| |
Collapse
|
25
|
Heske CM, Mascarenhas L. Relapsed Rhabdomyosarcoma. J Clin Med 2021; 10:804. [PMID: 33671214 PMCID: PMC7922213 DOI: 10.3390/jcm10040804] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Relapsed rhabdomyosarcoma (RMS) represents a significant therapeutic challenge. Nearly one-third of patients diagnosed with localized RMS and over two-thirds of patients with metastatic RMS will experience disease recurrence following primary treatment, generally within three years. Clinical features at diagnosis, including primary site, tumor invasiveness, size, stage, and histology impact likelihood of relapse and prognosis post-relapse. Aspects of initial treatment, including extent of surgical resection, use of radiotherapy, and chemotherapy regimen, are also associated with post-relapse outcomes, as are features of the relapse itself, including time to relapse and extent of disease involvement. Although there is no standard treatment for patients with relapsed RMS, several general principles, including tissue biopsy confirmation of diagnosis, assessment of post-relapse prognosis, determination of the feasibility of additional local control measures, and discussion of patient goals, should all be part of the approach to care. Patients with features suggestive of a favorable prognosis, which include those with botryoid RMS or stage 1 or group I embryonal RMS (ERMS) who have had no prior treatment with cyclophosphamide, have the highest chance of achieving long-term cure when treated with a multiagent chemotherapy regimen at relapse. Unfortunately, patients who do not meet these criteria represent the majority and have poor outcomes when treated with such regimens. For this group, strong consideration should be given for enrollment on a clinical trial.
Collapse
Affiliation(s)
- Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leo Mascarenhas
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Division of Hematology/Oncology, Department of Pediatrics and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| |
Collapse
|
26
|
FGFR4 c.1162G > A (p.Gly388Arg) Polymorphism Analysis in Turkish Patients with Retinoblastoma. JOURNAL OF ONCOLOGY 2021; 2020:9401038. [PMID: 33456465 PMCID: PMC7787726 DOI: 10.1155/2020/9401038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
Purpose Various molecular variations are known to result in different gene variants in the FGFR4 gene, known for its oncogenic transformation activity. The goal of this study was to investigate the FGFR4 p.Gly388Arg variant that plays role in the progression of cancer and retinal growth and may be an effective candidate variant in the Turkish population in retinoblastoma patients with no RB1 gene mutation. Methods Using the Sanger sequencing methods, the FGFR4 p.Gly388Arg variant was bidirectionally sequenced in 49 patients with non-RB1 gene mutation in retinoblastoma patients and 13 healthy first-degree relatives and 146 individuals matched by sex and age in the control group. Results In Turkish population-specific study, the FGFR4 p.Gly388Arg variant was found in 27 (55.1 percent) of 49 patients; mutation was found in 7 (53.8 percent) of these patients' 13 healthy relatives screened. When FGFR4 p.Gly388Arg mutation status is evaluated in terms of 146 healthy controls, in 70 (47.9 percent) individuals, mutation was observed. Our analysis showed that the FGFR4 p.Gly388Arg allele frequency, which according to different databases is seen as 30 percent in the general population, is 50 percent common in the Turkish population. Conclusions In patients with advanced retinoblastoma who were diagnosed with retinoblastoma prior to 24 months, the FGFR4 p.Gly388Arg allele was found to be significantly higher. As a result, these results indicate that the polymorphism of FGFR4 p.Gly388Arg may play a role in both the development of tumors and the progression of aggressive tumors.
Collapse
|
27
|
FAK Signaling in Rhabdomyosarcoma. Int J Mol Sci 2020; 21:ijms21228422. [PMID: 33182556 PMCID: PMC7697003 DOI: 10.3390/ijms21228422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of children and adolescents. The fusion-positive (FP)-RMS variant expressing chimeric oncoproteins such as PAX3-FOXO1 and PAX7-FOXO1 is at high risk. The fusion negative subgroup, FN-RMS, has a good prognosis when non-metastatic. Despite a multimodal therapeutic approach, FP-RMS and metastatic FN-RMS often show a dismal prognosis with 5-year survival of less than 30%. Therefore, novel targets need to be discovered to develop therapies that halt tumor progression, reducing long-term side effects in young patients. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates focal contacts at the cellular edges. It plays a role in cell motility, survival, and proliferation in response to integrin and growth factor receptors’ activation. FAK is often dysregulated in cancer, being upregulated and/or overactivated in several adult and pediatric tumor types. In RMS, both in vitro and preclinical studies point to a role of FAK in tumor cell motility/invasion and proliferation, which is inhibited by FAK inhibitors. In this review, we summarize the data on FAK expression and modulation in RMS. Moreover, we give an overview of the approaches to inhibit FAK in both preclinical and clinical cancer settings.
Collapse
|
28
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
29
|
Zhu DS, Dong JY, Xu YY, Zhang XT, Fu SB, Liu W. Omipalisib Inhibits Esophageal Squamous Cell Carcinoma Growth Through Inactivation of Phosphoinositide 3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) and ERK Signaling. Med Sci Monit 2020; 26:e927106. [PMID: 32804918 PMCID: PMC7450785 DOI: 10.12659/msm.927106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a life-threatening digestive tract malignancy with no known curative treatment. This study aimed to investigate the antineoplastic effects of omipalisib and its underlying molecular mechanisms in ESCC using a high throughput screen. Material/Methods MTT assay and clone formation were used to determine cell viability and proliferation. Flow cytometry was conducted to detect cell cycle distribution and apoptosis. Global gene expression and mRNA expression levels were determined by RNA sequencing and real-time PCR, respectively. Protein expression was evaluated in the 4 ESCC cell lines by Western blot analysis. Finally, a xenograft nude mouse model was used to evaluate the effect of omipalisib on tumor growth in vivo. Results In the pilot screening of a 1404-compound library, we demonstrated that omipalisib markedly inhibited cell proliferation in a panel of ESCC cell lines. Mechanistically, omipalisib induced G0/G1 cell cycle arrest and apoptosis. RNA-seq, KEGG, and GSEA analyses revealed that the PI3K/AKT/mTOR pathway is the prominent target of omipalisib in ESCC cells. Treatment with omipalisib decreased expression of p-AKT, p-4EBP1, p-p70S6K, p-S6, and p-ERK, therefore disrupting the activation of PI3K/AKT/mTOR and ERK signaling. In the nude mouse xenograft model, omipalisib significantly suppressed the tumor growth in ESCC tumor-bearing mice without obvious adverse effects. Conclusions Omipalisib inhibited the proliferation and growth of ESCC by disrupting PI3K/AKT/mTOR and ERK signaling. The present study supports the rationale for using omipalisib as a therapeutic approach in ESCC patients. Further clinical studies are needed.
Collapse
Affiliation(s)
- Dong-Shan Zhu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jing-Yao Dong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yao-Yao Xu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xin-Tong Zhang
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Shi-Bo Fu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
30
|
Felkai L, Krencz I, Kiss DJ, Nagy N, Petővári G, Dankó T, Micsík T, Khoor A, Tornóczky T, Sápi Z, Sebestyén A, Csóka M. Characterization of mTOR Activity and Metabolic Profile in Pediatric Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12071947. [PMID: 32709151 PMCID: PMC7409076 DOI: 10.3390/cancers12071947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
mTOR activation has been observed in rhabdomyosarcoma (RMS); however, mTOR complex (mTORC) 1 inhibition has had limited success thus far. mTOR activation alters the metabolic pathways, which is linked to survival and metastasis. These pathways have not been thoroughly analyzed in RMSs. We performed immunohistochemistry on 65 samples to analyze the expression of mTOR complexes (pmTOR, pS6, Rictor), and several metabolic enzymes (phosphofructokinase, lactate dehydrogenase-A, β-F1-ATPase, glucose-6-phosphate dehydrogenase, glutaminase). RICTOR amplification, as a potential mechanism of Rictor overexpression, was analyzed by FISH and digital droplet PCR. In total, 64% of the studied primary samples showed mTOR activity with an mTORC2 dominance (82%). Chemotherapy did not cause any relevant change in mTOR activity. Elevated mTOR activity was associated with a worse prognosis in relapsed cases. RICTOR amplification was not confirmed in any of the cases. Our findings suggest the importance of the Warburg effect and the pentose-phosphate pathway beside a glutamine demand in RMS cells. The expression pattern of the studied mTOR markers can explain the inefficacy of mTORC1 inhibitor therapy. Therefore, we suggest performing a detailed investigation of the mTOR profile before administering mTORC1 inhibitor therapy. Furthermore, our findings highlight that targeting the metabolic plasticity could be an alternative therapeutic approach.
Collapse
Affiliation(s)
- Luca Felkai
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary; (L.F.); (D.J.K.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Dorottya Judit Kiss
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary; (L.F.); (D.J.K.)
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Tamás Micsík
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - András Khoor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Tamás Tornóczky
- Department of Pathology, Medical School and Clinical Center, University of Pécs, 7624 Pécs, Hungary;
| | - Zoltán Sápi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
- Correspondence: (A.S.); (M.C.)
| | - Monika Csóka
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary; (L.F.); (D.J.K.)
- Correspondence: (A.S.); (M.C.)
| |
Collapse
|
31
|
Abstract
The capacity of single-agent therapy with immune checkpoint inhibitors to control solid cancers by unleashing preexisting local antitumor T cell responses has renewed interest in the broader use of T cells as anticancer therapeutics. At the same time, durable responses of refractory B-lineage malignancies to chimeric-receptor engineered T cells illustrate that T cells can be effectively redirected to cancers that lack preexisting tumor antigen-specific T cells, as most typical childhood cancers. This review summarizes strategies by which T cells can be modified to recognize defined antigens, with a focus on chimeric-receptor engineering. We provide an overview of candidate target antigens currently investigated in advanced preclinical and early clinical trials in pediatric malignancies and discuss the prerequisites for an adequate in vivo function of engineered T cells in the microenvironment of solid tumors and intrinsic and extrinsic limitations of current redirected T cell therapies. We further address innovative solutions to recruit therapeutic T cells to tumors, overcome the unreliable and heterogenous expression of most known tumor-associated antigens, and prevent functional inactivation of T cells in the hostile microenvironment of solid childhood tumors.
Collapse
Affiliation(s)
- Kerstin K Rauwolf
- Department of Pediatric Hematology and Oncology Albert-Schweitzer Campus 1, University Children's Hospital Muenster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology Albert-Schweitzer Campus 1, University Children's Hospital Muenster, 48149, Münster, Germany.
| |
Collapse
|
32
|
Yohe ME, Heske CM, Stewart E, Adamson PC, Ahmed N, Antonescu CR, Chen E, Collins N, Ehrlich A, Galindo RL, Gryder BE, Hahn H, Hammond S, Hatley ME, Hawkins DS, Hayes MN, Hayes-Jordan A, Helman LJ, Hettmer S, Ignatius MS, Keller C, Khan J, Kirsch DG, Linardic CM, Lupo PJ, Rota R, Shern JF, Shipley J, Sindiri S, Tapscott SJ, Vakoc CR, Wexler LH, Langenau DM. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr Blood Cancer 2019; 66:e27869. [PMID: 31222885 PMCID: PMC6707829 DOI: 10.1002/pbc.27869] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Overall survival rates for pediatric patients with high-risk or relapsed rhabdomyosarcoma (RMS) have not improved significantly since the 1980s. Recent studies have identified a number of targetable vulnerabilities in RMS, but these discoveries have infrequently translated into clinical trials. We propose streamlining the process by which agents are selected for clinical evaluation in RMS. We believe that strong consideration should be given to the development of combination therapies that add biologically targeted agents to conventional cytotoxic drugs. One example of this type of combination is the addition of the WEE1 inhibitor AZD1775 to the conventional cytotoxic chemotherapeutics, vincristine and irinotecan.
Collapse
Affiliation(s)
| | | | | | | | - Nabil Ahmed
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | - Rene L. Galindo
- University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Heidi Hahn
- University Medical Center Gӧttingen, Gӧttingen, Germany
| | | | - Mark E. Hatley
- St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Douglas S. Hawkins
- Seattle Children’s Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA 98105
| | - Madeline N. Hayes
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| | | | - Lee J. Helman
- Children’s Hospital of Los Angeles, Los Angeles, CA 90027
| | | | | | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR 97005
| | - Javed Khan
- National Cancer Institute, Bethesda, MD 20892
| | | | | | - Philip J. Lupo
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Rossella Rota
- Children’s Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | - Janet Shipley
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | - David M. Langenau
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| |
Collapse
|
33
|
Granados VA, Avirneni-Vadlamudi U, Dalal P, Scarborough SR, Galindo KA, Mahajan P, Galindo RL. Selective Targeting of Myoblast Fusogenic Signaling and Differentiation-Arrest Antagonizes Rhabdomyosarcoma Cells. Cancer Res 2019; 79:4585-4591. [PMID: 31331911 DOI: 10.1158/0008-5472.can-18-2096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 06/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
Rhabdomyosarcoma (RMS) is an aggressive soft tissue malignancy comprised histologically of skeletal muscle lineage precursors that fail to exit the cell cycle and fuse into differentiated syncytial muscle-for which the underlying pathogenetic mechanisms remain unclear. In contrast to myogenic transcription factor signaling, the molecular machinery that orchestrates the discrete process of myoblast fusion in mammals is poorly understood and unexplored in RMS. The fusogenic machinery in Drosophila, however, is understood in much greater detail, where myoblasts are divided into two distinct pools, founder cells (FC) and fusion competent myoblasts (fcm). Fusion is heterotypic and only occurs between FCs and fcms. Here, we interrogated a comprehensive RNA-sequencing database and found that human RMS diffusely demonstrates an FC lineage gene signature, revealing that RMS is a disease of FC lineage rhabdomyoblasts. We next exploited our Drosophila RMS-related model to isolate druggable FC-specific fusogenic elements underlying RMS, which uncovered the EGFR pathway. Using RMS cells, we showed that EGFR inhibitors successfully antagonized RMS RD cells, whereas other cell lines were resistant. EGFR inhibitor-sensitive cells exhibited decreased activation of the EGFR intracellular effector Akt, whereas Akt activity remained unchanged in inhibitor-resistant cells. We then demonstrated that Akt inhibition antagonizes RMS-including RMS resistant to EGFR inhibition-and that sustained activity of the Akt1 isoform preferentially blocks rhabdomyoblast differentiation potential in cell culture and in vivo. These findings point towards selective targeting of fusion- and differentiation-arrest via Akt as a broad RMS therapeutic vulnerability. SIGNIFICANCE: EGFR and its downstream signaling mediator AKT1 play a role in the fusion and differentiation processes of rhabdomyosarcoma cells, representing a therapeutic vulnerability of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Valerie A Granados
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Pooja Dalal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samuel R Scarborough
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathleen A Galindo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Priya Mahajan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rene L Galindo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
34
|
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol 2019; 12:71. [PMID: 31277692 PMCID: PMC6612215 DOI: 10.1186/s13045-019-0754-1] [Citation(s) in RCA: 569] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. mTOR is usually assembled into several complexes such as mTOR complex 1/2 (mTORC1/2). In cooperation with raptor, rictor, LST8, and mSin1, key components in mTORC1 or mTORC2, mTOR catalyzes the phosphorylation of multiple targets such as ribosomal protein S6 kinase β-1 (S6K1), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, protein kinase C (PKC), and type-I insulin-like growth factor receptor (IGF-IR), thereby regulating protein synthesis, nutrients metabolism, growth factor signaling, cell growth, and migration. Activation of mTOR promotes tumor growth and metastasis. Many mTOR inhibitors have been developed to treat cancer. While some of the mTOR inhibitors have been approved to treat human cancer, more mTOR inhibitors are being evaluated in clinical trials. Here, we update recent advances in exploring mTOR signaling and the development of mTOR inhibitors for cancer therapy. In addition, we discuss the mechanisms underlying the resistance to mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingbin Kong
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Turunen SP, von Nandelstadh P, Öhman T, Gucciardo E, Seashore-Ludlow B, Martins B, Rantanen V, Li H, Höpfner K, Östling P, Varjosalo M, Lehti K. FGFR4 phosphorylates MST1 to confer breast cancer cells resistance to MST1/2-dependent apoptosis. Cell Death Differ 2019; 26:2577-2593. [PMID: 30903103 PMCID: PMC7224384 DOI: 10.1038/s41418-019-0321-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/18/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer cells balance with the equilibrium of cell death and growth to expand and metastasize. The activity of mammalian sterile20-like kinases (MST1/2) has been linked to apoptosis and tumor suppression via YAP/Hippo pathway-independent and -dependent mechanisms. Using a kinase substrate screen, we identified here MST1 and MST2 among the top substrates for fibroblast growth factor receptor 4 (FGFR4). In COS-1 cells, MST1 was phosphorylated at Y433 residue in an FGFR4 kinase activity-dependent manner, as assessed by mass spectrometry. Blockade of this phosphorylation by Y433F mutation induced MST1 activation, as indicated by increased threonine phosphorylation of MST1/2, and the downstream substrate MOB1, in FGFR4-overexpressing T47D and MDA-MB-231 breast cancer cells. Importantly, the specific knockdown or short-term inhibition of FGFR4 in endogenous models of human HER2+ breast cancer cells likewise led to increased MST1/2 activation, in conjunction with enhanced MST1 nuclear localization and generation of N-terminal cleaved and autophosphorylated MST1. Unexpectedly, MST2 was also essential for this MST1/N activation and coincident apoptosis induction, although these two kinases, as well as YAP, were differentially regulated in the breast cancer models analyzed. Moreover, pharmacological FGFR4 inhibition specifically sensitized the HER2+ MDA-MB-453 breast cancer cells, not only to HER2/EGFR and AKT/mTOR inhibitors, but also to clinically relevant apoptosis modulators. In TCGA cohort, FGFR4 overexpression correlated with abysmal HER2+ breast carcinoma patient outcome. Therefore, our results uncover a clinically relevant, targetable mechanism of FGFR4 oncogenic activity via suppression of the stress-associated MST1/2-induced apoptosis machinery in tumor cells with prominent HER/ERBB and FGFR4 signaling-driven proliferation.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Pernilla von Nandelstadh
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Tiina Öhman
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FI-00014, Finland
| | - Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Beatriz Martins
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Huini Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Katrin Höpfner
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Päivi Östling
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FI-00014, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-171 77, Sweden. .,Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland.
| |
Collapse
|
36
|
Basu D, Salgado CM, Bauer B, Khakoo Y, Patel JR, Hoehl RM, Bertolini DM, Zabec J, Brzozowski MR, Reyes-Múgica M. The Dual PI3K/mToR Inhibitor Omipalisib/GSK2126458 Inhibits Clonogenic Growth in Oncogenically-transformed Cells from Neurocutaneous Melanocytosis. Cancer Genomics Proteomics 2018; 15:239-248. [PMID: 29976629 DOI: 10.21873/cgp.20082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Omipalisib has been found to affect the viability of cancer cells. However, its effect on clonogenicity - a feature of cancer stem cells, is not clear. Cells isolated from neurocutaneous melanocytosis (NCM) patients' lesions grow clonogenically. The aim of this study was to investigate the effect of omipalisib treatment on clonogenic growth of NCM cells in vitro. MATERIALS AND METHODS Clonogenic growth efficiency was evaluated by colony formation assays with or without specific growth factors. Activation of MEK and Akt was determined by immunoblots. Colony formation and cell viability were assessed upon pharmacological inhibition of MEK, Akt and mToR. RESULTS Clonogenicity appeared to depend on bFGF and IGF1signaling through ERK and Akt. Omipalisib treatment prevented colony formation and induced autophagic cell death. CONCLUSION Signaling through Akt is important for survival of clonogenic cells in NCM, and omipalisib treatment as a monotherapy or in combination with MEK162 could be an effective therapeutic strategy to inhibit clonogenic growth.
Collapse
Affiliation(s)
- Dipanjan Basu
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Cláudia M Salgado
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Bruce Bauer
- Division of Plastic and Reconstructive Surgery, North Shore University Health System, Northbrook, IL, U.S.A
| | - Yasmin Khakoo
- Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, U.S.A.,Department of Pediatrics, Weill Cornell Medical College, New York, NY, U.S.A
| | - Janki R Patel
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ryan M Hoehl
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Dominique M Bertolini
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joie Zabec
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Morgan R Brzozowski
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Miguel Reyes-Múgica
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|