1
|
Agarwal SS, Cortes-Medina M, Holter JC, Avendano A, Tinapple JW, Barlage JM, Menyhert MM, Onua LM, Song JW. Rapid low-cost assembly of modular microvessel-on-a-chip with benchtop xurography. LAB ON A CHIP 2024; 24:5065-5076. [PMID: 39397763 PMCID: PMC11472271 DOI: 10.1039/d4lc00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Blood and lymphatic vessels in the body are central to molecular and cellular transport, tissue repair, and pathophysiology. Several approaches have been employed for engineering microfabricated blood and lymphatic vessels in vitro, yet traditionally these approaches require specialized equipment, facilities, and research training beyond the capabilities of many biomedical laboratories. Here we present xurography as an inexpensive, accessible, and versatile rapid prototyping technique for engineering cylindrical and lumenized microvessels. Using a benchtop xurographer, or a cutting plotter, we fabricated modular multi-layer poly(dimethylsiloxane) (PDMS)-based microphysiological systems (MPS) that house endothelial-lined microvessels approximately 260 μm in diameter embedded within a user-defined 3-D extracellular matrix (ECM). We validated the vascularized MPS (or vessel-on-a-chip) by quantifying changes in blood vessel permeability due to the pro-angiogenic chemokine CXCL12. Moreover, we demonstrated the reconfigurable versatility of this approach by engineering a total of four distinct vessel-ECM arrangements, which were obtained by only minor adjustments to a few steps of the fabrication process. Several of these arrangements, such as ones that incorporate close-ended vessel structures and spatially distinct ECM compartments along the same microvessel, have not been widely achieved with other microfabrication strategies. Therefore, we anticipate that our low-cost and easy-to-implement fabrication approach will facilitate broader adoption of MPS with customizable vascular architectures and ECM components while reducing the turnaround time required for iterative designs.
Collapse
Affiliation(s)
- Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jacob C Holter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph W Tinapple
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph M Barlage
- Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH 43210, USA
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Lotanna M Onua
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Anastasiadou DP, Couturier N, Goel S, Argyris DG, Vodopyanov S, Rivera-Sanchez L, Gonzalez E, Kreger J, Griffen A, Kazakov A, Burt J, Recoder N, Duran CL, Harney AS, Quesnel A, Filippou PS, Lenis VP, Shukla S, Entenberg D, Zintiridou A, Chen X, Eddy RJ, Oktay MH, Condeelis JS, Karagiannis NS, Briceno A, Guzik H, Alon R, DesMarais V, Ioannou G, Gnjatic S, Raynolds DM, Macedo R, Reshef R, Gil-Henn H, MacLean AL, Torres ER, LaFave LM, Lauvau G, Karagiannis GS. Intratumoral CXCL12 Gradients Contextualize Tumor Cell Invasion, Migration and Immune Suppression in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618571. [PMID: 39464015 PMCID: PMC11507869 DOI: 10.1101/2024.10.15.618571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 + T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy. While the CXCL12/CXCR4 pathway can mini- mally influence the overall composition of immune cell populations, it biases the distribution of CD8 + T cells away from TMEM doorways, justifying its prior-established role as immunosuppressive factor for CD8 + T cells. Our research suggests that the complex interactions between CXCL12 and the various tumor and immune cell types contributes not only to the completion of the initial steps of the metastatic cascade, but also offers an immunological "sanctuary" to prometastatic tumor cells homed around TMEM doorways. Overall, our study enhances our current understanding on the mechanisms, via which CXCL12 orchestrates tumor cell behavior and immune dynamics, potentially guiding future thera- peutic strategies to combat breast cancer metastasis and improve anti-tumor immunity.
Collapse
|
3
|
Muralidharan H, Hansen T, Steinle A, Schumacher D, Stickeler E, Maurer J. Breast Cancer Stem Cells Upregulate IRF6 in Stromal Fibroblasts to Induce Stromagenesis. Cells 2024; 13:1466. [PMID: 39273037 PMCID: PMC11393902 DOI: 10.3390/cells13171466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
The microenvironment of a cancer stem cell (CSC) niche is often found in coexistence with cancer-associated fibroblasts (CAFs). Here, we show the first in-depth analysis of the interaction between primary triple-negative breast cancer stem cells (BCSCs) with fibroblasts. Using 2D co-culture models with specific seeding ratios, we identified stromal fibroblast aggregation at the BCSC cluster periphery, and, on closer observation, the aggregated fibroblasts was found to encircle BCSC clusters in nematic organization. In addition, collagen type I and fibronectin accumulation were also found at the BCSC-stromal periphery. MACE-Seq analysis of BCSC-encapsulating fibroblasts displayed the transformation of stromal fibroblasts to CAFs and the upregulation of fibrosis regulating genes of which the Interferon Regulatory Factor 6 (IRF6) gene was identified. Loss of function experiments with the IRF6 gene decreased fibroblast encapsulation around BCSC clusters in 2D co-cultures. In BCSC xenografts, fibroblast IRF6 expression led to an increase in the stromal area and fibroblast density in tumors, in addition to a reduction in necrotic growth. Based on our findings, we propose that fibroblast IRF6 function is an important factor in the development of the stromal microenvironment and in sustaining the BCSC tumor niche.
Collapse
Affiliation(s)
- Harshini Muralidharan
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - Thomas Hansen
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - Anja Steinle
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
4
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of intracellular communication reveals consistent gene changes associated with early-stage acne skin. Cell Commun Signal 2024; 22:400. [PMID: 39143467 PMCID: PMC11325718 DOI: 10.1186/s12964-024-01725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
- Min Deng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Woodvine O Odhiambo
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Min Qin
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Thao Tam To
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Gregory M Brewer
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Alexander R Kheshvadjian
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Carol Cheng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - George W Agak
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
You MH. Mechanism of DAPK1 for Regulating Cancer Stem Cells in Thyroid Cancer. Curr Issues Mol Biol 2024; 46:7086-7096. [PMID: 39057063 PMCID: PMC11275583 DOI: 10.3390/cimb46070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase and is characteristically downregulated in metastatic cancer. Several studies showed that DAPK1 is involved in both the early and late stages of cancer. DAPK1 downregulation is elaborately controlled by epigenetic, transcriptional, posttranscriptional, and posttranslational processes. DAPK1 is known to regulate not only cancer cells but also stromal cells. Recent studies showed that DAPK1 was involved not only in tumor suppression but also in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation in colon and thyroid cancers. CSCs are major factors in determining cancer aggressiveness in cancer metastasis and treatment prognosis by influencing EMT. However, the molecular mechanism involved in the regulation of cancer cells by DAPK1 remains unclear. In particular, little is known about the existence of CSCs and how they are regulated in papillary thyroid carcinoma (PTC) among thyroid cancers. In this review, we describe the molecular mechanism of CSC regulation by DAPK1 in PTC progression.
Collapse
Affiliation(s)
- Mi-Hyeon You
- Department of Anatomy, Konkuk University College of Medicine, 50-1, 268 Chungwon-daero, Cungju-si 27478, Republic of Korea
| |
Collapse
|
6
|
Godina C, Khazaei S, Belting M, Vallon-Christersson J, Nodin B, Jirström K, Isaksson K, Bosch A, Jernström H. High Caveolin-1 mRNA expression in triple-negative breast cancer is associated with an aggressive tumor microenvironment, chemoresistance, and poor clinical outcome. PLoS One 2024; 19:e0305222. [PMID: 38959243 PMCID: PMC11221642 DOI: 10.1371/journal.pone.0305222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Currently, there are few treatment-predictive and prognostic biomarkers in triple-negative breast cancer (TNBC). Caveolin-1 (CAV1) is linked to chemoresistance and several important processes involved in tumor progression and metastasis, such as epithelial-mesenchymal transition (EMT). Herein, we report that high CAV1 gene expression is an independent factor of poor prognosis in TNBC. METHODS CAV1 gene expression was compared across different molecular features (e.g., PAM50 subtypes). CAV1 expression was assessed in relation to clinical outcomes using Cox regression adjusted for clinicopathological predictors. Differential gene expression and gene set enrichment analyses were applied to compare high- and low-expressing CAV1 tumors. Tumor microenvironment composition of high- and low-expressing CAV1 tumors was estimated using ECOTYPER. Tumor tissue microarrays were used to evaluate CAV1 protein levels in stromal and malignant cells. RESULTS In the SCAN-B (n = 525) and GSE31519 (n = 327) cohorts, patients with CAV1-high tumors had an increased incidence of early recurrence adjusted HR 1.78 (95% CI 1.12-2.81) and 2.20 (95% CI 1.39-3.47), respectively. In further analysis, high CAV1 gene expression was associated with a molecular profile indicating altered metabolism, neovascularization, chemoresistance, EMT, suppressed immune response, and active tumor microenvironment. Protein levels of CAV1 in malignant and stromal cells were not correlated with CAV1 gene expression. CONCLUSION CAV1 gene expression in TNBC is a biomarker that merits further investigation in clinical trials and as a therapeutic target.
Collapse
Affiliation(s)
- Christopher Godina
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Somayeh Khazaei
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Vallon-Christersson
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Karolin Isaksson
- Department of Clinical Sciences Lund, Surgery, Lund University and Kristianstad Hospital, Kristianstad, Sweden
| | - Ana Bosch
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden
| | - Helena Jernström
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Liu Y, Zhang X, Gu W, Su H, Wang X, Wang X, Zhang J, Xu M, Sheng W. Unlocking the Crucial Role of Cancer-Associated Fibroblasts in Tumor Metastasis: Mechanisms and Therapeutic Prospects. J Adv Res 2024:S2090-1232(24)00220-0. [PMID: 38825314 DOI: 10.1016/j.jare.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Tumor metastasis represents a stepwise progression and stands as a principal determinant of unfavorable prognoses among cancer patients. Consequently, an in-depth exploration of its mechanisms holds paramount clinical significance. Cancer-associated fibroblasts (CAFs), constituting the most abundant stromal cell population within the tumor microenvironment (TME), have garnered robust evidence support for their pivotal regulatory roles in tumor metastasis. AIM of Review This review systematically explores the roles of CAFs at eight critical stages of tumorigenic dissemination: 1) extracellular matrix (ECM) remodeling, 2) epithelial-mesenchymal transition (EMT), 3) angiogenesis, 4) tumor metabolism, 5) perivascular migration, 6) immune escape, 7) dormancy, and 8) premetastatic niche (PMN) formation. Additionally, we provide a compendium of extant strategies aimed at targeting CAFs in cancer therapy. Key Scientific Concepts of Review This review delineates a structured framework for the interplay between CAFs and tumor metastasis while furnishing insights for the potential therapeutic developments. It contributes to a deeper understanding of cancer metastasis within the TME, facilitating the utilization of CAF-targeting therapies in anti-metastatic approaches.
Collapse
Affiliation(s)
- Yingxue Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
| | - Hui Su
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Jiayu Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of Intracellular Communication Reveals Consistent Gene Changes Associated with Early-Stage Acne Skin. RESEARCH SQUARE 2024:rs.3.rs-4402048. [PMID: 38854033 PMCID: PMC11160929 DOI: 10.21203/rs.3.rs-4402048/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
| | | | - Min Qin
- University of California (UCLA)
| | | | | | | | | | | |
Collapse
|
9
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Di Russo S, Liberati FR, Riva A, Di Fonzo F, Macone A, Giardina G, Arese M, Rinaldo S, Cutruzzolà F, Paone A. Beyond the barrier: the immune-inspired pathways of tumor extravasation. Cell Commun Signal 2024; 22:104. [PMID: 38331871 PMCID: PMC10851599 DOI: 10.1186/s12964-023-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024] Open
Abstract
Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners. These interactions are not accidental; they are critical for cancer cells to exploit the immune functions of neutrophils and successfully extravasate. In another strategy, tumor cells mimic the behavior and characteristics of immune cells. They release a suite of inflammatory mediators, which under normal circumstances, guide the processes of endothelium reshaping and facilitate the entry and movement of immune cells within tissues. In this review, we offer a new perspective on the tactics employed by cancer cells to extravasate and infiltrate target tissues. We delve into the myriad mechanisms that tumor cells borrow, adapt, and refine from the immune playbook. Video Abstract.
Collapse
Affiliation(s)
- Sara Di Russo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Agnese Riva
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Federica Di Fonzo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy.
| |
Collapse
|
11
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
12
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
13
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
14
|
Zhang W, Wang J, Liu C, Li Y, Sun C, Wu J, Wu Q. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: significance of breast cancer metastasis. J Transl Med 2023; 21:827. [PMID: 37978384 PMCID: PMC10657029 DOI: 10.1186/s12967-023-04714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell population in breast tumors. A functionally diverse population of CAFs increases the dynamic complexity of the tumor microenvironment (TME). The intertwined network of the TME facilitates the interaction between activated CAFs and breast cancer cells, which can lead to the proliferation and invasion of breast cells. Considering the special transmission function of CAFs, the aim of this review is to summarize and highlight the crosstalk between CAFs and breast cancer cells in the TME as well as the relationship between CAFs and extracellular matrix (ECM), soluble cytokines, and other stromal cells in the metastatic state. The crosstalk between cancer-associated fibroblasts and tumor microenvironment also provides a plastic therapeutic target for breast cancer metastasis. In the course of the study, the inhibitory effects of different natural compounds on targeting CAFs and the advantages of different drug combinations were summarized. CAFs are also widely used in the diagnosis and treatment of breast cancer. The cumulative research on this phenomenon supports the establishment of a targeted immune microenvironment as a possible breakthrough in the prevention of invasive metastasis of breast cancer.
Collapse
Affiliation(s)
- Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
| | - Changgang Sun
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
15
|
Nour SM, Abbasi N, Sadi S, Ravan N, Alipourian A, Yarizadeh M, Soofi A, Ataei A, Tehrany PM. miRNAs as key modulators between normal cells and tumor microenvironment interactions. Chem Biol Drug Des 2023; 102:939-950. [PMID: 37402595 DOI: 10.1111/cbdd.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The tumor microenvironment (TME) is well-defined target for understanding tumor progression and various cell types. Major elements of the tumor microenvironment are the followings: endothelial cells, fibroblasts, signaling molecules, extracellular matrix, and infiltrating immune cells. MicroRNAs (miRNAs) are a group of small noncoding RNAs with major functions in the gene expression regulation at post-transcriptional level that have also appeared to exerts key functions in the cancer initiation/progression in diverse biological processes and the tumor microenvironment. This study summarized various roles of miRNAs in the complex interactions between the tumor and normal cells in their microenvironment.
Collapse
Affiliation(s)
| | - Nadia Abbasi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadi
- Medical Doctor, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ravan
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Yarizadeh
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Pooya M Tehrany
- Faculty of Medicine, National University of Malaysia, Bani, Malaysia
| |
Collapse
|
16
|
Motyka J, Gacuta E, Kicman A, Kulesza M, Malinowski P, Ławicki S. CXCL12 and CXCR4 as Potential Early Biomarkers for Luminal A and Luminal B Subtypes of Breast Cancer. Cancer Manag Res 2023; 15:573-589. [PMID: 37426394 PMCID: PMC10329441 DOI: 10.2147/cmar.s416382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Breast cancer is the most common type of malignancy in women. Factors that increase the risk of occurrence include chronic inflammation, with chemokines as its mediators. Therefore, the purpose of the present study was to determine the diagnostic utility of CXCL12 and CXCR4 as modern tumor markers in patients with early-stage luminal A and luminal B subtype of breast cancer and also to compare the results with the routinely used marker - CA 15-3. Patients and Methods The study included 100 patients with early breast cancer of luminal A and B subtypes, 50 women with benign breast lesion and 50 healthy women. The levels of CXCL12 and CXCR4 concentrations were determined by enzyme-linked immunosorbent assay (ELISA), comparative marker CA 15-3 - by electrochemiluminescence method (ECLIA). Results Concentrations of CXCL12 were significantly lower, while CXCR4 and CA 15-3 - significantly higher among patients with early-stage breast cancer than healthy women. CXCL12 also showed lower concentrations among fibroadenoma patients in comparison to healthy women, while CXCR4 - lower concentrations among fibroadenoma patients than cancer group. CXCL12 showed significantly higher values of sensitivity (79%), specificity (82%), positive predictive value (89.72%), negative predictive value (80%), diagnostic accuracy (80%) and diagnostic power (AUC = 0.8196) in the whole breast cancer group compared to the CA 15-3 marker (58%; 72%; 80.56%; 46.15%, 62.67%, 0.6434, resp.). Analysis of combined parameters resulted in increased sensitivity, negative predictive value and power of the test with a slight decrease in positive predictive value and a more significant decrease in specificity, reaching the best values for the three-parameter test CXCL12+CXCR4+CA15-3 (96%; 85.71%; AUC = 0.8812; 78.69%; 48%, resp.). Conclusion The results indicate the preliminary usefulness of CXCL12 and CXCR4 as early biomarkers in the diagnosis of breast cancer, especially in the combined panel with CA 15-3.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Gacuta
- Department of Perinatology, University Clinical Hospital of Bialystok, Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Malinowski
- Department of Oncological Surgery, Bialystok Oncology Center, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
17
|
Yang Y, Li J, Lei W, Wang H, Ni Y, Liu Y, Yan H, Tian Y, Wang Z, Yang Z, Yang S, Yang Y, Wang Q. CXCL12-CXCR4/CXCR7 Axis in Cancer: from Mechanisms to Clinical Applications. Int J Biol Sci 2023; 19:3341-3359. [PMID: 37497001 PMCID: PMC10367567 DOI: 10.7150/ijbs.82317] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 07/28/2023] Open
Abstract
Cancer is a multi-step disease caused by the accumulation of genetic mutations and/or epigenetic changes, and is the biggest challenge around the world. Cytokines, including chemokines, exhibit expression changes and disorders in all human cancers. These cytokine abnormalities can disrupt homeostasis and immune function, and make outstanding contributions to various stages of cancer development such as invasion, metastasis, and angiogenesis. Chemokines are a superfamily of small molecule chemoattractive cytokines that mediate a variety of cellular functions. Importantly, the interactions of chemokine members CXCL12 and its receptors CXCR4 and CXCR7 have a broad impact on tumor cell proliferation, survival, angiogenesis, metastasis, and tumor microenvironment, and thus participate in the onset and development of many cancers including leukemia, breast cancer, lung cancer, prostate cancer and multiple myeloma. Therefore, this review aims to summarize the latest research progress and future challenges regarding the role of CXCL12-CXCR4/CXCR7 signaling axis in cancer, and highlights the potential of CXCL12-CXCR4/CXCR7 as a biomarker or therapeutic target for cancer, providing essential strategies for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Yaru Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayan Li
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Haiying Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Yanqing Liu
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huanle Yan
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yifan Tian
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Shulin Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Qiang Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
18
|
Reivan Ortiz GG, Ciongradi CI, Chaitanya MVNL, Narayanan J, Mohany M, Al-Rejaie SS, Arias-Gonzáles JL, Sârbu I, Assefi M, Akram SV, Döğüş Y, Bahrami A, Akhavan-Sigari R. Identification of novel candidate targets for suppressing ovarian cancer progression through IL-33/ST2 axis components using the system biology approach. Front Mol Biosci 2023; 10:1189527. [PMID: 37333018 PMCID: PMC10272621 DOI: 10.3389/fmolb.2023.1189527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) of ovarian cancer (OvC) are the most prevalent element of the tumor microenvironment (TM). By promoting angiogenesis, immunological suppression, and invasion, CAFs speed up the growth of tumors by changing the extracellular matrix's structure and composition and/or initiating the epithelial cells (EPT). IL-33/ST2 signaling has drawn a lot of attention since it acts as a pro-tumor alarmin and encourages spread by altering TM. Methods: Differentially expressed genes (DEGs) of the OvC tumor microenvironment were found in the GEO database, qRT-PCR, western blotting, and immunohistochemistry, and their presence and changes in healthy and tumor tissue content were examined. Primary cultures of healthy fibroblasts and CAFs obtained from healthy and tumor tissues retrieved from OvC samples were used for in vitro and in vivo investigations. Cultured primary human CAFs were utilized to investigate the regulation and the IL-33/ST2 axis role in the inflammation reactions. Results: Although ST2 and IL-33 expression was detected in both epithelial (EPT) and fibroblast cells of ovarian cancer, they are more abundant in CAFs. Lipopolysaccharides, serum amyloid A1, and IL-1β, the inflammatory mediators, could all induce IL-33 expression through NF-κB activation in human CAFs. In turn, via the ST2 receptor, IL-33 affected the production of IL-6, IL-1β, and PTGS2 in human CAFs via the MAPKs-NF-κB pathway. Conclusion: Our findings suggest that IL-33/ST2 is affected by the interaction of CAFs and epithelial cells inside the tumor microenvironment. Activation of this axis leads to increased expression of inflammatory factors in tumor CAFs and EPT cells. Therefore, targeting the IL-33/ST2 axis could have potential value in the prevention of OvC progression.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Carmen Iulia Ciongradi
- Department of Surgery-Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - M. V. N. L. Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jayasankar Narayanan
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathu, Tamil Nadu, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, BC, Canada
| | - Ioan Sârbu
- Department of Surgery-Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Marjan Assefi
- University of North Carolina, Greensboro, NC, United States
| | | | - Yusuf Döğüş
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Healthcare Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
19
|
Wei X, Tao S, Mao H, Zhu H, Mao L, Pei W, Shi X, Shi Y, Zhang S, Wu Y, Wei K, Wang J, Pang S, Wang W, Chen C, Yang Q. Exosomal lncRNA NEAT1 induces paclitaxel resistance in breast cancer cells and promotes cell migration by targeting miR-133b. Gene 2023; 860:147230. [PMID: 36717039 DOI: 10.1016/j.gene.2023.147230] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
The lncRNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) has been associated with the development, metastasis and drug resistance of breast cancer (BC). However, the mechanisms underlying NEAT1-induced paclitaxel resistance in the microenvironment of BC remain unclear. In this study, NEAT1 expression was found to be high in paclitaxel-resistant BC cells (SKBR3/PR cells) and exosomes derived from these cells. NEAT1 promoted the migration of BC cells and their resistance to paclitaxel, whereas its downregulation reduced the drug resistance. In addition, downregulation of NEAT1 decreased the migration and proliferation of BC cells by inhibiting the expression of CXCL12 by reducing the adsorption of miR-133b. Furthermore, inhibition of miR-133b reversed the interference of NEAT1 and CXCL12 in paclitaxel resistance, migration and proliferation of BC cells. Knockdown of NEAT1 in a xenograft-bearing mouse model remarkably inhibited cancer progression and improved the response to paclitaxel. Altogether, this study revealed that SKBR3/PR cell-derived exosomal lncRNA NEAT1 can induce paclitaxel resistance and cell migration and growth in the tumour microenvironment of BC and may serve as a new target for the clinical treatment of BC.
Collapse
Affiliation(s)
- Xinyu Wei
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Shuang Tao
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Huilan Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Haitao Zhu
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Lingyu Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Wenhao Pei
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Xiuru Shi
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Yingxiang Shi
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Yulun Wu
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Ke Wei
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Jing Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui 233030, China.
| | - Changjie Chen
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| | - Qingling Yang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| |
Collapse
|
20
|
Li J, Gu X, Wan G, Wang Y, Chen K, Chen Q, Lu C. Rocuronium bromide suppresses esophageal cancer via blocking the secretion of C-X-C motif chemokine ligand 12 from cancer associated fibroblasts. J Transl Med 2023; 21:248. [PMID: 37029408 PMCID: PMC10082495 DOI: 10.1186/s12967-023-04081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/25/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Cancer associated fibroblasts (CAFs) communicate metabolically with tumor genesis and development. Rocuronium bromide (RB) is reported to exert certain inhibitory effect on tumor. Here, we investigate the role of RB in esophageal cancer (EC) malignant progression. METHODS Tumor xenograft models with EC cells were locally and systemically administrated with RB to detect the influence of different administrations on tumor progression. Mouse CAFs PDGFRα+/F4/80- were sorted by Flow cytometry with specific antibodies. CAFs were treated with RB and co-cultured with EC cells. The proliferation, invasion and apoptosis assays of EC cells were performed to detect the influences of RB targeting CAFs on EC cell malignant progression. Human fibroblasts were employed to perform these detections to confirm RB indirect effect on EC cells. The gene expression changes of CAFs response to RB treatment were detected using RNA sequencing and verified by Western blot, immunohistochemistry and ELISA. RESULTS Tumors in xenograft mice were observed significantly inhibited by local RB administration, but not by systemic administration. Moreover EC cells did not show obvious change in viability when direct stimulated with RB in vitro. However, when CAFs treated with RB were co-cultured with EC cells, obvious suppressions were observed in EC cell malignancy, including proliferation, invasion and apoptosis. Human fibroblasts were employed to perform these assays and similar results were obtained. RNA sequencing data of human fibroblast treated with RB, and Western blot, immunohistochemistry and ELISA results all showed that CXCL12 expression was significantly diminished in vivo and in vitro by RB. EC cells direct treated with CXCL12 showed much higher malignancy. Moreover cell autophagy and PI3K/AKT/mTOR signaling pathway in CAFs were both suppressed by RB which can be reversed by Rapamycin pretreatment. CONCLUSIONS Our data suggest that RB could repress PI3K/AKT/mTOR signaling pathway and autophagy to block the CXCL12 expression in CAFs, thereby weakening the CXCL12-mediated EC tumor progression. Our data provide a novel insight into the underlying mechanism of RB inhibiting EC, and emphasize the importance of tumor microenvironment (cytokines from CAFs) in modulating cancer malignant progression.
Collapse
Affiliation(s)
- Jingyi Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
- Qiqihar Medical University, Qiqihar, 161006, Heilongjiang Province, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Yuhan Wang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Qi Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China.
| |
Collapse
|
21
|
Pradhan R, Paul S, Das B, Sinha S, Dash SR, Mandal M, Kundu CN. Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway. J Nutr Biochem 2023; 113:109257. [PMID: 36572069 DOI: 10.1016/j.jnutbio.2022.109257] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the highly abundant components in the tumor microenvironment (TME). They secrete several cytokines, which amplified tumor progression, invasion, stemness, metastasis, and angiogenesis. Here, we evaluate the potentiality of cytokines for the formation of cancer stem cells (CSCs) in oral cancer cells niche and investigate the anti-inflammatory and anti-carcinogenic effect of Resveratrol-nanoparticle (Res-NP). We first differentiated quiescent human fibroblasts into CAFs in vitro in response to PDGF-B and TGF-β stimulation and these CAFs were found to increase CXCL-12 and IL-6 secretion. CSCs-enriched population was created by incubating H-357 cells with CAFs and cytokine-enriched CAFs-conditioned media (CAFs-CM). Likewise, CSCs-populated environment was also generated after incubating CAFs-CM to patient-derived primary oral cancer cells. It was noted that CXCL-12 and IL-6 secreted from CAFs significantly promoted CSCs growth, proliferation, aggressiveness, metastasis, and angiogenesis. However, Res-NP reduced CSCs growth and proliferation by abrogating the secretion of CXCL-12 and IL-6. A significant decrease in the expression of metastatic and angiogenic markers, in ovo blood vascularization, intracellular NO generation, MMPs expression and tube formation was found upon Res-NP treatment. Reduction of representative CSCs and angiogenesis markers were also noted after Res-NP treatment in xenograft mice model. CXCL-12 physically interact with IL-6 and this interaction was diminished after Res-NP treatment. Moreover, the expression of CD133 and VEGF-A were down-regulated either on Res-NP or CXCL-12/IL-6-specific inhibitors treated CSCs-enriched cells. Thus, the data suggest that CSCs growth is CXCL-12 and IL-6 dependent and Res-NP obstruct carcinogenesis and metastasis by inhibiting CXCL-12 and IL-6 production in in vitro, in vivo, in ovo, and ex vivo systems.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
22
|
Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E, Filipovic T, Bullock E, Brambillasca CS, Pulver EM, Nieuwland M, de Rink I, van Diepen F, Klarenbeek S, Kerkhoven R, Brunton VG, Scheele CLGJ, Boelens MC, Jonkers J. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat Commun 2023; 14:183. [PMID: 36635273 PMCID: PMC9837080 DOI: 10.1038/s41467-023-35793-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.
Collapse
Affiliation(s)
- Julia M Houthuijzen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Wientjens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamara Filipovic
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chiara S Brambillasca
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia M Pulver
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank van Diepen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mirjam C Boelens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Maurya SK, Khan P, Rehman AU, Kanchan RK, Perumal N, Mahapatra S, Chand HS, Santamaria-Barria JA, Batra SK, Nasser MW. Rethinking the chemokine cascade in brain metastasis: Preventive and therapeutic implications. Semin Cancer Biol 2022; 86:914-930. [PMID: 34968667 PMCID: PMC9234104 DOI: 10.1016/j.semcancer.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023]
Abstract
Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Hitendra S Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
24
|
Li Y, Tian R, Liu J, Li J, Tan H, Wu Q, Fu X. Deciphering the immune landscape dominated by cancer-associated fibroblasts to investigate their potential in indicating prognosis and guiding therapeutic regimens in high grade serous ovarian carcinoma. Front Immunol 2022; 13:940801. [PMID: 36119108 PMCID: PMC9478207 DOI: 10.3389/fimmu.2022.940801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Limited immunotherapeutic effect in high-grade serous ovarian carcinoma (HGSOC) propels exploration of the mechanics behind this resistance, which may be partly elucidated by investigating characters of cancer-associated fibroblasts (CAFs), a significant population in HGSOC involved in shaping tumor immune microenvironment. Herein, leveraging gene expression data of HGSOC samples from The Cancer Genome Atlas and Gene Expression Omnibus datasets, we suggested that CAFs detrimentally affected the outcomes of HGSOC patients. Subsequently, we performed weighted gene co-expression network analysis (WGCNA) to identify a CAFs-related module and screened out seven hub genes from this module, all of which were positively correlated with the infiltration of immunosuppressive macrophages. As one of the hub genes, the expression of fibrillin 1 (FBN1) and its relevance to CD206 were further verified by immunohistochemistry staining in HGSOC samples. Meanwhile, we extracted genes that correlated well with CAF signatures to construct a CAFscore. The capacity of the CAFscore as an independent prognostic factor was validated by Cox regression analyses, and its relevance to components as well as signals in the tumor immune microenvironment was also investigated. Under the evaluation by the CAFscore, HGSOC patients with relatively high CAFscore had worse outcomes, activated mesenchymal signaling pathways, and immune checkpoint blockade (ICB) resistance signatures, which was consistent with the fact that non-responders in anti-PD-1 treatment cohorts tended to have higher CAFscore. Besides, the possibility of CAFscore to guide the selection of sensitive chemotherapeutic agents was explored. In conclusion, individualized assessment of the CAFscore could uncover the extent of stroma activation and immunosuppression and inform therapeutic strategies to improve the benefit of therapies.
Collapse
Affiliation(s)
- Yimin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Hong Tan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| | - Qihui Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| |
Collapse
|
25
|
Holter JC, Chang CW, Avendano A, Garg AA, Verma AK, Charan M, Ahirwar DK, Ganju RK, Song JW. Fibroblast-derived CXCL12 increases vascular permeability in a 3-D microfluidic model independent of extracellular matrix contractility. Front Bioeng Biotechnol 2022; 10:888431. [PMID: 36118583 PMCID: PMC9478647 DOI: 10.3389/fbioe.2022.888431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play an active role in remodeling the local tumor stroma to support tumor initiation, growth, invasion, metastasis, and therapeutic resistance. The CAF-secreted chemokine, CXCL12, has been directly implicated in the tumorigenic progression of carcinomas, including breast cancer. Using a 3-D in vitro microfluidic-based microtissue model, we demonstrate that stromal CXCL12 secreted by CAFs has a potent effect on increasing the vascular permeability of local blood microvessel analogues through paracrine signaling. Moreover, genetic deletion of fibroblast-specific CXCL12 significantly reduced vessel permeability compared to CXCL12 secreting CAFs within the recapitulated tumor microenvironment (TME). We suspected that fibroblast-mediated extracellular matrix (ECM) remodeling and contraction indirectly accounted for this change in vessel permeability. To this end, we investigated the autocrine effects of CXCL12 on fibroblast contractility and determined that antagonistic blocking of CXCL12 did not have a substantial effect on ECM contraction. Our findings indicate that fibroblast-secreted CXCL12 has a significant role in promoting a leakier endothelium hospitable to angiogenesis and tumor cell intravasation; however, autocrine CXCL12 is not the primary upstream trigger of CAF contractility.
Collapse
Affiliation(s)
- Jacob C. Holter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Ayush A. Garg
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
| | - Ajeet K. Verma
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Manish Charan
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Dinesh K. Ahirwar
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, RJ, India
| | - Ramesh K. Ganju
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Cancer-associated fibroblasts strengthen cell proliferation and EGFR TKIs resistance through aryl hydrocarbon receptor dependent signals in non-small cell lung cancer. BMC Cancer 2022; 22:764. [PMID: 35831824 PMCID: PMC9281029 DOI: 10.1186/s12885-022-09877-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
The tumor microenvironment is a dynamic cellular milieu that interacts with cancer cells and promotes tumor progression and metastasis. However, the specific mechanisms by which the tumor microenvironment impacts cancer cells’ behaviors remain poorly understood. In this study, enriched cancer-associated fibroblasts (CAFs) were observed in tumor tissues isolated from epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) resistant non-small cell lung cancer (NSCLC) patients. CAFs isolated from tumor tissues were capable of producing tryptophan metabolite kynurenine (Kyn), which significantly increased the proliferation and EGFR TKIs resistance of NSCLC cells. In this study, it was further observed that the activation of tryptophan 2,3-dioxygenase (TDO) in CAFs, resulted in the enhanced capability of tryptophan metabolism in them compared to normal fibroblasts. As a result, Kyn produced by CAFs facilitated the up-regulation of Aryl Hydrocarbon Receptor (AhR) signals in NSCLC, thereby resulting in the downstream ATK and ERK signaling pathways activation. Finally, inhibition of AhR signals efficiently prevented tumor growth and development of EGFR TKIs resistance, eventually improved the outcome of EGFR TKIs, and described a promising therapeutic strategy for NSCLC.
Collapse
|
27
|
Granata V, Crisafulli L, Nastasi C, Ficara F, Sobacchi C. Bone Marrow Niches and Tumour Cells: Lights and Shadows of a Mutual Relationship. Front Immunol 2022; 13:884024. [PMID: 35603212 PMCID: PMC9121377 DOI: 10.3389/fimmu.2022.884024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
The bone marrow (BM) niche is the spatial structure within the intra-trabecular spaces of spongious bones and of the cavity of long bones where adult haematopoietic stem cells (HSCs) maintain their undifferentiated and cellular self-renewal state through the intervention of vascular and nervous networks, metabolic pathways, transcriptional and epigenetic regulators, and humoral signals. Within the niche, HSCs interact with various cell types such as osteoblasts, endothelial cells, macrophages, and mesenchymal stromal cells (MSCs), which maintain HSCs in a quiescent state or sustain their proliferation, differentiation, and trafficking, depending on body needs. In physiological conditions, the BM niche permits the daily production of all the blood and immune cells and their admittance/ingress/progression into the bloodstream. However, disruption of this delicate microenvironment promotes the initiation and progression of malignancies such as those included in the spectrum of myeloid neoplasms, also favouring resistance to pharmacological therapies. Alterations in the MSC population and in the crosstalk with HSCs owing to tumour-derived factors contribute to the formation of a malignant niche. On the other hand, cells of the BM microenvironment cooperate in creating a unique milieu favouring metastasization of distant tumours into the bone. In this framework, the pro-tumorigenic role of MSCs is well-documented, and few evidence suggest also an anti-tumorigenic effect. Here we will review recent advances regarding the BM niche composition and functionality in normal and in malignant conditions, as well as the therapeutic implications of the interplay between its diverse cellular components and malignant cells.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS Mario Negri Pharmacological Research Institute, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
- *Correspondence: Cristina Sobacchi,
| |
Collapse
|
28
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
29
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
30
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
31
|
Non-Coding RNAs in the Crosstalk between Breast Cancer Cells and Tumor-Associated Macrophages. Noncoding RNA 2022; 8:ncrna8010016. [PMID: 35202089 PMCID: PMC8874851 DOI: 10.3390/ncrna8010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a pivotal role in regulating the tumor microenvironment (TME) by controlling gene expression at multiple levels. In tumors, ncRNAs can mediate the crosstalk between cancer cells and other cells in the TME, such as immune cells, stromal cells, and endothelial cells, influencing tumor development and progression. Tumor-associated macrophages (TAMs) are among the most abundant inflammatory cells infiltrating solid cancers that promote tumorigenesis, and their infiltration correlates with a poor prognosis in many tumors. Cancer cells produce different ncRNAs that orchestrate TAM recruitment and polarization toward a tumor-promoting phenotype. Tumor-reprogrammed macrophages shape the TME by promoting angiogenesis and tissue remodeling, and suppressing the anti-tumor activity of adaptive immune cells. TAMs can also produce ncRNA molecules that boost cancer cell proliferation and direct their phenotype and metabolic changes facilitating cancer progression and metastasis. This review will focus on the crosstalk between cancer cells and TAMs mediated by microRNAs and long non-coding RNAs during breast cancer (BC) initiation and progression.
Collapse
|
32
|
Zarychta E, Ruszkowska-Ciastek B. Cooperation between Angiogenesis, Vasculogenesis, Chemotaxis, and Coagulation in Breast Cancer Metastases Development: Pathophysiological Point of View. Biomedicines 2022; 10:biomedicines10020300. [PMID: 35203510 PMCID: PMC8869468 DOI: 10.3390/biomedicines10020300] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer is one of the main causes of morbidity and mortality in women. Early breast cancer has a relatively good prognosis, in contrast to metastatic disease with rather poor outcomes. Metastasis formation in distant organs is a complex process requiring cooperation of numerous cells, growth factors, cytokines, and chemokines. Tumor growth, invasion, and finally systemic spread are driven by processes of angiogenesis, vasculogenesis, chemotaxis, and coagulation. This review summarizes their role in development of distant metastases in breast cancer, as well as explains the essential processes occurring throughout these actions. Abstract With almost 2.3 million new cases and 685 thousand fatal events in 2020 alone, breast cancer remains one of the main causes of morbidity and mortality in women worldwide. Despite the increasing prevalence of the disease in recent years, the number of deaths has dropped—this is mostly the result of better diagnostic and therapeutic opportunities, allowing to recognize and treat breast cancer earlier and more efficiently. However, metastatic disease still remains a therapeutic challenge. As mechanisms of tumor spread are being explored, new drugs can be implemented in clinical practice, improving the outcomes in patients with advanced disease. Formation of metastases is a complex process, which involves activation of angiogenesis, vasculogenesis, chemotaxis, and coagulation. The actions, which occur during metastatic spread are interrelated and complementary. This review summarizes their importance and mutual connections in formation of secondary tumors in breast cancer.
Collapse
|
33
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
34
|
D’Andrea MR, Cereda V, Coppola L, Giordano G, Remo A, De Santis E. Propensity for Early Metastatic Spread in Breast Cancer: Role of Tumor Vascularization Features and Tumor Immune Infiltrate. Cancers (Basel) 2021; 13:cancers13235917. [PMID: 34885027 PMCID: PMC8657227 DOI: 10.3390/cancers13235917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is a complex and highly heterogeneous disease consisting of various subtypes. It is classified into human epidermal growth receptor 2 (HER-2)-enriched, luminal A, luminal B and basal-like/triple negative (TNBC) breast cancer, based on histological and molecular features. At present, clinical decision-making in breast cancer is focused only on the assessment of tumor cells; nevertheless, it has been recognized that the tumor microenvironment (TME) plays a critical biologic role in breast cancer. This is constituted by a large group of immune and non-immune cells, but also by non-cellular components, such as several cytokines. TME is deeply involved in angiogenesis, immune-evasion strategies, and propensity for early metastatic spread, impacting on prognosis and prediction of response to specific treatments. In this review, we focused our attention on the early morphological changes of tumor microenvironment (tumor vasculature features, presence of immune and non-immune cells infiltrating the stroma, levels of cytokines) during breast cancer development. At the same time, we correlate these characteristics with early metastatic propensity (defined as synchronous metastasis or early recurrence) with particular attention to breast cancer subtypes.
Collapse
Affiliation(s)
- Mario Rosario D’Andrea
- Clinical Oncology Unit, San Paolo Hospital, Largo Donatori del Sangue 1, Civitavecchia, 00053 Rome, Italy;
| | - Vittore Cereda
- Clinical Oncology Unit, San Paolo Hospital, Largo Donatori del Sangue 1, Civitavecchia, 00053 Rome, Italy;
- Correspondence: ; Tel.: +39-07-6659-1230
| | - Luigi Coppola
- Unit of Anatomy, Pathological Histology and Diagnostic Cytology, Department of Diagnostic and Pharma-Ceutical Services, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy;
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital, ULSS9, Legnago, 37045 Verona, Italy;
| | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
35
|
Wang K, Kumar US, Sadeghipour N, Massoud TF, Paulmurugan R. A Microfluidics-Based Scalable Approach to Generate Extracellular Vesicles with Enhanced Therapeutic MicroRNA Loading for Intranasal Delivery to Mouse Glioblastomas. ACS NANO 2021; 15:18327-18346. [PMID: 34723509 DOI: 10.1021/acsnano.1c07587] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles derived from different cell sources, are used as promising nanovesicles for delivering therapeutic microRNAs (miRNAs) and drugs in cancer therapy. However, their clinical translation is limited by the quantity, size heterogeneity, and drug or small RNA loading efficiency. Herein, we developed a scalable microfluidic platform that can load therapeutic miRNAs (antimiRNA-21 and miRNA-100) and drugs while controlling the size of microfluidically processed EVs (mpEVs) using a pressure-based disruption and reconstitution process. We prepared mpEVs of optimal size using microvesicles isolated from neural stem cells engineered to overexpress CXCR4 receptor and characterized them for charge and miRNA loading efficiency. Since the delivery of therapeutic miRNAs to brain cancer is limited by the blood-brain barrier (BBB), we adopted intranasal administration of miRNA-loaded CXCR4-engineered mpEVs in orthotopic GBM mouse models and observed a consistent pattern of mpEVs trafficking across the nasal epithelia, bypassing the BBB into the intracranial compartment. In addition, the CXCR4-engineered mpEVs manifested selective tropism toward GBMs by stromal-derived factor-1 chemotaxis to deliver their miRNA cargo. The delivered miRNAs sensitized GBM cells to temozolomide, resulting in prominent tumor regression, and improved the overall survival of mice. A simple and efficient approach of packaging miRNAs in mpEVs using microfluidics, combined with a noninvasive nose-to-brain delivery route presents far-reaching potential opportunities to improve GBM therapy in clinical practice.
Collapse
Affiliation(s)
- Kai Wang
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Uday S Kumar
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Negar Sadeghipour
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| |
Collapse
|
36
|
Kaul K, Benej M, Mishra S, Ahirwar DK, Yadav M, Stanford KI, Jacob NK, Denko NC, Ganju RK. Slit2-Mediated Metabolic Reprogramming in Bone Marrow-Derived Macrophages Enhances Antitumor Immunity. Front Immunol 2021; 12:753477. [PMID: 34777365 PMCID: PMC8581492 DOI: 10.3389/fimmu.2021.753477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Slit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation in vitro. Moreover, myeloablated PyMT mice injected with Slit2-treated bone marrow allografts showed a marked reduction in tumor growth, with enhanced recruitment of M1 macrophage in their tumor stroma. Mechanistic studies revealed that Slit2 significantly enhanced glycolysis and reduced fatty acid oxidation in bone marrow-derived macrophages (BMDMs). Slit2 treatment also altered mitochondrial respiration metabolites in macrophages isolated from healthy human blood that were treated with plasma from breast cancer patients. Overall, this study, for the first time, shows that Slit2 increases BMDM polarization toward antitumor phenotype by modulating immune-metabolism. Furthermore, this study provides evidence that soluble Slit2 could be developed as novel therapeutic strategy to enhance antitumor immune response.
Collapse
Affiliation(s)
- Kirti Kaul
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Martin Benej
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Sanjay Mishra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Marshleen Yadav
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Naduparambil K Jacob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Nicholas C Denko
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
37
|
Morrisson MJ, Bi F, Yang K, Cady SL, Hartwich TMP, Cerchia AP, Li Z, Kim J, Irwin ML, Yang-Hartwich Y. Effect of exercise on peritoneal microenvironment and progression of ovarian cancer. Am J Cancer Res 2021; 11:5045-5062. [PMID: 34765311 PMCID: PMC8569339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Ovarian cancer is one of the deadliest gynecological malignancies and lacks treatments that do not significantly impact patient health-related quality of life. Exercise has been associated with reduced cancer risk and improved clinical outcomes; however the underlying molecular mechanisms are unknown. In this study, we utilized a treadmill-running exercise model to investigate the effects of exercise on high-grade serous ovarian carcinoma (HGSOC) progression and chemotherapy outcomes. We found that treadmill-running suppressed peritoneal colonization of tumors in a syngeneic mouse ovarian cancer model. Acute exercise stimulated the production of CCL2 and IL-15 in the peritoneal microenvironment while downregulating CCL22, VEGF, and CCL12. Using a co-culture model, we demonstrated the role of CCL2 in mediating the activity of peritoneal cells to inhibit cancer cell viability. We showed that the activation of M1 macrophages may contribute to the exercise-induced changes in the peritoneal microenvironment. We identified that chronic exercise modulates gene expression of intraperitoneal fat tissues related to lipid formation, thermogenesis, browning, and inflammation, which can contribute to inhibiting the colonization of metastatic ovarian cancer. Treadmill running also lowered blood urea nitrogen levels and reduced incidence of neutropenia and thrombocytopenia during chemotherapy in a mouse model, suggesting the potential beneficial effects of exercise in improving chemotherapy outcomes. Our data provided new insights into the acute and chronic effects of physical activity on ovarian cancer at the molecular and in vivo levels.
Collapse
Affiliation(s)
- Madeline J Morrisson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
- Sheng Jing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Sarah L Cady
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Tobias MP Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Alexandra P Cerchia
- Department of Biology and Environmental Science, University of New HavenWest Haven, CT 06516, USA
| | - Zhigui Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Melvin & Bren Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Melinda L Irwin
- Yale School of Public HealthNew Haven, CT 06510, USA
- Yale Cancer CenterNew Haven, CT 06510, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
- Yale Cancer CenterNew Haven, CT 06510, USA
| |
Collapse
|
38
|
Ando Y, Mariano C, Shen K. Engineered in vitro tumor models for cell-based immunotherapy. Acta Biomater 2021; 132:345-359. [PMID: 33857692 PMCID: PMC8434941 DOI: 10.1016/j.actbio.2021.03.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy is rapidly evolving as one of the major pillars of cancer treatment. Cell-based immunotherapies, which utilize patient's own immune cells to eliminate cancer cells, have shown great promise in treating a range of malignancies, especially those of hematopoietic origins. However, their performance on a broader spectrum of solid tumor types still fall short of expectations in the clinical stage despite promising preclinical assessments. In this review, we briefly introduce cell-based immunotherapies and the inhibitory mechanisms in tumor microenvironments that may have contributed to this discrepancy. Specifically, a major obstacle to the clinical translation of cell-based immunotherapies is in the lack of preclinical models that can accurately assess the efficacies and mechanisms of these therapies in a (patho-)physiologically relevant manner. Lately, tissue engineering and organ-on-a-chip tools and microphysiological models have allowed for more faithful recapitulation of the tumor microenvironments, by incorporating crucial tumor tissue features such as cellular phenotypes, tissue architecture, extracellular matrix, physical parameters, and their dynamic interactions. This review summarizes the existing engineered tumor models with a focus on tumor immunology and cell-based immunotherapy. We also discuss some key considerations for the future development of engineered tumor models for immunotherapeutics. STATEMENT OF SIGNIFICANCE: Cell-based immunotherapies have shown great promise in treating hematological malignancies and some epithelial tumors. However, their performance on a broader spectrum of solid tumor types still fall short of expectations. Major obstacles include the inhibitory mechanisms in tumor microenvironments (TME) and the lack of preclinical models that can accurately assess the efficacies and mechanisms of cellular therapies in a (patho-)physiologically relevant manner. In this review, we introduce recent progress in tissue engineering and microphysiological models for more faithful recapitulation of TME for cell-based immunotherapies, and some key considerations for the future development of engineered tumor models. This overview will provide a better understanding on the role of engineered models in accelerating immunotherapeutic discoveries and clinical translations.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Chelsea Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
39
|
Kui L, Kong Q, Yang X, Pan Y, Xu Z, Wang S, Chen J, Wei K, Zhou X, Yang X, Wu T, Mastan A, Liu Y, Miao J. High-Throughput In Vitro Gene Expression Profile to Screen of Natural Herbals for Breast Cancer Treatment. Front Oncol 2021; 11:684351. [PMID: 34490085 PMCID: PMC8418118 DOI: 10.3389/fonc.2021.684351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in women worldwide. Some therapeutic drugs and approaches could cause side effects and weaken the immune system. The combination of conventional therapies and traditional Chinese medicine (TCM) significantly improves treatment efficacy in breast cancer. However, the chemical composition and underlying anti-tumor mechanisms of TCM still need to be investigated. The primary aim of this study is to provide unique insights to screen the natural components for breast cancer therapy using high-throughput transcriptome analysis. Differentially expressed genes were identified based on two conditions: single samples and groups were classified according to their pharmaceutical effect. Subsequently, the sample treated with E. cochinchinensis Lour. generated the most significant DEGs set, including 1,459 DEGs, 805 upregulated and 654 downregulated. Similarly, group 3 treatment contained the most DEGs (414 DEGs, 311 upregulated and 103 downregulated). KEGG pathway analyses showed five significant pathways associated with the inflammatory and metastasis processes in cancer, which include the TNF, IL−17, NF-kappa B, MAPK signaling pathways, and transcriptional misregulation in cancer. Samples were classified into 13 groups based on their pharmaceutical effects. The results of the KEGG pathway analyses remained consistent with signal samples; group 3 presents a high significance. A total of 21 genes were significantly regulated in these five pathways, interestingly, IL6, TNFAIP3, and BRIC3 were enriched on at least two pathways, seven genes (FOSL1, S100A9, CXCL12, ID2, PRS6KA3, AREG, and DUSP6) have been reported as the target biomarkers and even the diagnostic tools in cancer therapy. In addition, weighted correlation network analysis (WGCNA) was used to identify 18 modules. Among them, blue and thistle2 were the most relevant modules. A total of 26 hub genes in blue and thistle2 modules were identified as the hub genes. In conclusion, we screened out three new TCM (R. communis L., E. cochinchinensis Lour., and B. fruticosa) that have the potential to develop natural drugs for breast cancer therapy, and obtained the therapeutic targets.
Collapse
Affiliation(s)
- Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qinghua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yunbing Pan
- Nowbio Biotechnology Company, Kunming, China
| | - Zetan Xu
- Nowbio Biotechnology Company, Kunming, China
| | | | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiaolei Zhou
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tingqin Wu
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Anthati Mastan
- Research Center, Microbial Technology Laboratory, Council of Scientific & Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants, Bangalore, India
| | - Yao Liu
- Baoji High-tech Hospital , Baoji, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
40
|
Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021; 15:361-381. [PMID: 34086259 PMCID: PMC8222467 DOI: 10.1007/s12079-021-00621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multi-faceted disease in which spontaneous mutation(s) in a cell leads to the growth and development of a malignant new organ that if left undisturbed will grow in size and lead to eventual death of the organism. During this process, multiple cell types are continuously releasing signaling molecules into the microenvironment, which results in a tangled web of communication that both attracts new cell types into and reshapes the tumor microenvironment as a whole. One prominent class of molecules, chemokines, bind to specific receptors and trigger directional, chemotactic movement in the receiving cell. Chemokines and their receptors have been demonstrated to be expressed by almost all cell types in the tumor microenvironment, including epithelial, immune, mesenchymal, endothelial, and other stromal cells. This results in chemokines playing multifaceted roles in facilitating context-dependent intercellular communications. Recent research has started to shed light on these ligands and receptors in a cancer-specific context, including cell-type specificity and drug targetability. In this review, we summarize the latest research with regards to chemokines in facilitating communication between different cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Arun J Singh
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
41
|
Schuler LA, Murdoch FE. Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers (Basel) 2021; 13:3725. [PMID: 34359625 PMCID: PMC8345134 DOI: 10.3390/cancers13153725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches. In addition to reducing proliferation of ERα+ cancer cells, these treatments also alter signals to multiple other target cells in the environment, including immune cell subpopulations, cancer-associated fibroblasts, and endothelial cells via several distinct estrogen receptors. In this review, we update progress in our understanding of the stromal cells populating the microenvironments of primary and metastatic ER+ tumors, the effects of estrogen on tumor and stromal cells to modulate immune activity and the extracellular matrix, and net outcomes in experimental and clinical studies. We highlight new approaches that will illuminate the unique biology of these cancers, provide the foundation for developing new treatment and prevention strategies, and reduce mortality of this disease.
Collapse
Affiliation(s)
- Linda A. Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
42
|
Xue B, Chuang CH, Prosser HM, Fuziwara CS, Chan C, Sahasrabudhe N, Kühn M, Wu Y, Chen J, Biton A, Chen C, Wilkinson JE, McManus MT, Bradley A, Winslow MM, Su B, He L. miR-200 deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. Genes Dev 2021; 35:1109-1122. [PMID: 34301766 PMCID: PMC8336896 DOI: 10.1101/gad.347344.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
In this study, Xue et al. identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. They show that miR-200 regulates the functional interaction between cancer cells and CAFs at least in part by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs, providing new insight into the interaction between cancer cells and CAFs as a mechanism to promote metastatic potential. Lung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.
Collapse
Affiliation(s)
- Bin Xue
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Cesar Seigi Fuziwara
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA.,Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Claudia Chan
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Neil Sahasrabudhe
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Maximilian Kühn
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Yalei Wu
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - Jingqi Chen
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Anne Biton
- Department of Statistics, University of California at Berkeley, Berkeley, California 94705, USA.,Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756, Centre National de la Recherche Scientifique, Institut Pasteur, Paris 01 45 68 80 00, France
| | - Caifu Chen
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - John Erby Wilkinson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California at San Francisco Diabetes Center, W.M. Keck Center for Noncoding RNAs, University of California at San Francisco, San Francisco, California 94143, USA
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Lin He
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| |
Collapse
|
43
|
Li J, Luco AL, Camirand A, St-Arnaud R, Kremer R. Vitamin D Regulates CXCL12/CXCR4 and Epithelial-to-Mesenchymal Transition in a Model of Breast Cancer Metastasis to Lung. Endocrinology 2021; 162:6164379. [PMID: 33693593 PMCID: PMC8183495 DOI: 10.1210/endocr/bqab049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency is associated with poor cancer outcome in humans, and administration of vitamin D or its analogs decreases tumor progression and metastasis in animal models. Using the mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) model of mammary cancer, we previously demonstrated a significant acceleration of carcinogenesis in animals on a low vitamin D diet and a reduction in spontaneous lung metastases when mice received vitamin D through perfusion. We investigate here the action mechanism for vitamin D in lung metastasis in the same non-immunodeficient model and demonstrate that it involves the control of epithelial to mesenchymal transition as well as interactions between chemokine C-X-C motif chemokine 12 (CXCL12) and its receptor C-X-C chemokine receptor type 4 (CXCR4). In vitro, 10-9M vitamin D treatment modifies the phenotype of MMTV-PyMT primary mammary tumor cells and significantly decreases their invasiveness and mammosphere formation capacity by 40% and 50%, respectively. Vitamin D treatment also inhibits phospho-signal transducer and activator of transcription 3 (p-STAT3), zinc finger E-box-binding homeobox 1 (Zeb1), and vimentin by 52%, 75%, and 77%, respectively, and increases E-cadherin by 87%. In vivo, dietary vitamin D deficiency maintains high levels of Zeb1 and p-STAT3 in cells from primary mammary tumors and increases CXCL12 expression in lung stroma by 64%. In lung metastases, vitamin D deficiency increases CXCL12/CXCR4 co-localization by a factor of 2.5. These findings indicate an involvement of vitamin D in mammary cancer "seed" (primary tumor cell) and "soil" (metastatic site) and link vitamin D deficiency to epithelial-to-mesenchymal transition (EMT), CXCL12/CXCR4 signaling, and accelerated metastasis, suggesting vitamin D repleteness in breast cancer patients could enhance the efficacy of co-administered therapies in preventing spread to distant organs.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
| | - Aimée-Lee Luco
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
| | - Anne Camirand
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
| | - René St-Arnaud
- Department of Orthopaedic Surgery, Faculty of Dentistry, Shriners Hospital, Montréal, QC, Canada
| | - Richard Kremer
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
- Correspondence: Richard Kremer, Department of Medicine, McGill University Health Centre, Glen site E-M1.3221, 1001 Décarie Blvd, Montréal, QC, Canada, H4A 3J1.
| |
Collapse
|
44
|
Fernández-Nogueira P, Fuster G, Gutierrez-Uzquiza Á, Gascón P, Carbó N, Bragado P. Cancer-Associated Fibroblasts in Breast Cancer Treatment Response and Metastasis. Cancers (Basel) 2021; 13:3146. [PMID: 34201840 PMCID: PMC8268405 DOI: 10.3390/cancers13133146] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BrCa) is the leading cause of death among women worldwide, with about one million new cases diagnosed each year. In spite of the improvements in diagnosis, early detection and treatment, there is still a high incidence of mortality and failure to respond to current therapies. With the use of several well-established biomarkers, such as hormone receptors and human epidermal growth factor receptor-2 (HER2), as well as genetic analysis, BrCa patients can be categorized into multiple subgroups: Luminal A, Luminal B, HER2-enriched, and Basal-like, with specific treatment strategies. Although chemotherapy and targeted therapies have greatly improved the survival of patients with BrCa, there is still a large number of patients who relapse or who fail to respond. The role of the tumor microenvironment in BrCa progression is becoming increasingly understood. Cancer-associated fibroblasts (CAFs) are the principal population of stromal cells in breast tumors. In this review, we discuss the current understanding of CAFs' role in altering the tumor response to therapeutic agents as well as in fostering metastasis in BrCa. In addition, we also review the available CAFs-directed molecular therapies and their potential implications for BrCa management.
Collapse
Affiliation(s)
- Patricia Fernández-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biomedicine, School of Medicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biochemistry & Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Department of Biosciences, Faculty of Sciences and Technology, University of Vic, 08500 Vic, Spain
| | - Álvaro Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
45
|
Tomita T, Kato M, Hiratsuka S. Regulation of vascular permeability in cancer metastasis. Cancer Sci 2021; 112:2966-2974. [PMID: 33966313 PMCID: PMC8353911 DOI: 10.1111/cas.14942] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Enhancement of vascular permeability is indispensable for cancer metastasis. Weakened endothelial barrier function enhances vascular permeability. Circulating tumor cells moving in the microvasculature tend to invade into stromal tissue at the location where vascular permeability is enhanced. Many basic studies have identified permeability factors by using gene‐modified animals and cells. These factors directly/indirectly interact with endothelial cells. Here, we review vascular permeability factors and their molecular mechanisms. Interactions between tumor cells and endothelial cells are also discussed in the process of extravasation, one of the most critical steps in tumor metastasis. In some cases, primary tumors can manipulate permeability in a remote organ by secreting permeability factors. In addition, the importance of glycocalyx, which covers the endothelial cell surface, in controlling vascular permeability and tumor metastasis is also described. Furthermore, analysis of the hyperpermeable region found in a mouse model study is introduced. It clearly showed that tumor‐bearing mouse lungs had a hyperpermeable region due to the influence of a remote primary tumor, and fibrinogen deposition was observed in that region. Given that fibrinogen was reported to be a permeability factor and a key regulator of inflammation, eliminating fibrinogen deposition may prevent future metastasis.
Collapse
Affiliation(s)
- Takeshi Tomita
- Department of Biochemistry and Molecular Biology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayoshi Kato
- Department of Biochemistry and Molecular Biology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Sachie Hiratsuka
- Department of Biochemistry and Molecular Biology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
46
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|
47
|
Li Y, Li F, Bai X, Li Y, Ni C, Zhao X, Zhang D. ITGA3 Is Associated With Immune Cell Infiltration and Serves as a Favorable Prognostic Biomarker for Breast Cancer. Front Oncol 2021; 11:658547. [PMID: 34094951 PMCID: PMC8172804 DOI: 10.3389/fonc.2021.658547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background ITGA3 is a member of the integrin family, a cell surface adhesion molecule that can interact with extracellular matrix (ECM) proteins. The purpose of this study was to explore the significance of ITGA3 expression in the prognosis and clinical diagnosis of breast cancer patients. Methods Oncomine, the Human Protein Atlas (HPA) and UALCAN were used to analyze the expression of ITGA3 in various cancers. PrognoScan, GEPIA, Kaplan–Meier plotter and Easysurv were utilized to analyze the prognosis of ITGA3 in certain cancers. Based on TCGA data, a receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of ITGA3 expression. cBio-Portal and MethSurv were used to evaluate the genomic mechanism. LinkedOmics, NetworkAnalyst and Metascape were used to build the signaling network. TIMER is a web server for comprehensive analysis of tumor infiltrating immune cells and tumor infiltrating lymphocytes (TILs). Results The expression of ITGA3 in normal breast tissues was greater than that in breast cancer tissues at both the mRNA and protein levels. High expression of ITGA3 was associated with better prognosis of breast cancer patients. ROC analysis indicated that ITGA3 had significant diagnostic value. Genomic analysis revealed that promoter methylation of ITGA3 leads to transcriptional silencing, which may be one of the mechanisms underlying ITGA3 downregulation in BRCA. Immune infiltration analysis showed that ITGA3 may be involved in the recruitment of immune cells. Conclusions This study identified ITGA3 as a novel biomarker to estimate the diagnosis and prognosis of breast cancer. In addition, ITGA3 is involved in ECM regulation and immune cell infiltration.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Comparative Gene Signature of (-)-Oleocanthal Formulation Treatments in Heterogeneous Triple Negative Breast Tumor Models: Oncological Therapeutic Target Insights. Nutrients 2021; 13:nu13051706. [PMID: 34069906 PMCID: PMC8157589 DOI: 10.3390/nu13051706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) heterogeneity and limited therapeutic options confer its phenotypic aggressiveness. The discovery of anti-TNBC natural products with valid molecular target(s) and defined pharmacodynamic profile would facilitate their therapeutic nutraceutical use by TNBC patients. The extra-virgin olive oil (EVOO) is a key Mediterranean diet ingredient. S-(−)-Oleocanthal (OC) leads the bioactive anti-tumor EVOO phenolic ingredients. A previous study reported the solid dispersion formulated OC with (+)-xylitol (OC-X) suppressed the in vivo progression and recurrence of the TNBC MDA-MB-231 cells. This study investigates the ability of OC-X formulation to suppress the in vivo heterogeneous BC initiation and progression utilizing advanced preclinical transgenic MMTV-PyVT and TNBC PDX mouse models. Furthermore, the clustering of the gene expression profiles in MMTV-PyVT and PDX mouse tumors treated with OC-X acquired by a Clariom S microarray analysis identified the distinctly affected genes. Several affected novel signature genes identified in response to OC-X treatments and proved overlapped in both mouse and human tumor models, shedding some lights toward understanding the OC anticancer molecular mechanism and assisting in predicting prospective clinical outcomes. This study provides molecular and preclinical evidences of OC-X potential as a nutraceutical suppressing heterogeneous TNBC model and offers preliminary gene-level therapeutic mechanistic insights.
Collapse
|
49
|
Midavaine É, Côté J, Sarret P. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev 2021; 40:427-445. [PMID: 33973098 DOI: 10.1007/s10555-021-09974-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada. .,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
50
|
Su F, Daquinag AC, Ahn S, Saha A, Dai Y, Zhao Z, DiGiovanni J, Kolonin MG. Progression of prostate carcinoma is promoted by adipose stromal cell-secreted CXCL12 signaling in prostate epithelium. NPJ Precis Oncol 2021; 5:26. [PMID: 33753872 PMCID: PMC7985375 DOI: 10.1038/s41698-021-00160-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Aggressiveness of carcinomas is linked with tumor recruitment of adipose stromal cells (ASC), which is increased in obesity. ASC promote cancer through molecular pathways not fully understood. Here, we demonstrate that epithelial-mesenchymal transition (EMT) in prostate tumors is promoted by obesity and suppressed upon pharmacological ASC depletion in HiMyc mice, a spontaneous genetic model of prostate cancer. CXCL12 expression in tumors was associated with ASC recruitment and localized to stromal cells expressing platelet-derived growth factor receptors Pdgfra and Pdgfrb. The role of this chemokine secreted by stromal cells in cancer progression was further investigated by using tissue-specific knockout models. ASC deletion of CXCL12 gene in the Pdgfr + lineages suppressed tumor growth and EMT, indicating stroma as the key source of CXCL12. Clinical sample analysis revealed that CXCL12 expression by peritumoral adipose stroma is increased in obesity, and that the correlating increase in Pdgfr/CXCL12 expression in the tumor is linked with decreased survival of patients with prostate carcinoma. Our study establishes ASC as the source of CXCL12 driving tumor aggressiveness and outlines an approach to treatment of carcinoma progression.
Collapse
Affiliation(s)
- Fei Su
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Songyeon Ahn
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| |
Collapse
|