1
|
Tsai YS, Jou YC, Cheong IS, Tung HT, Hsu LN, Tsai HT, Tzai TS. Phthalate exposure induces microRNA-5010/Nrf2-EGR1/GDF15 signaling expression in prostate cancer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117759. [PMID: 39837010 DOI: 10.1016/j.ecoenv.2025.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Phthalate exposure is linked to prostate enlargement through sex hormonal changes and oxidative stress. However, its role and action mechanism in prostate cancer remain unclear. This study examined two patient cohorts: 204 patients undergoing prostate biopsy (24 benign and 180 malignancies) and 85 with confirmed prostate cancer receiving robotic-assisted radical prostatectomy. Urine samples, collected with informed consent, were analyzed for urinary DEHP metabolites using HPLC-MS and ELISA. Patients with prostate cancer exhibited significantly higher urinary MEOHP and ΣDEHP metabolite levels than those who underwent benign biopsy (unpaired t-test, p = 0.027 and 0.039, respectively). MIR-5010 upregulation and MIR-205 downregulation were observed in two paired small RNA sequencing analyses (urine pellets of benign vs. malignant patients and PC3 cells without or with DEHP treatment), correlating with tumor staging in the TCGA prostate cancer cohort. Unlike MIR-205, a known tumor suppressor gene in prostate cancer, gene set enrichment analysis revealed that higher MIR-5010 expression was linked to increased Nrf-2 downstream signaling (enriched score: 0.35; p = 0.17). In vitro assays in prostate cancer cells showed that DEHP enhanced Nrf-2 protein expression and its downstream signaling molecules (i.e., SOD2, Heme oxygenase-1, and EGR-1) while increasing GDF15 mRNA expression via EGR-1 regulation in a dose- and time-dependent manner. Furthermore, urinary GDF15 levels were positively associated with urinary MEOHP and MEHP metabolites in the biopsy cohort (p = 0.0007 and 0.011, respectively) and with urinary oxidative stress marker 8-OHdG, aggressive marker VEGF, and CCL2/MCP-1 levels in the prostatectomy cohort (p = 0.0004, 0.006, and 0.0034, respectively). These findings suggest that phthalate exposure induces Nrf-2 and its downstream signaling (i.e., EGR-1/GDF-15) through microRNA regulation, contributing to prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Yuh-Shyan Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yeong-Chin Jou
- Division of Urology, Department of Surgery, St Martin De Porres Hospital, Chia-Yi City, Taiwan
| | - Ian Seng Cheong
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Hsiu-Ting Tung
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lin-Nei Hsu
- Department of Urology, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hsin-Tzu Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shin Tzai
- Department of Urology, An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
2
|
Zhong Y, Wang R, Huang Z, Hu Z, Peng B, Chen B, Sun L. Identification of SETD4 as an Onco-Immunological Biomarker Encompassing the Tumor Microenvironment, Prognoses, and Therapeutic Responses in Various Human Cancers. Immun Inflamm Dis 2025; 13:e70126. [PMID: 39817582 PMCID: PMC11736640 DOI: 10.1002/iid3.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/24/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response. METHODS Utilizing The Cancer Genome Atlas database, and other publicly accessible platforms, we comprehensively analyzed SETD4 gene expression, methylation patterns, and prognostic significance. Furthermore, we investigated its association with cancer-related pathways, the immune microenvironment, immunotherapy markers, and drug resistance signatures of chemotherapy. Additionally, qRT-PCR was performed to validate SETD4 expression in clinical specimens. RESULTS The expression of SETD4 was abnormal across a variety of cancer types and the expression of SETD4 in colorectal cancer tissues was verified in clinical specimens. The upregulation of SETD4 may be a prognostic risk factor predicting poor overall survival and progression-free survival. The analysis revealed that the mRNA level of SETD4 was modulated by promoter methylation, and patients with lower methylation levels showed shorter survival times. Pathway analysis showed that SETD4 influenced several key cell cycle pathways, including the G2M checkpoint, and mitotic spindle pathways. In addition, SETD4 negatively affects immune cell infiltration in most cancers, including B cells, CD8 T cells, and macrophages. The correlation between SETD4 and cancer stemness as well as homologous recombination deficiency varied across tumor types, suggesting that SETD4 may play a multifaceted role in tumor resistance. Notably, we identified several potential agents targeting SETD4. CONCLUSIONS This study demonstrates that SETD4 is an immune-oncogenic molecule in multiple cancers, with the potential to be a diagnosis, prognosis, and targeted therapy marker.
Collapse
Affiliation(s)
- Yuyun Zhong
- Department of Health Management CenterThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
- The Guangzhou Bay Area Institute of BiomedicineGuangzhouChina
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People's HospitalZhuhai Hospital Affiliated With Jinan UniversityZhuhaiChina
| | - Zijie Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Zhaoting Hu
- Department of Health Management CenterThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Bin Peng
- Department of Thoracic SurgeryThe First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's HospitalShenzhenChina
| | - Bin Chen
- Department of Health Management CenterThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
- The Guangzhou Bay Area Institute of BiomedicineGuangzhouChina
| | - Liyue Sun
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouChina
| |
Collapse
|
3
|
Zhao J, Li Y, Huang Y, Su P, Nie F, Yang P, Yang C. Tumor-Derived GDF15 Induces Tumor Associated Fibroblast Transformation From BMSCs and Fibroblasts in Oral Squamous Cell Carcinoma. J Cell Physiol 2025; 240:e31498. [PMID: 39639678 DOI: 10.1002/jcp.31498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Cancer associated fibroblasts (CAFs) are the predominant stromal cell-type in the solid tumor microenvironment, originating from various cell types and playing a crucial role in promoting tumor progression and metastasis The generation of CAFs is influenced by complex factors secreted by tumor cells, with particular emphasis on transforming growth factor-β (TGF-β). However, it remains largely unknown whether growth/differentiation factor-15 (GDF15), as a member of the TGF-β superfamily, exerts similar effects to TGF-β in oral squamous cell carcinoma (OSCC). In this study, we investigated the impact of GDF15 derived from tumor cells on CAF transformation and elucidated the underlying mechanisms. Exogenous GDF15 and OSCC cells induced the transformation of bone marrow mesenchymal stem cells (BMSCs) and human gingival fibroblasts (HGFs) into CAFs, as evidenced by α-smooth muscle actin (α-SMA) as a phenotypic marker and TGF-β, interleukin 6 (IL-6), and vascular endothelial-derived growth factor (VEGF) as functional markers. Conversely, knockdown of GDF15 in OSCC cells reversed CAF transformation. Mechanistically, extracellular signal-regulated kinases 1/2(ERK1/2) pathway was associated with GDF15-mediated promotion of CAF transformation. Furthermore, OSCC-induced CAFs enhanced migration and invasion abilities of OSCC cells; but this pro-cancer effect was abolished upon knockdown of GDF15 in OSCC cells. Subcutaneous coinjection of OSCC cells with BMSCs or HGFs into mice revealed the promoted tumor growth along with increased expression levels of α-SMA and Ki67 compared with alone OSCC cells injection; these effects were attenuated when GDF15 was knocked down in OSCC cells. Collectively, our findings suggest that tumor-derived GDF15 contributes to the progression of OSCC by promoting CAF transformation through activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yahui Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yingying Huang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Su
- Department of Pathology, Jinan, China
| | - Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Bowling GC, Alex Albright J, Maloney TJ, Quinn MS, Daniels AH, Chesnut GT. Poor Bone Mineral Density Is Associated With Increased Risk of Urological Bone Metastases. Urology 2024; 192:88-96. [PMID: 38710454 DOI: 10.1016/j.urology.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE To investigate whether a diagnosis of precancer poor bone mineral density (PBMD) is associated with higher risk of urological cancer bone metastasis. METHODS The PearlDiver Database was utilized to conduct a retrospective, propensity-matched cohort analysis of adult patients diagnosed with kidney, bladder, prostate, and testicular cancer with and without a prior diagnosis of PBMD, defined as osteopenia or osteoporosis. Unadjusted and adjusted odds ratios (OR) and 95% confidence intervals are used to compare the rate of newly diagnosed bone metastases between 6months and 3years of the initial cancer diagnosis between the experimental and control cohorts. RESULTS Among 685,066 patients with urological cancers, precancer PBMD was associated with increased odds of bone metastasis at various time periods (1week, 6months, 1, 2, and 3years). The strongest association was appreciated within 1week of cancer diagnosis (kidney: adjusted odds ratio [aOR], 2.37, P <.001; bladder: [aOR], 2.37, P <.001; prostate: [aOR], 2.84, P <.001; testicular: [aOR], 4.45, P <.001). Bisphosphonates were associated with reduced risk of kidney ([aOR], 0.46, P <.001), bladder ([aOR], 0.61, P <.001), and prostate ([aOR], 0.66, P <.001) cancer bone metastasis. CONCLUSION Our findings suggest urology patients with PBMD may be predisposed to forming bone metastases as well as presenting with metastatic disease at time of cancer diagnosis. As such, further studies are needed to elucidate whether PBMD plays a role in bone tropism and whether bone health pertains to prolonging bone-free metastasis.
Collapse
Affiliation(s)
- Gartrell C Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD.
| | | | - Trevor J Maloney
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD
| | - Matthew S Quinn
- Department of Orthopaedics, Brown University Warren Alpert Medical School, Providence, RI
| | - Alan H Daniels
- Department of Orthopaedics, Brown University Warren Alpert Medical School, Providence, RI
| | - Gregory T Chesnut
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
5
|
Miyahira AK, Soule HR. The 30th Annual Prostate Cancer Foundation Scientific Retreat Report. Prostate 2024; 84:1271-1289. [PMID: 39021296 DOI: 10.1002/pros.24768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The 30th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held at the Omni La Costa Resort in Carlsbad, CA, from October 26 to 28, 2023. A hybrid component was included for virtual attendees. METHODS The Annual PCF Scientific Retreat is a leading international scientific conference focused on pioneering, unpublished, and impactful studies across the spectrum of basic through clinical prostate cancer research, as well as research from related fields with significant potential for improving prostate cancer research and patient outcomes. RESULTS The 2023 PCF Retreat concentrated on key areas of research, including: (i) the biology of cancer stem cells and prostate cancer lineage plasticity; (ii) mechanisms of treatment resistance; (iii) emerging AI applications in diagnostic medicine; (iv) analytical and computational biology approaches in cancer research; (v) the role of nerves in prostate cancer; (vi) the biology of prostate cancer bone metastases; (vii) the contribution of ancestry and genomics to prostate cancer disparities; (viii) prostate cancer 3D genomics; (ix) progress in new targets and treatments for prostate cancer; (x) the biology and translational applications of tumor extracellular vesicles; (xi) updates from PCF TACTICAL Award teams; (xii) novel platforms for small molecule molecular glues and binding inhibitors; and (xiii) diversity, equity and inclusion strategies for advancing cancer care equity. CONCLUSIONS This meeting report summarizes the presentations and discussions from the 2023 PCF Scientific Retreat. We hope that sharing this information will deepen our understanding of current and emerging research and drive future advancements in prostate cancer patient care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
6
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
7
|
Mahon KL, Sutherland SI, Lin HM, Stockler MR, Gurney H, Mallesara G, Briscoe K, Marx G, Higano CS, de Bono JS, Chi KN, Clark G, Breit SN, Brown DA, Horvath LG. Clinical validation of circulating GDF15/MIC-1 as a marker of response to docetaxel and survival in men with metastatic castration-resistant prostate cancer. Prostate 2024; 84:747-755. [PMID: 38544345 DOI: 10.1002/pros.24691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Elevated circulating growth differentiation factor (GDF15/MIC-1), interleukin 4 (IL4), and IL6 levels were associated with resistance to docetaxel in an exploratory cohort of men with metastatic castration-resistant prostate cancer (mCRPC). This study aimed to establish level 2 evidence of cytokine biomarker utility in mCRPC. METHODS IntVal: Plasma samples at baseline (BL) and Day 21 docetaxel (n = 120). ExtVal: Serum samples at BL and Day 42 of docetaxel (n = 430). IL4, IL6, and GDF15 levels were measured by ELISA. Monocytes and dendritic cells were treated with 10% plasma from men with high or low GDF15 or recombinant GDF15. RESULTS IntVal: Higher GDF15 levels at BL and Day 21 were associated with shorter overall survival (OS) (BL; p = 0.03 and Day 21; p = 0.004). IL4 and IL6 were not associated with outcomes. ExtVal: Higher GDF15 levels at BL and Day 42 predicted shorter OS (BL; p < 0.0001 and Day 42; p < 0.0001). Plasma from men with high GDF15 caused an increase in CD86 expression on monocytes (p = 0.03), but was not replicated by recombinant GDF15. CONCLUSIONS Elevated circulating GDF15 is associated with poor prognosis in men with mCRPC receiving docetaxel and may be a marker of changes in the innate immune system in response to docetaxel resistance. These findings provide a strong rationale to consider GDF15 as a biomarker to guide a therapeutic trial of drugs targeting the innate immune system in combination with docetaxel in mCRPC.
Collapse
Affiliation(s)
- Kate L Mahon
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Im Sutherland
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Cancer Research Group, The ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Hui Ming Lin
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Martin R Stockler
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Howard Gurney
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Calvary Mater, Newcastle, New South Wales, Australia
| | - Girish Mallesara
- Medical Oncology Department, Mid North Coast Cancer Institute, Coffs Harbour, New South Wales, Australia
| | - Karen Briscoe
- Northern Haematology Oncology Group, Sydney, New South Wales, Australia
| | - Gavin Marx
- BC Cancer Agency, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Johann S de Bono
- St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Kim N Chi
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Georgina Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Cancer Research Group, The ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Samuel N Breit
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
- Concord Hospital, Sydney, New South Wales, Australia
| | - David A Brown
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
- Concord Hospital, Sydney, New South Wales, Australia
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Jia Y, Zhang F, Meng X, Andreev D, Lyu P, Zhang W, Lai C, Schett G, Bozec A. Osteocytes support bone metastasis of melanoma cells by CXCL5. Cancer Lett 2024; 590:216866. [PMID: 38589005 DOI: 10.1016/j.canlet.2024.216866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fulin Zhang
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pang Lyu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wenshuo Zhang
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Chaobo Lai
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Adhikari M, Kaur J, Sabol HM, Anloague A, Khan S, Kurihara N, Diaz-delCastillo M, Andreasen CM, Barnes CL, Stambough JB, Palmieri M, Reyes-Castro O, Ambrogini E, Almeida M, O’Brien CA, Nookaw I, Delgado-Calle J. Single-cell Transcriptome Analysis Identifies Senescent Osteocytes as Contributors to Bone Destruction in Breast Cancer Metastasis. RESEARCH SQUARE 2024:rs.3.rs-4047486. [PMID: 38558984 PMCID: PMC10980159 DOI: 10.21203/rs.3.rs-4047486/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Breast cancer bone metastases increase fracture risk and are a major cause of morbidity and mortality among women. Upon colonization by tumor cells, the bone microenvironment undergoes profound reprogramming to support cancer progression that disrupts the balance between osteoclasts and osteoblasts, leading to bone lesions. Whether such reprogramming affects matrix-embedded osteocytes remains poorly understood. Here, we demonstrate that osteocytes in breast cancer bone metastasis develop premature senescence and a distinctive senescence-associated secretory phenotype (SASP) that favors bone destruction. Single-cell RNA sequencing identified osteocytes from mice with breast cancer bone metastasis enriched in senescence and SASP markers and pro-osteoclastogenic genes. Using multiplex in situ hybridization and AI-assisted analysis, we detected osteocytes with senescence-associated distension of satellites, telomere dysfunction, and p16Ink4a expression in mice and patients with breast cancer bone metastasis. In vitro and ex vivo organ cultures showed that breast cancer cells promote osteocyte senescence and enhance their osteoclastogenic potential. Clearance of senescent cells with senolytics suppressed bone resorption and preserved bone mass in mice with breast cancer bone metastasis. These results demonstrate that osteocytes undergo pathological reprogramming by breast cancer cells and identify osteocyte senescence as an initiating event triggering bone destruction in breast cancer metastases.
Collapse
Affiliation(s)
- Manish Adhikari
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Japneet Kaur
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Hayley M. Sabol
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Aric Anloague
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Sharmin Khan
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Noriyoshi Kurihara
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, US
| | | | - Christina Møller Andreasen
- Molecular Bone Histology lab, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathologyogy, Odense University Hospital, Odense University Hospital, Odense, Denmark
| | - C. Lowry Barnes
- Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Jeffrey B. Stambough
- Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Michela Palmieri
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Olivia Reyes-Castro
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Elena Ambrogini
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Charles A. O’Brien
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Intawat Nookaw
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, US
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Jesus Delgado-Calle
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, US
| |
Collapse
|
10
|
Sarazin BA, Liu B, Goldman E, Whitefield AN, Lynch ME. Bone-homing metastatic breast cancer cells impair osteocytes' mechanoresponse in a 3D loading model. Heliyon 2023; 9:e20248. [PMID: 37767467 PMCID: PMC10520780 DOI: 10.1016/j.heliyon.2023.e20248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer predominantly metastasizes to the skeleton. Mechanical loading is reliably anabolic in bone, and also inhibits bone metastatic tumor formation and bone loss in vivo. To study the underlying mechanisms, we developed a 3D culture model for osteocytes, the primary bone mechanosensor. We verified that MLO-Y4s responded to perfusion by reducing their rankl and rankl:opg gene expression. We next cultured MLO-Y4s with tumor-conditioned media (TCM) collected from human breast cancer cells (MDA-MB-231s) and a corresponding bone-homing subclone to test the impacts on osteocytes' mechanosensation. We found that TCM from the bone-homing subclone was more detrimental to MLO-Y4 growth and viability, and it abrogated loading-induced changes to rankl:opg. Our studies demonstrate that MLO-Y4s, including their mechanoresponse to perfusion, were more negatively impacted by soluble factors from bone-homing breast cancer cells compared to those from parental cells.
Collapse
Affiliation(s)
- Blayne A. Sarazin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Boyuan Liu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Elaine Goldman
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Ashlyn N. Whitefield
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Maureen E. Lynch
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
11
|
Cassidy JR, Voss G, Underbjerg KR, Persson M, Ceder Y. Expression of microRNA-379 reduces metastatic spread of prostate cancer. Front Oncol 2023; 13:1252915. [PMID: 37781173 PMCID: PMC10539900 DOI: 10.3389/fonc.2023.1252915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Prostate cancer (PCa) is the most common type of cancer in males, and the metastatic form is a leading cause of death worldwide. There are currently no curative treatments for this subset of patients. To decrease the mortality of this disease, greater focus must be placed on developing therapeutics to reduce metastatic spread. We focus on dissemination to the bone since this is both the most common site of metastatic spread and associated with extreme pain and discomfort for patients. Our strategy is to exploit microRNAs (miRNAs) to disrupt the spread of primary PCa to the bone. Methods PCa cell lines were transduced to overexpress microRNA-379 (miR-379). These transduced PCa cells were assessed using cell growth, migration, colony formation and adhesion assays. We also performed in vivo intracardiac injections to look at metastatic spread in NSG mice. A cytokine array was also performed to identify targets of miR-379 that may drive metastatic spread. Results PCa cells with increased levels of miR-379 showed a significant decrease in proliferation, migration, colony formation, and adhesion to bone cells in vitro. In vivo miR-379 overexpression in PC3 cells significantly decreased metastatic spread to bone and reduced levels of miR-379 were seen in patients with metastases. We identified GDF-15 to be secreted from osteoblasts when grown in conditioned media from PCa cells with reduced miR-379 levels. Discussion Taken together, our in vitro and in vivo functional assays support a role for miR-379 as a tumour suppressor. A potential mechanism is unravelled whereby miR-379 deregulation in PCa cells affects the secretion of GDF-15 from osteoblasts which in turn facilitates the metastatic establishment in bone. Our findings support the potential role of miR-379 as a therapeutic solution for prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Anloague A, Delgado-Calle J. Osteocytes: New Kids on the Block for Cancer in Bone Therapy. Cancers (Basel) 2023; 15:2645. [PMID: 37174109 PMCID: PMC10177382 DOI: 10.3390/cancers15092645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment plays a central role in the onset and progression of cancer in the bone. Cancer cells, either from tumors originating in the bone or from metastatic cancer cells from other body systems, are located in specialized niches where they interact with different cells of the bone marrow. These interactions transform the bone into an ideal niche for cancer cell migration, proliferation, and survival and cause an imbalance in bone homeostasis that severely affects the integrity of the skeleton. During the last decade, preclinical studies have identified new cellular mechanisms responsible for the dependency between cancer cells and bone cells. In this review, we focus on osteocytes, long-lived cells residing in the mineral matrix that have recently been identified as key players in the spread of cancer in bone. We highlight the most recent discoveries on how osteocytes support tumor growth and promote bone disease. Additionally, we discuss how the reciprocal crosstalk between osteocytes and cancer cells provides the opportunity to develop new therapeutic strategies to treat cancer in the bone.
Collapse
Affiliation(s)
- Aric Anloague
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Yu Y, Li K, Peng Y, Wu W, Chen F, Shao Z, Zhang Z. Animal models of cancer metastasis to the bone. Front Oncol 2023; 13:1165380. [PMID: 37091152 PMCID: PMC10113496 DOI: 10.3389/fonc.2023.1165380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer metastasis is a major cause of mortality from several tumors, including those of the breast, prostate, and the thyroid gland. Since bone tissue is one of the most common sites of metastasis, the treatment of bone metastases is crucial for the cure of cancer. Hence, disease models must be developed to understand the process of bone metastasis in order to devise therapies for it. Several translational models of different bone metastatic tumors have been developed, including animal models, cell line injection models, bone implant models, and patient-derived xenograft models. However, a compendium on different bone metastatic cancers is currently not available. Here, we have compiled several animal models derived from current experiments on bone metastasis, mostly involving breast and prostate cancer, to improve the development of preclinical models and promote the treatment of bone metastasis.
Collapse
Affiliation(s)
- Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kanglu Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- *Correspondence: Fengxia Chen, ; Zengwu Shao, ; Zhicai Zhang,
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fengxia Chen, ; Zengwu Shao, ; Zhicai Zhang,
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fengxia Chen, ; Zengwu Shao, ; Zhicai Zhang,
| |
Collapse
|
15
|
Yin D, Yan X, Bai X, Tian A, Gao Y, Li J. Prognostic value of Growth differentiation factors 15 in Acute heart failure patients with preserved ejection fraction. ESC Heart Fail 2023; 10:1025-1034. [PMID: 36519216 PMCID: PMC10053169 DOI: 10.1002/ehf2.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
AIMS There is an increasing proportion of hospitalized heart failure (HF) patients classified as HF with preserved ejection fraction (HFpEF) around the world. Growth differentiation factor 15 (GDF-15) is a promising biomarker in HFpEF prognostication; however, the majority of the existing data has been derived from the research on undifferentiated HF, whereas the studies focusing on HFpEF are still limited. This study aimed to determine the prognostic power of GDF-15 in the hospitalized patients with HFpEF in a Chinese cohort. METHODS AND RESULTS We analysed the levels of serum GDF-15 in 380 patients hospitalized for acute onset of HFpEF measured by heart ultrasound at admission in a prospective cohort. The associations of GDF-15 with 1 year risk of all-cause death and 1 year HF readmission were assessed by the Cox proportional hazards model. Area under the receiver operating characteristic curves was used to compare predictive accuracy. GDF-15 was strongly correlated with 1 year HF readmission and 1 year all-cause death, with event rates of 24.8%, 40.0%, and 50.0% for 1 year HF readmission (P < 0.001), respectively, and with 11.2%, 13.6%, and 24.6% for 1 year all-cause death (P = 0.004) in the corresponding tertile, respectively. In the multivariate linear regression model, GDF-15 had a significantly negative correlation with haemoglobin (P = 0.01) and a positive correlation with creatinine (P = 0.01), alanine transaminase (P = 0.001), and therapy of aldosterone antagonist (P = 0.018). The univariate Cox regression model of GDF-15 showed that c-statistic was 0.632 for 1 year HF readmission and 0.644 for 1 year all-cause death, which were superior to the N-terminal pro-brain natriuretic peptide (NT-proBNP) model with c-statistics of 0.595 and 0.610, respectively. In the multivariable Cox regression model, GDF-15 tertiles independently predicted 1 year HF readmission (hazard ratio 2.25, 95% confidence interval: 1.43-3.54, P < 0.001) after adjusting for baseline Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure (ASCEND-HF) risk score, history of HF, NT-proBNP, and high-sensitivity cardiac troponin T. Compared with the model including all the adjusted variables, the model with the addition of GDF-15 improved predictive power, with c-statistic increasing from 0.643 to 0.657 for 1 year HF readmission and from 0.638 to 0.660 for 1 year all-cause death. CONCLUSIONS In hospitalized patients with HFpEF, GDF-15 measured within 48 h of admission is a strong independent biomarker for 1 year HF readmission and even better than NT-proBNP. GDF-15 combined with the traditional indicators provided incremental prognostic value in this population.
Collapse
Affiliation(s)
- Dan Yin
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Xiaofang Yan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Xueke Bai
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Aoxi Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Yan Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Jing Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
- Fuwai HospitalChinese Academy of Medical Sciences12 Langshan Road, Nanshan DistrictShenzhenChina
| |
Collapse
|
16
|
The Contribution of Tumor Derived Exosomes to Cancer Cachexia. Cells 2023; 12:cells12020292. [PMID: 36672227 PMCID: PMC9856599 DOI: 10.3390/cells12020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Cancer cachexia is defined as unintentional weight loss secondary to neoplasia and is associated with poor prognosis and outcomes. Cancer cachexia associated weight loss affects both lean tissue (i.e., skeletal muscle) and adipose tissue. Exosomes are extracellular vesicles that originate from multivesicular bodies that contain intentionally loaded biomolecular cargo. Exosome cargo includes proteins, lipids, mitochondrial components, and nucleic acids. The cargo carried in exosomes is thought to alter cell signaling when it enters into recipient cells. Virtually every cell type secretes exosomes and exosomes are known to be present in nearly every biofluid. Exosomes alter muscle and adipose tissue metabolism and biological processes, including macrophage polarization and apoptosis which contribute to the development of the cachexia phenotype. This has led to an interest in the role of tumor cell derived exosomes and their potential role as biomarkers of cancer cell development as well as their contribution to cachexia and disease progression. In this review, we highlight published findings that have studied the effects of tumor derived exosomes (and extracellular vesicles) and their cargo on the progression of cancer cachexia. We will focus on the direct effects of tumor derived exosomes and their cellular cross talk on skeletal muscle and adipose tissue, the primary sites of weight loss due to cancer cachexia.
Collapse
|
17
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
18
|
Zeng J, Peng Y, Wang D, Ayesha K, Chen S. The interaction between osteosarcoma and other cells in the bone microenvironment: From mechanism to clinical applications. Front Cell Dev Biol 2023; 11:1123065. [PMID: 37206921 PMCID: PMC10189553 DOI: 10.3389/fcell.2023.1123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is a primary bone tumor with a high mortality rate. The event-free survival rate has not improved significantly in the past 30 years, which brings a heavy burden to patients and society. The high heterogeneity of osteosarcoma leads to the lack of specific targets and poor therapeutic effect. Tumor microenvironment is the focus of current research, and osteosarcoma is closely related to bone microenvironment. Many soluble factors and extracellular matrix secreted by many cells in the bone microenvironment have been shown to affect the occurrence, proliferation, invasion and metastasis of osteosarcoma through a variety of signaling pathways. Therefore, targeting other cells in the bone microenvironment may improve the prognosis of osteosarcoma. The mechanism by which osteosarcoma interacts with other cells in the bone microenvironment has been extensively investigated, but currently developed drugs targeting the bone microenvironment have poor efficacy. Therefore, we review the regulatory effects of major cells and physical and chemical properties in the bone microenvironment on osteosarcoma, focusing on their complex interactions, potential therapeutic strategies and clinical applications, to deepen our understanding of osteosarcoma and the bone microenvironment and provide reference for future treatment. Targeting other cells in the bone microenvironment may provide potential targets for the development of clinical drugs for osteosarcoma and may improve the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Khan Ayesha
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Shijie Chen,
| |
Collapse
|
19
|
Yang SL, Tan HX, Lai ZZ, Peng HY, Yang HL, Fu Q, Wang HY, Li DJ, Li MQ. An active glutamine/α-ketoglutarate/HIF-1α axis prevents pregnancy loss by triggering decidual IGF1 +GDF15 +NK cell differentiation. Cell Mol Life Sci 2022; 79:611. [PMID: 36449080 DOI: 10.1007/s00018-022-04639-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Deficiency of decidual NK (dNK) cell number and function has been widely regarded as an important cause of spontaneous abortion. However, the metabolic mechanism underlying the crosstalk between dNK cells and embryonic trophoblasts during early pregnancy remains largely unknown. Here, we observed that enriched glutamine and activated glutaminolysis in dNK cells contribute to trophoblast invasion and embryo growth by insulin-like growth factor-1 (IGF-1) and growth differentiation factor-15 (GDF-15) secretion. Mechanistically, these processes are dependent on the downregulation of EGLN1-HIF-1α mediated by α-ketoglutarate (α-KG). Blocking glutaminolysis with the GLS inhibitor BPTES or the glutamate dehydrogenase inhibitor EGCG leads to early embryo implantation failure, spontaneous abortion and/or fetal growth restriction in pregnant mice with impaired trophoblast invasion. Additionally, α-KG supplementation significantly alleviated pregnancy loss mediated by defective glutaminolysis in vivo, suggesting that inactivated glutamine/α-ketoglutarate metabolism in dNK cells impaired trophoblast invasion and induced pregnancy loss.
Collapse
Affiliation(s)
- Shao-Liang Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hai-Xia Tan
- Department of Obstetrics and Gynecology, Zhangye People's Hospital of HeXi College, Zhangye, Gansu, China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hai-Yan Peng
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Qiang Fu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Hai-Yan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
- Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
- Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA. Chemokines network in bone metastasis: Vital regulators of seeding and soiling. Semin Cancer Biol 2022; 86:457-472. [PMID: 35124194 PMCID: PMC9744380 DOI: 10.1016/j.semcancer.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
Abstract
Chemokines are well equipped with chemo-attractive signals that can regulate cancer cell trafficking to specific organ sites. Currently, updated concepts have revealed the diverse role of chemokines in the biology of cancer initiation and progression. Genomic instabilities and alterations drive tumor heterogeneity, providing more options for the selection and metastatic progression to cancer cells. Tumor heterogeneity and acquired drug resistance are the main obstacles in managing cancer therapy and the primary root cause of metastasis. Studies emphasize that multiple chemokine/receptor axis are involved in cancer cell-mediated organ-specific distant metastasis. One of the persuasive mechanisms for heterogeneity and subsequent events is sturdily interlinked with the crosstalk between chemokines and their receptors on cancer cells and tissue-specific microenvironment. Among different metastatic niches, skeletal metastasis is frequently observed in the late stages of prostate, breast, and lung cancer and significantly reduces the survival of cancer patients. Therefore, it is crucial to elucidate the role of chemokines and their receptors in metastasis and bone remodeling. Here, we review the potential chemokine/receptor axis in tumorigenesis, tumor heterogeneity, metastasis, and vicious cycle in bone microenvironment.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana Kumari Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
21
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
22
|
GDF15 Contributes to Radioresistance by Mediating the EMT and Stemness of Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231810911. [PMID: 36142823 PMCID: PMC9504016 DOI: 10.3390/ijms231810911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is one of the conventional methods for the clinical treatment of breast cancer. However, radioresistance has an adverse effect on the prognosis of breast cancer patients after radiotherapy. In this study, using bioinformatic analysis of GSE59732 and GSE59733 datasets in the Gene Expression Omnibus (GEO) database together with the prognosis database of breast cancer patients after radiotherapy, the GDF15 gene was screened out to be related to the poor prognosis of breast cancer after radiotherapy. Compared with radiosensitive parental breast cancer cells, breast cancer cells with acquired radioresistance exhibited a high level of GDF15 expression and enhanced epithelial-to-mesenchymal transition (EMT) properties of migration and invasion, as well as obvious stem-like traits, including the increases of mammosphere formation ability, the proportion of stem cells (CD44+ CD24- cells), and the expressions of stem cell-related markers (SOX2, NANOG). Moreover, knockdown of GDF15 sensitized the radioresistance cells to irradiation and significantly inhibited their EMT and stem-like traits, indicating that GDF15 promoted the radioresistance of breast cancer by enhancing the properties of EMT and stemness. Conclusively, GDF15 may be applicable as a novel prognosis-related biomarker and a potential therapeutic target for breast cancer radiotherapy.
Collapse
|
23
|
Wang R, Wen P, Yang G, Feng Y, Mi Y, Wang X, Zhu S, Chen YQ. N-glycosylation of GDF15 abolishes its inhibitory effect on EGFR in AR inhibitor-resistant prostate cancer cells. Cell Death Dis 2022; 13:626. [PMID: 35853851 PMCID: PMC9296468 DOI: 10.1038/s41419-022-05090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023]
Abstract
Castration-resistance of prostate cancer is one of the most challenging clinical problems. In the present study, we have performed proteomics and glycomics using LNCaP model. Growth differentiation factor-15 (GDF15) level is increased in androgen receptor (AR) inhibitor-resistant cells and the inhibitory effect of GDF15 on epithelial growth factor receptor (EGFR) pathway is relieved by GDF15 N70 glycosylation. Interference of GDF15 (siRNA or N70Q dominant negative) or EGFR pathway (inhibitor or siRNA for EGFR, SRC or ERK) decreases the resistant-cell survival in culture and tumor growth in mice. Our study reveals a novel regulatory mechanism of prostate cancer AR inhibitor resistance, raises the possibility of AR/SRC dual-targeting of castration-resistance of prostate cancer, and lays foundation for the future development of selective inhibitors of GDF15 glycosylation.
Collapse
Affiliation(s)
- Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Piaopiao Wen
- School of Biological Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Ganglong Yang
- School of Biological Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yanyan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Xiaoying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
24
|
Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis. Front Immunol 2022; 13:824117. [PMID: 35386705 PMCID: PMC8977491 DOI: 10.3389/fimmu.2022.824117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
A substantial amount patients with cancer will develop bone metastases, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis. Despite advancements in systemic therapies for advanced cancer, survival remains poor for those with bone metastases. The interaction between bone cells and the immune system contributes to a better understanding of the role that the immune system plays in the bone metastasis of cancer. The immune and bone systems share various molecules, including transcription factors, signaling molecules, and membrane receptors, which can stimulate the differentiation and activation of bone-resorbing osteoclasts. The process of cancer metastasis to bone, which deregulates bone turnover and results in bone loss and skeletal-related events (SREs), is also controlled by primary cancer-related factors that modulate the intratumoral microenvironment as well as cellular immune process. The nuclear factor kappa B ligand (RANKL) and the receptor activator of nuclear factor kappa B (RANK) are key regulators of osteoclast development, bone metabolism, lymph node development, and T-cell/dendritic cell communication. RANKL is an osteoclastogenic cytokine that links the bone and the immune system. In this review, we highlight the role of RANKL and RANK in the immune microenvironment and bone metastases and review data on the role of the regulatory mechanism of immunity in bone metastases, which could be verified through clinical efficacy of RANKL inhibitors for cancer patients with bone metastases. With the discovery of the specific role of RANK signaling in osteoclastogenesis, the humanized monoclonal antibody against RANKL, such as denosumab, was available to prevent bone loss, SREs, and bone metastases, providing a unique opportunity to target RANKL/RANK as a future strategy to prevent bone metastases.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pengru Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Wang X, Zhou T, Chen X, Wang Y, Ding Y, Tu H, Gao S, Wang H, Tang X, Yang Y. System analysis based on the cancer-immunity cycle identifies ZNF207 as a novel immunotherapy target for hepatocellular carcinoma. J Immunother Cancer 2022; 10:jitc-2021-004414. [PMID: 35246476 PMCID: PMC8900045 DOI: 10.1136/jitc-2021-004414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Immune checkpoint inhibitors as monotherapies for advanced hepatocellular carcinoma (HCC) fail to achieve satisfying results, while combination therapies show greater efficacy. Therefore, identifying new combined targets for immune checkpoint inhibitors could be promising. Methods We combined the cancer–immunity cycle score with weighted gene coexpression network and system analyses to screen immunosuppressive targets in HCC. In vitro and in vivo experiments were used to assess the effect of zinc finger protein 207 (ZNF207) on HCC immunity. RNA sequencing, metabolomic, cytokine array analysis, dual-luciferase reporter gene assay, and ChIP quantitative PCR assay were used to investigate the role of ZNF207 in tumor immunity regulation. Results The system analysis and experimental verification revealed ZNF207 as an immunosuppressive target in HCC. Hypoxia-induced upregulation of ZNF207 promoted HCC progression in immunocompetent mice while being associated with decreased CD8+ T-cell infiltration and increased exhaustion. Mechanistically, the mitogen-activated protein kinase (MAPK)–chemokine C-X3-C-motif ligand axis was involved in ZNF207-mediated CD8+ T-cell chemotaxis. Furthermore, ZNF207 transcriptionally regulated indoleamine 2,3-dioxygenase 1 and elevated kynurenine levels, leading to the exhaustion of CD8+ T cells. Patients with lower ZNF207 expression were more sensitive to antiprogrammed cell death protein 1 (PD1) therapy, and silencing ZNF207 could be beneficial to anti-PD1 combination therapy. Conclusion Our study implicates ZNF207 in suppressing the HCC microenvironment and showed the feasibility of targeting ZNF207 during anti-PD1 therapy in HCC.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xingyi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yushi Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haoyang Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shengyang Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haoyu Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinying Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China .,Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China .,Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Lorenzoni M, De Felice D, Beccaceci G, Di Donato G, Foletto V, Genovesi S, Bertossi A, Cambuli F, Lorenzin F, Savino A, Avalle L, Cimadamore A, Montironi R, Weber V, Carbone FG, Barbareschi M, Demichelis F, Romanel A, Poli V, Del Sal G, Julio MKD, Gaspari M, Alaimo A, Lunardi A. ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3β dependent Nkx3.1 degradation. Cancer Lett 2022; 534:215612. [PMID: 35259458 PMCID: PMC8968219 DOI: 10.1016/j.canlet.2022.215612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022]
Abstract
21q22.2–3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5–30% of tumor precursor lesions – High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3β-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation. Expression of ERGM40 in mouse prostate organoids promotes their survival and growth in the absence of Egf. ERGM40 alters the extracellular signaling network of mouse prostate organoids. Canonical Wnt pathway is substantially reduced in ERG + prostate organoids due to decreased autocrine signaling of Wnt4. Gsk3b promotes Nkx3.1 proteolysis and, in turn, accumulation of double strand breaks in ERG + prostate organoids. Paracrine signaling of ERG + prostate organoids modulates Arginase 1 expression in M1-polarized macrophages.
Collapse
Affiliation(s)
- Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giorgia Di Donato
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Arianna Bertossi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessia Cimadamore
- Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Via Tronto, 10, Ancona, Italy
| | - Veronica Weber
- Unit of Surgical Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giannino Del Sal
- University of Trieste Department Life Sciences, ICGEB-Area Science Park Trieste, IFOM, Milan, Italy
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland; Translational Organoid Resource CORE, Department for BioMedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of Urology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
27
|
Park H, Nam KS, Lee HJ, Kim KS. Ionizing Radiation-Induced GDF15 Promotes Angiogenesis in Human Glioblastoma Models by Promoting VEGFA Expression Through p-MAPK1/SP1 Signaling. Front Oncol 2022; 12:801230. [PMID: 35280749 PMCID: PMC8913883 DOI: 10.3389/fonc.2022.801230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive cancer type that has a poor prognosis, is characterized by enhanced and aberrant angiogenesis. In addition to surgical resection and chemotherapy, radiotherapy is commonly used to treat GBM. However, radiation-induced angiogenesis in GBM remains unexplored. This study examined the role of radiation-induced growth/differentiation factor-15 (GDF15) in regulating tumor angiogenesis by promoting intercellular cross-talk between brain endothelial cells (ECs) and glioblastoma cells. Radiation promoted GDF15 secretion from human brain microvascular endothelial cells (HBMVECs). Subsequently, GDF15 activated the transcriptional promoter VEGFA in the human glioblastoma cell line U373 through p-MAPK1/SP1 signaling. Upregulation of vascular endothelial growth factor (VEGF) expression in U373 cells resulted in the activation of angiogenic activity in HBMVECs via KDR phosphorylation. Wound healing, tube formation, and invasion assay results revealed that the conditioned medium of recombinant human GDF15 (rhGDF15)-stimulated U373 cell cultures promoted the angiogenic activity of HBMVECs. In the HBMVEC-U373 cell co-culture, GDF15 knockdown mitigated radiation-induced VEGFA upregulation in U373 cells and enhanced angiogenic activity of HBMVECs. Moreover, injecting rhGDF15-stimulated U373 cells into orthotopic brain tumors in mice promoted angiogenesis in the tumors. Thus, radiation-induced GDF15 is essential for the cross-talk between ECs and GBM cells and promotes angiogenesis. These findings indicate that GDF15 is a putative therapeutic target for patients with GBM undergoing radio-chemotherapy.
Collapse
Affiliation(s)
- Hyejin Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, South Korea
| | - Ki-Seok Nam
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Kwang Seok Kim, ; Hae-June Lee,
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Kwang Seok Kim, ; Hae-June Lee,
| |
Collapse
|
28
|
Wang J, Du X, Wang X, Xiao H, Jing N, Xue W, Dong B, Gao WQ, Fang YX. Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett 2022; 526:76-90. [PMID: 34801597 DOI: 10.1016/j.canlet.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
Most prostate cancer (PCa)-related deaths are caused by progression to bone metastasis. Recently, the importance of extracellular vesicles (EVs) in pre-metastatic niche formation has been reported. However, whether and how tumor-derived EVs interact with bone marrow macrophages (BMMs) to release EV-delivered microRNAs to promote osteolysis and induce pre-metastatic niche formation for PCa bone metastasis remain unclear. Our in vitro and in vivo functional and mechanistic assays revealed that EV-mediated release of miR-378a-3p from tumor cells was upregulated in bone-metastatic PCa, maintaining low intracellular miR-378a-3p concentration to promote proliferation and MAOA-mediated epithelial-to-mesenchymal transition. Moreover, miR-378a-3p enrichment in tumor-derived EVs was induced by hnRNPA2B1 (a transfer chaperone) overexpression. After tumor-derived EVs were taken in by BMMs, enriched miR-378a-3p promoted osteolytic progression by inhibiting Dyrk1a to improve Nfatc1 (an osteolysis-related transcription factor) nuclear translocation, to activate the expression of downstream target gene Angptl2. As a feedback, increased Angptl2 secretion into the tumor environment promoted PCa progression. In conclusion, tumor-derived miR-378a-3p-containing EVs play a significant role in PCa bone metastasis by activating the Dyrk1a/Nfatc1/Angptl2 axis in BMMs to induce osteolytic progression, making miR-378a-3p a potential predictor of metastatic PCa. Reducing the release of miR-378a-3p-containing EVs or inhibiting the recruitment of miR-378a-3p into EVs can be a therapeutic strategy against PCa metastasis.
Collapse
Affiliation(s)
- Jialin Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Nan Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
29
|
Sethakorn N, Heninger E, Sánchez-de-Diego C, Ding AB, Yada RC, Kerr SC, Kosoff D, Beebe DJ, Lang JM. Advancing Treatment of Bone Metastases through Novel Translational Approaches Targeting the Bone Microenvironment. Cancers (Basel) 2022; 14:757. [PMID: 35159026 PMCID: PMC8833657 DOI: 10.3390/cancers14030757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bone metastases represent a lethal condition that frequently occurs in solid tumors such as prostate, breast, lung, and renal cell carcinomas, and increase the risk of skeletal-related events (SREs) including pain, pathologic fractures, and spinal cord compression. This unique metastatic niche consists of a multicellular complex that cancer cells co-opt to engender bone remodeling, immune suppression, and stromal-mediated therapeutic resistance. This review comprehensively discusses clinical challenges of bone metastases, novel preclinical models of the bone and bone marrow microenviroment, and crucial signaling pathways active in bone homeostasis and metastatic niche. These studies establish the context to summarize the current state of investigational agents targeting BM, and approaches to improve BM-targeting therapies. Finally, we discuss opportunities to advance research in bone and bone marrow microenvironments by increasing complexity of humanized preclinical models and fostering interdisciplinary collaborations to translational research in this challenging metastatic niche.
Collapse
Affiliation(s)
- Nan Sethakorn
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Cristina Sánchez-de-Diego
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Adeline B. Ding
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Ravi Chandra Yada
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Sheena C. Kerr
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - David Kosoff
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua M. Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
30
|
GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res 2022; 10:6. [PMID: 35058441 PMCID: PMC8776828 DOI: 10.1038/s41413-021-00178-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/27/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Bone metastases occur in patients with advanced-stage prostate cancer (PCa). The cell-cell interaction between PCa and the bone microenvironment forms a vicious cycle that modulates the bone microenvironment, increases bone deformities, and drives tumor growth in the bone. However, the molecular mechanisms of PCa-mediated modulation of the bone microenvironment are complex and remain poorly defined. Here, we evaluated growth differentiation factor-15 (GDF15) function using in vivo preclinical PCa-bone metastasis mouse models and an in vitro bone cell coculture system. Our results suggest that PCa-secreted GDF15 promotes bone metastases and induces bone microarchitectural alterations in a preclinical xenograft model. Mechanistic studies revealed that GDF15 increases osteoblast function and facilitates the growth of PCa in bone by activating osteoclastogenesis through osteoblastic production of CCL2 and RANKL and recruitment of osteomacs. Altogether, our findings demonstrate the critical role of GDF15 in the modulation of the bone microenvironment and subsequent development of PCa bone metastasis.
Collapse
|
31
|
Ceelen D, Voors AA, Tromp J, van Veldhuisen DJ, Dickstein K, de Boer RA, Lang CC, Anker SD, Ng LL, Metra M, Ponikowski P, Figarska SM. Pathophysiological pathways related to high plasma GDF-15 concentrations in patients with heart failure. Eur J Heart Fail 2022; 24:308-320. [PMID: 34989084 PMCID: PMC9302623 DOI: 10.1002/ejhf.2424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS Elevated concentrations of Growth Differentiation factor 15 (GDF-15) in patients with heart failure (HF) have been consistently associated with worse clinical outcomes, but what disease mechanisms high GDF-15 concentrations represent remains unclear. Here, we aim to identify activated pathophysiological pathways related to elevated GDF-15 expression in patients with HF. METHODS AND RESULTS In 2279 patients with HF, we measured circulating levels of 363 biomarkers. Then, we performed a pathway over-representation analysis to identify key biological pathways between patients in the highest and lowest GDF-15 concentration quartiles. Data were validated in an independent cohort of 1705 patients with HF. In both cohorts, the strongest up-regulated biomarkers in those with high GDF-15 were fibroblast growth factor 23 (FGF-23), death receptor 5 (TRAIL-R2), WNT1-inducible-signaling pathway protein 1 (WISP-1), TNF Receptor Superfamily Member 11a (TNFRSF11A), leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4), and Trefoil Factor 3 (TFF3). Pathway over-representation analysis revealed that high GDF-15 patients had increased activity of pathways related to inflammatory processes, notably positive regulation of chemokine production; response to interleukin 6 (IL-6); tumour necrosis factor (TNF) and death receptor activity; and positive regulation of T cell differentiation and inflammatory response. Furthermore, we found pathways involved in regulation of insulin-like growth factor (IGF) receptor signalling and regulatory pathways of tissue, bones, and branching structures. GDF-15 quartiles significantly predicted all-cause mortality and HF hospitalization. CONCLUSION Patients with HF and high plasma concentrations of GDF-15 are characterized by increased activation of inflammatory pathways and pathways related to IGF-1 regulation and bone/tissue remodelling.
Collapse
Affiliation(s)
- Daan Ceelen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jasper Tromp
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,National Heart Centre Singapore, Singapore
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Stefan D Anker
- Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin; Charité Universitätsmedizin Berlin, Germany
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Piotr Ponikowski
- Department of Heart Diseases, Wrocław Medical University, Wroclaw, Poland; Center for Heart Diseases, University Hospital in Wrocław, Wroclaw, Poland
| | - Sylwia M Figarska
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW While the function of osteocytes under physiologic conditions is well defined, their role and involvement in cancer disease remains relatively unexplored, especially in a context of non-bone metastatic cancer. This review will focus on describing the more advanced knowledge regarding the interactions between osteocytes and cancer. RECENT FINDINGS We will discuss the involvement of osteocytes in the onset and progression of osteosarcoma, with the common bone cancers, as well as the interaction that is established between osteocytes and multiple myeloma. Mechanisms responsible for cancer dissemination to bone, as frequently occur with advanced breast and prostate cancers, will be reviewed. While a role for osteocytes in the stimulation and proliferation of cancer cells has been reported, protective effects of osteocytes against bone colonization have been described as well, thus increasing ambiguity regarding the role of osteocytes in cancer progression and dissemination. Lastly, supporting the idea that skeletal defects can occur also in the absence of direct cancer dissemination or osteolytic lesions directly adjacent to the bone, our recent findings will be presented showing that in the absence of bone metastases, the bone microenvironment and, particularly, osteocytes, can manifest a clear and dramatic response to the distant, non-metastatic tumor. Our observations support new studies to clarify whether treatments designed to preserve the osteocytes can be combined with traditional anticancer therapies, even when bone is not directly affected by tumor growth.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matt Prideaux
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Surgery, Indiana University School of Medicine, 980 W Walnut Street, R3-C522, Indianapolis, IN, 46202, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of what is currently known about the impacts of mechanical stimuli on metastatic tumor-induced bone disease (TIBD). Further, we focus on the role of the osteocyte, the skeleton's primary mechanosensory cell, which is central to the skeleton's mechanoresponse, sensing and integrating local mechanical stimuli, and then controlling the downstream remodeling balance as appropriate. RECENT FINDINGS Exercise and controlled mechanical loading have anabolic effects on bone tissue in models of bone metastasis. They also have anti-tumorigenic properties, in part due to offsetting the vicious cycle of osteolytic bone loss as well as regulating inflammatory signals. The impacts of metastatic cancer on the mechanosensory function of osteocytes remains unclear. Increased mechanical stimuli are a potential method for mitigating TIBD.
Collapse
Affiliation(s)
- Blayne A Sarazin
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA
| | - Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, 80045, USA
| | - Maureen E Lynch
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA.
- Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
34
|
Brozovich A, Garmezy B, Pan T, Wang L, Farach-Carson MC, Satcher RL. All bone metastases are not created equal: Revisiting treatment resistance in renal cell carcinoma. J Bone Oncol 2021; 31:100399. [PMID: 34745857 PMCID: PMC8551072 DOI: 10.1016/j.jbo.2021.100399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignancy of the kidney, representing 80-90% of renal neoplasms, and is associated with a five-year overall survival rate of approximately 74%. The second most common site of metastasis is bone. As patients are living longer due to new RCC targeting agents and immunotherapy, RCC bone metastases (RCCBM) treatment failure is more prevalent. Bone metastasis formation in RCC is indicative of a more aggressive disease and worse prognosis. Osteolysis is a prominent feature and causes SRE, including pathologic fractures. Bone metastasis from other tumors such as lung, breast, and prostate cancer, are more effectively treated with bisphosphonates and denosumab, thereby decreasing the need for palliative surgical intervention. Resistance to these antiresportives in RCCBM reflects unique cellular and molecular mechanisms in the bone microenvironment that promote progression via inhibition of the anabolic reparative response. Identification of critical mechanisms underlying RCCBM induced anabolic impairment could provide needed insight into how to improve treatment outcomes for patients with RCCBM, with the goals of minimizing progression that necessitates palliative surgery and improving survival.
Collapse
Affiliation(s)
- Ava Brozovich
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Benjamin Garmezy
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liyun Wang
- Department of Mechanical Engineering, Center for Biomedical Engineering Research, University of Delaware, Newark, DE, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, UT Health Science Center School of Dentistry, Houston, TX, USA
| | - Robert L. Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2021; 64:71-83. [PMID: 34836750 DOI: 10.1016/j.cytogfr.2021.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor β superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.
Collapse
|
36
|
Haffner MC, Bhamidipati A, Tsai HK, Esopi DM, Vaghasia AM, Low JY, Patel RA, Guner G, Pham MT, Castagna N, Hicks J, Wyhs N, Aebersold R, De Marzo AM, Nelson WG, Guo T, Yegnasubramanian S. Phenotypic characterization of two novel cell line models of castration-resistant prostate cancer. Prostate 2021; 81:1159-1171. [PMID: 34402095 PMCID: PMC8460612 DOI: 10.1002/pros.24210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Akshay Bhamidipati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Harrison K. Tsai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Esopi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ajay M. Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jin-Yih Low
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gunes Guner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Minh-Tam Pham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jessica Hicks
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nicolas Wyhs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zürich, Switzerland
- Faculty of Science, University of Zürich, Zürich. Switzerland
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G. Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zürich, Switzerland
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| |
Collapse
|
37
|
Jin Y, Jung SN, Lim MA, Oh C, Piao Y, Kim HJ, Liu L, Kang YE, Chang JW, Won HR, Song K, Koo BS. Transcriptional Regulation of GDF15 by EGR1 Promotes Head and Neck Cancer Progression through a Positive Feedback Loop. Int J Mol Sci 2021; 22:ijms222011151. [PMID: 34681812 PMCID: PMC8538541 DOI: 10.3390/ijms222011151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-β (TGF-β) superfamily, has been reported to be overexpressed in different kinds of cancer types. However, the function and mechanism of GDF15 in head and neck cancer (HNC) remains unclear. The Cancer Genome Atlas (TCGA) data show that the expression of GDF15 is significantly associated with tumor AJCC stage, lymph vascular invasion and tumor grade in HNC. In this study, we confirmed that knockdown of GDF15 attenuated: cell proliferation, migration and invasion via regulation of EMT through a canonical pathway; SMAD2/3 and noncanonical pathways; PI3K/AKT and MEK/ERK in HNC cell lines. Furthermore, we found that early growth response 1 (EGR1) was a transcription factor of GDF15. Interestingly, we also demonstrated that GDF15 could regulate the expression of EGR1, which meant a positive feedback loop occurred between these two factors. Moreover, combined inhibition of both GDF15 and EGR1 in a HNC mouse xenograft model showed significantly decreased tumor volume compared to inhibition of EGR1 or GDF15 alone. Our study showed that the GDF15–EGR1 signaling axis may be a good target in HNC patients.
Collapse
Affiliation(s)
- Yanli Jin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Chan Oh
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yudan Piao
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Hae Jong Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Lihua Liu
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Korea;
| | - Jae Won Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Ho-Ryun Won
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Kunho Song
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Bon Seok Koo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
- Correspondence: ; Tel.: +82-42-280-7690
| |
Collapse
|
38
|
Wang Y, Wu N, Jiang N. Autophagy provides a conceptual therapeutic framework for bone metastasis from prostate cancer. Cell Death Dis 2021; 12:909. [PMID: 34611139 PMCID: PMC8492756 DOI: 10.1038/s41419-021-04181-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a common malignant tumor, which can spread to multiple organs in the body. Metastatic disease is the dominant reason of death for patients with prostate cancer. Prostate cancer usually transfers to bone. Bone metastases are related to pathologic fracture, pain, and reduced survival. There are many known targets for prostate cancer treatment, including androgen receptor (AR) axis, but drug resistance and metastasis eventually develop in advanced disease, suggesting the necessity to better understand the resistance mechanisms and consider multi-target medical treatment. Because of the limitations of approved treatments, further research into other potential targets is necessary. Metastasis is an important marker of cancer development, involving numerous factors, such as AKT, EMT, ECM, tumor angiogenesis, the development of inflammatory tumor microenvironment, and defect in programmed cell death. In tumor metastasis, programmed cell death (autophagy, apoptosis, and necroptosis) plays a key role. Malignant cancer cells have to overcome the different forms of cell death to transfer. The article sums up the recent studies on the mechanism of bone metastasis involving key regulatory factors such as macrophages and AKT and further discusses as to how regulating autophagy is crucial in relieving prostate cancer bone metastasis.
Collapse
Affiliation(s)
- YouZhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Ning Wu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
39
|
Chai M, Li X, Zhang Y, Tang Y, Shu P, Lin J, Shi K, Wang L, Huang X. A Nomogram Integrating Ferroptosis- and Immune-Related Biomarkers for Prediction of Overall Survival in Lung Adenocarcinoma. Front Genet 2021; 12:706814. [PMID: 34539740 PMCID: PMC8441018 DOI: 10.3389/fgene.2021.706814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Ferroptosis plays a dual role in cancer, which is known to be affected to antitumor immune responses. However, the association between ferroptosis and antitumor immune responses is uncertain in lung adenocarcinoma (LUAD). In this work, 38 ferroptosis-related genes (FRGs) and 429 immune-related genes (IRGs) were identified as being differentially expressed between tumor and normal samples. Two risk score formulas consisting of seven FRGs and four IRGs, respectively, were developed by Lasso-penalized Cox regression and verified in the GSE13213 dataset. The CIBERSORT algorithm was used to estimate the relative abundance of immune cells in tumors. The correlation between FRGs and immune cells was evaluated using the TIMER database. The results indicated that the development of ferroptosis was synergistic with that of anti-tumor immunity in LUAD. The concordance index and calibration curves showed that the performance of a nomogram that combines clinical staging and risk scores is superior to that of models using a single prognostic factor. In conclusion, ferroptosis might be synergistic with anti-tumor immunity in LUAD. The combined nomogram could reliably predict the probability of overall survival of LUAD patients. These findings may be useful for future investigation of prognostic value and therapeutic potential related to ferroptosis and tumor immunity in LUAD.
Collapse
Affiliation(s)
- Mengyu Chai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiuchun Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yaxin Zhang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yemeng Tang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Pingping Shu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jing Lin
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
40
|
Liu S, Wu D, Sun X, Fan Y, Zha R, Jalali A, Feng Y, Li K, Sano T, Vike N, Li F, Rispoli J, Sudo A, Liu J, Robling A, Nakshatri H, Li BY, Yokota H. Overexpression of Lrp5 enhanced the anti-breast cancer effects of osteocytes in bone. Bone Res 2021; 9:32. [PMID: 34230453 PMCID: PMC8260600 DOI: 10.1038/s41413-021-00152-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Osteocytes are the most abundant cells in bone, which is a frequent site of breast cancer metastasis. Here, we focused on Wnt signaling and evaluated tumor-osteocyte interactions. In animal experiments, mammary tumor cells were inoculated into the mammary fat pad and tibia. The role of Lrp5-mediated Wnt signaling was examined by overexpressing and silencing Lrp5 in osteocytes and establishing a conditional knockout mouse model. The results revealed that administration of osteocytes or their conditioned medium (CM) inhibited tumor progression and osteolysis. Osteocytes overexpressing Lrp5 or β-catenin displayed strikingly elevated tumor-suppressive activity, accompanied by downregulation of tumor-promoting chemokines and upregulation of apoptosis-inducing and tumor-suppressing proteins such as p53. The antitumor effect was also observed with osteocyte-derived CM that was pretreated with a Wnt-activating compound. Notably, silencing Lrp5 in tumors inhibited tumor progression, while silencing Lrp5 in osteocytes in conditional knockout mice promoted tumor progression. Osteocytes exhibited elevated Lrp5 expression in response to tumor cells, implying that osteocytes protect bone through canonical Wnt signaling. Thus, our results suggest that the Lrp5/β-catenin axis activates tumor-promoting signaling in tumor cells but tumor-suppressive signaling in osteocytes. We envision that osteocytes with Wnt activation potentially offer a novel cell-based therapy for breast cancer and osteolytic bone metastasis.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Di Wu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Rongrong Zha
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Yan Feng
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Kexin Li
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Tomohiko Sano
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Orthopedic Surgery, Mie University, Tsu, Mie, Japan
| | - Nicole Vike
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fangjia Li
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Joseph Rispoli
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University, Tsu, Mie, Japan
| | - Jing Liu
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alexander Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA. .,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China. .,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA. .,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
41
|
Adhikari M, Delgado-Calle J. Role of Osteocytes in Cancer Progression in the Bone and the Associated Skeletal Disease. Curr Osteoporos Rep 2021; 19:247-255. [PMID: 33818732 PMCID: PMC8486016 DOI: 10.1007/s11914-021-00679-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The goal of this manuscript is to review the current knowledge on the role of osteocytes in cancer in the bone, discuss the potential of osteocytes as a therapeutic target, and propose future research needed to understand the crosstalk between cancer cells and osteocytes in the tumor niche. RECENT FINDINGS Numerous studies have established that cancer cells manipulate osteocytes to facilitate invasion and tumor progression in bone. Moreover, cancer cells dysregulate osteocyte function to disrupt physiological bone remodeling, leading to the development of bone disease. Targeting osteocytes and their derived factors has proven to effectively interfere with the progression of cancer in the bone and the associated bone disease. Osteocytes communicate with cancer cells and are also part of the vicious cycle of cancer in the bone. Additional studies investigating the role of osteocytes on metastases to the bone and the development of drug resistance are needed.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jesús Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
42
|
Siff T, Parajuli P, Razzaque MS, Atfi A. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management. Trends Endocrinol Metab 2021; 32:382-402. [PMID: 33888422 PMCID: PMC8102392 DOI: 10.1016/j.tem.2021.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Muscle cachexia has a major detrimental impact on cancer patients, being responsible for 30% of all cancer deaths. It is characterized by a debilitating loss in muscle mass and function, which ultimately deteriorates patients' quality of life and dampens therapeutic treatment efficacy. Muscle cachexia stems from widespread alterations in whole-body metabolism as well as immunity and neuroendocrine functions and these global defects often culminate in aberrant signaling within skeletal muscle, causing muscle protein breakdown and attendant muscle atrophy. This review summarizes recent landmark discoveries that significantly enhance our understanding of the molecular etiology of cancer-driven muscle cachexia and further discuss emerging therapeutic approaches seeking to simultaneously target those newly discovered mechanisms to efficiently curb this lethal syndrome.
Collapse
Affiliation(s)
- Thomas Siff
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Parash Parajuli
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Sorbonne Universités, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France.
| |
Collapse
|
43
|
Evaluation of a Three-Marker Panel for the Detection of Uveal Melanoma Metastases: A Single-Center Retrospective Analysis. Cancers (Basel) 2021; 13:cancers13102464. [PMID: 34070192 PMCID: PMC8158498 DOI: 10.3390/cancers13102464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Blood-based B-cell activating factor (BAFF), growth differentiation factor-15 (GDF-15) and osteopontin (OPN) have been reported to be biomarkers for the uveal melanoma (UM) metastases. This work intended to assess their kinetics and to evaluate their significance as a three-marker panel for clinical practice. Our results not only provided their cutoff values for differentiating the metastatic patients from non-metastatic patients, but also confirmed that the three-marker panel outperformed any single biomarker in distinguishing metastatic patients. Besides, the increasing trends of the levels of three biomarkers were detected in the two-year period before the imaging diagnosis of metastases. The multiplex panel of BAFF, GDF-15 and OPN might be a utilizable implementation for the detection of UM metastases. Since it is a retrospective pilot work, more well-designed prospective studies employing larger cohorts are still needed to validate the findings. Abstract Blood-based B-cell activating factor (BAFF), growth differentiation factor-15 (GDF-15) and osteopontin (OPN) have been identified to be promising biomarkers for the metastases of uveal melanoma (UM). This study intended to assess their kinetics and to evaluate their significance as a three-marker panel. A group of 36 UM patients with and 137 patients without metastases were included in the study. Their plasma OPN levels were measured by ELISA; serum BAFF and GDF-15 levels were determined with a Luminex MAGPIX system. Receiver operating characteristic (ROC) analysis was performed to calculate the cutoff values of the three markers for identifying the patients with metastases. The ability to identify patients with metastases was compared between the single markers and the combination as a three-marker panel. By using the Student’s t-test, we also investigated the kinetic changes of the levels of BAFF, GDF-15 and OPN across six periods (i.e., 0–6 months, 6–12 months, 12–18 months, 18–24 months, >24 months and post-metastasis) before the imaging diagnosis of metastases. By maximizing the Youden’s index, the serum GDF-15 level of 1209 pg/mL and the plasma OPN level of 92 ng/mL were identified to have the best performance for distinguishing the metastatic patients from non-metastatic patients. The three-marker panel offered a better performance in distinguishing patients with metastases, with an area under the curve of 0.802, than any single biomarker. Increasing trends of the levels of three biomarkers were observed in the two-year period before the imaging diagnosis of metastases. The combined panel of BAFF, GDF-15 and OPN might be a utilizable implementation for the detection of UM metastases. In the bioinformatics study with two external datasets, the high expression of gene BAFF and GDF-15 in primary UM tissues was identified to be associated with poor overall survival rates. As the current work is a single-center retrospective study, more well-designed prospective investigations employing larger cohorts are urgently needed to validate our findings.
Collapse
|
44
|
Lv D, Wu X, Chen X, Yang S, Chen W, Wang M, Liu Y, Gu D, Zeng G. A novel immune-related gene-based prognostic signature to predict biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Immunol Immunother 2021; 70:3587-3602. [PMID: 33934205 DOI: 10.1007/s00262-021-02923-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidences indicates that the immune landscape signature dramatically correlates with tumorigenesis and prognosis of prostate cancer (PCa). Here, we identified a novel immune-related gene-based prognostic signature (IRGPS) to predict biochemical recurrence (BCR) after radical prostatectomy. We also explored the correlation between IRGPS and tumor microenvironment. We identified an IRGPS consisting of seven immune-related genes (PPARGC1A, AKR1C2, COMP, EEF1A2, IRF5, NTM, and TPX2) that were related to the BCR-free survival of PCa patients. The high-risk patients exhibited a higher fraction of regulatory T cells and M2 macrophages than the low-risk BCR patients (P < 0.05) as well as a lower fraction of resting memory CD4 T cells and resting mast cells. These high-risk patients also had higher expression levels of CTLA4, TIGIT, PDCD1, LAG3, and TIM3. Finally, a strong correlation was detected between IRGPS and specific clinicopathological features, including Gleason scores and tumor stage. In conclusion, our study reveals the clinical significance and potential functions of the IRGPS, provides more data for predicting outcomes, and suggests more effective immunotherapeutic target strategies for PCa.
Collapse
Affiliation(s)
- Daojun Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangkun Wu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi Chen
- Department of Urology, Guangzhou 12th People's Hospital, Guangzhou, Guangdong, China
| | - Shuxin Yang
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenzhe Chen
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Wang
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongda Liu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Di Gu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Guohua Zeng
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China.
| |
Collapse
|
45
|
Kang YE, Kim JM, Lim MA, Lee SE, Yi S, Kim JT, Oh C, Liu L, Jin Y, Jung SN, Won HR, Chang JW, Lee JH, Kim HJ, Koh HY, Jun S, Cho SW, Shong M, Koo BS. Growth Differentiation Factor 15 is a Cancer Cell-Induced Mitokine That Primes Thyroid Cancer Cells for Invasiveness. Thyroid 2021; 31:772-786. [PMID: 33256569 DOI: 10.1089/thy.2020.0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Mitochondrial stress is known to activate the mitochondrial unfolded protein response (UPRmt). The UPRmt results in the secretion of mitochondrial cytokines (mitokines), which can promote a hormetic response cell nonautonomously, and has been reported to be protumorigenic. Growth differentiation factor 15 (GDF15) is a well-characterized mitokine, which is reported to have a mitohormetic effect. Thus, we investigated whether GDF15 induction could prime a subpopulation of thyroid cancer cells to provide invasive advantages. Methods: The UPRmt, including mitokine expression, was assessed in the context of thyroid cancer in vitro and in vivo. GDF15 expression in 266 patients with papillary thyroid carcinoma (PTC) was determined by immunohistochemistry. The serum levels of GDF15 were measured in healthy subjects and PTC patients. In addition, our own and The Cancer Genome Atlas data were analyzed to determine the expression level of GDF15 in thyroid cancers. The role of GDF15 in tumor aggressiveness was investigated by observing the effects of GDF15 knockdown in BCPAP, TPC-1, 8505C, and FRO cells. Results: Pharmacological inhibition of mitochondrial oxidative phosphorylation function in thyroid cancer cells robustly increased GDF15 expression. The expression of GDF15 was associated with activation of the mitochondrial integrated stress response pathway in PTC patients. Circulating GDF15 levels were significantly higher in PTC patients than in the controls, and tumor expression of GDF15 was related to tumor aggressiveness. In vitro and in vivo knockdown of GDF15 in a thyroid cancer model showed decreased viability, migration, and invasion compared with the control cells via regulation of STAT3. Conclusions: In this study, we demonstrated that GDF15 is a mitokine induced in thyroid cancer cells upon mitochondrial stress. GDF15-induced STAT3 activation determined tumor progression in thyroid cancer. The GDF15-STAT3 signaling axis may be a target in aggressiveness of thyroid cancer.
Collapse
MESH Headings
- Adenoma, Oxyphilic/genetics
- Adenoma, Oxyphilic/metabolism
- Adenoma, Oxyphilic/pathology
- Cell Line, Tumor
- Gene Knockdown Techniques
- Growth Differentiation Factor 15/genetics
- Growth Differentiation Factor 15/metabolism
- Humans
- Mitochondria
- Neoplasm Invasiveness
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/metabolism
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Epithelial Cells/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Unfolded Protein Response
Collapse
Affiliation(s)
- Yea Eun Kang
- Department of Endocrinology and Metabolism, College of Medicine, Chungnam National University, Daejeon, South Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Shinae Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chan Oh
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yanli Jin
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Yong Koh
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sangmi Jun
- Drug & Disease Target Group, Korea Basic Science Institute, Cheongju, South Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sun Wook Cho
- Department of Endocrinology and Metabolism, College of Medicine, Seoul National University, Seoul, South Korea
| | - Minho Shong
- Department of Endocrinology and Metabolism, College of Medicine, Chungnam National University, Daejeon, South Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
46
|
Nguyen HD, Sun X, Yokota H, Lin CC. Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules 2021; 22:1115-1126. [PMID: 33543929 PMCID: PMC10548335 DOI: 10.1021/acs.biomac.0c01476] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone is an attractive site for metastatic cancer cells and has been considered as "soil" for promoting tumor growth. However, accumulating evidence suggests that some bone cells (e.g., osteocytes) can actually suppress cancer cell migration and invasion via direct cell-cell contact and/or through cytokine secretion. Toward designing a biomimetic niche for supporting 3D osteocyte culture, we present here a gelatin-based hydrogel system with independently tunable matrix stiffness and viscoelasticity. In particular, we synthesized a bifunctional macromer, gelatin-norbornene-boronic acid (i.e., GelNB-BA), for covalent cross-linking with multifunctional thiol linkers [e.g., four-arm poly(ethylene glycol)-thiol or PEG4SH] to form thiol-NB hydrogels. The immobilized BA moieties in the hydrogel readily formed reversible boronate ester bonds with 1,3-diols on physically entrapped poly(vinyl alcohol) (PVA). Adjusting the compositions of GelNB-BA, PEG4SH, and PVA afforded hydrogels with independently tunable elasticity and viscoelasticity. With this new dynamic hydrogel platform, we investigated matrix mechanics-induced growth and cytokine secretion of encapsulated MLO-A5 pre-osteocytes. We discovered that more compliant or viscoelastic gels promoted A5 cell growth. On the other hand, cells encapsulated in stiffer gels secreted higher amounts of pro-inflammatory cytokines and chemokines. Finally, conditioned media (CM) collected from the encapsulated MLO-A5 cells (i.e., A5-CM) strongly inhibited breast cancer cell proliferation, invasion, and expression of tumor-activating genes. This new biomimetic hydrogel platform not only serves as a versatile matrix for investigating mechano-sensing in osteocytes but also provides a means to produce powerful anti-tumor CM.
Collapse
Affiliation(s)
- Han D. Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xun Sun
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
47
|
Siddappa M, Wani SA, Long MD, Leach DA, Mathé EA, Bevan CL, Campbell MJ. Identification of transcription factor co-regulators that drive prostate cancer progression. Sci Rep 2020; 10:20332. [PMID: 33230156 PMCID: PMC7683598 DOI: 10.1038/s41598-020-77055-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
In prostate cancer (PCa), and many other hormone-dependent cancers, there is clear evidence for distorted transcriptional control as disease driver mechanisms. Defining which transcription factor (TF) and coregulators are altered and combine to become oncogenic drivers remains a challenge, in part because of the multitude of TFs and coregulators and the diverse genomic space on which they function. The current study was undertaken to identify which TFs and coregulators are commonly altered in PCa. We generated unique lists of TFs (n = 2662), coactivators (COA; n = 766); corepressors (COR; n = 599); mixed function coregulators (MIXED; n = 511), and to address the challenge of defining how these genes are altered we tested how expression, copy number alterations and mutation status varied across seven prostate cancer (PCa) cohorts (three of localized and four advanced disease). Testing of significant changes was undertaken by bootstrapping approaches and the most significant changes were identified. For one commonly and significantly altered gene were stably knocked-down expression and undertook cell biology experiments and RNA-Seq to identify differentially altered gene networks and their association with PCa progression risks. COAS, CORS, MIXED and TFs all displayed significant down-regulated expression (q.value < 0.1) and correlated with protein expression (r 0.4-0.55). In localized PCa, stringent expression filtering identified commonly altered TFs and coregulator genes, including well-established (e.g. ERG) and underexplored (e.g. PPARGC1A, encodes PGC1α). Reduced PPARGC1A expression significantly associated with worse disease-free survival in two cohorts of localized PCa. Stable PGC1α knockdown in LNCaP cells increased growth rates and invasiveness and RNA-Seq revealed a profound basal impact on gene expression (~ 2300 genes; FDR < 0.05, logFC > 1.5), but only modestly impacted PPARγ responses. GSEA analyses of the PGC1α transcriptome revealed that it significantly altered the AR-dependent transcriptome, and was enriched for epigenetic modifiers. PGC1α-dependent genes were overlapped with PGC1α-ChIP-Seq genes and significantly associated in TCGA with higher grade tumors and worse disease-free survival. These methods and data demonstrate an approach to identify cancer-driver coregulators in cancer, and that PGC1α expression is clinically significant yet underexplored coregulator in aggressive early stage PCa.
Collapse
Affiliation(s)
- Manjunath Siddappa
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Sajad A Wani
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Mark D Long
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Damien A Leach
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Ewy A Mathé
- Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr, Rockville, MD, 20892, USA
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Moray J Campbell
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA. .,The James, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
48
|
Dong G, Huang X, Jiang S, Ni L, Ma L, Zhu C, Chen S. SCAP Mediated GDF15-Induced Invasion and EMT of Esophageal Cancer. Front Oncol 2020; 10:564785. [PMID: 33123476 PMCID: PMC7573169 DOI: 10.3389/fonc.2020.564785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background: GDF15 is a potential biomarker for patients with esophageal cancer (EC). However, the mechanistic role of GDF15 in the invasion and metastasis of EC remains poorly understood. Methods: We determined the expression and function of GDF15 in esophageal cancer cells (ESCCs) and in patient tissue samples using western blotting, migration, and invasion assays, immunohistochemistry, Co-IP assays, and quantitative real-time-PCR. In addition, a pulmonary metastatic nude mouse model was used to determine the function of GDF15. We then supplemented our experimental results with database analysis to validate our findings. Results: GDF15 was upregulated in EC, and was associated with poor differentiation, high metastasis rates, and worse prognosis. GDF15 knock-down reduced the migration and invasion of ESCCs. Co-IP assays demonstrated its association with SCAP, while GDF15 knock-down decreased SCAP levels. SCAP overexpression reversed the migration, invasion and EMT in GDF15-siRNA ESCCs. However, after incubation with β-cyclodextrin (β-CD), the ability of migration and invasion was weakened, EMT was reversed again. Migration, invasion, and EMT were enhanced in GDF15-siRNA ESCCs cultured in the presence of cholesterol and were similar to GDF15-siRNA ESCCs overexpressing SCAP. In vivo, knockdown of GDF15 inhibited lung metastasis of ESCCs and was reversed by SCAP overexpression or high cholesterol diet. Increased lung metastasis after SCAP overexpression was partially suppressed by intraperitoneal injection of β-CD. In addition, we determined that GDF15 was a direct target of miR-1324, miR-1324 was down-regulated in EC tissues. MiR-1324 upregulation resulted in decreased GDF15 expression and metastasis in ESCCs. Conclusions: We demonstrated that SCAP mediated GDF15-induced the invasion and metastasis of EC by regulating cholesterol metabolism. In addition, GDF15 was shown to be a direct target of miR-1324.
Collapse
Affiliation(s)
- Gang Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyuan Ni
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chouwen Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Abstract
Bone is the most frequent site for metastasis for many cancers, notably for tumours originating in the breast and the prostate. Tumour cells can escape from the primary tumour site and colonize the bone microenvironment. Within the bone, these disseminated tumour cells, as well as those arising in the context of multiple myeloma, may assume a state of dormancy, remaining quiescent for years before resuming proliferation and causing overt metastasis, which causes bone destruction via activation of osteoclast-mediated osteolysis. This structural damage can lead to considerable morbidity, including pain, fractures and impaired quality of life. Although treatment of bone metastases and myeloma bone disease is rarely curative, disease control is often possible for many years through the use of systemic anticancer treatments on a background of multidisciplinary supportive care. This care should include bone-targeted agents to inhibit tumour-associated osteolysis and prevent skeletal morbidity as well as use of appropriate local treatments such as radiation therapy, orthopaedic surgery and specialist palliative care to minimize the impact of metastatic bone disease on physical functioning. In this Primer, we provide an overview of the clinical features, the pathophysiology and the specific treatment approaches to prevent and treat bone metastases from solid tumours as well as myeloma bone disease.
Collapse
|
50
|
Growth Differentiation Factor 15 Ameliorates Anti-Glomerular Basement Membrane Glomerulonephritis in Mice. Int J Mol Sci 2020; 21:ijms21196978. [PMID: 32977372 PMCID: PMC7583818 DOI: 10.3390/ijms21196978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis.
Collapse
|