1
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
2
|
Hu S, Liu Y, Zhang X, Wang X, Li Y, Chu M, Yin J, Fang Y, Ruan C, Zhu L, Wu D, Xu Y. YAP1 regulates thrombopoiesis by binding to MYH9 in immune thrombocytopenia. Blood 2024; 144:2136-2148. [PMID: 39190466 DOI: 10.1182/blood.2023023601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
ABSTRACT Immune thrombocytopenia (ITP) is a complicated bleeding disease characterized by a sharp platelet reduction. As a dominating element involved in ITP, megakaryocytes (MKs) are responsible for thrombopoiesis. However, the mechanism underlying the dysregulation of thrombopoiesis that occurs in ITP remains unidentified. In this study, we examined the role of Yes-associated protein 1 (YAP1) in thrombopoiesis during ITP. We observed reduced YAP1 expression with cytoskeletal actin misalignment in MKs from patients with ITP. Using an experimental ITP mouse model, we showed that reduced YAP1 expression induced aberrant MK distribution, reduced the percentage of late MKs among the total MKs, and caused submaximal platelet recovery. Mechanistically, YAP1 upregulation by binding of GATA-binding protein 1 to its promoter promoted MK maturation. Phosphorylated YAP1 promoted cytoskeletal activation by binding its WW2 domain to myosin heavy chain 9, thereby facilitating thrombopoiesis. Targeting YAP1 with its activator XMU-MP-1 was sufficient to rescue cytoskeletal defects and thrombopoiesis dysregulation in YAP1+/- mice with ITP and patients. Taken together, these results demonstrate the crucial role of YAP1 in thrombopoiesis, providing potential for the development of diagnostic markers and therapeutic options for ITP.
Collapse
Affiliation(s)
- Shuhong Hu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yifei Liu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Xiang Zhang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Xiaoqi Wang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yanting Li
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Mengqian Chu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Jie Yin
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Li Zhu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Diseases, Cyrus Tang Hematology Center, The Ninth Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Li N, Liu YH, Wu J, Liu QG, Niu JB, Zhang Y, Fu XJ, Song J, Zhang SY. Strategies that regulate Hippo signaling pathway for novel anticancer therapeutics. Eur J Med Chem 2024; 276:116694. [PMID: 39047607 DOI: 10.1016/j.ejmech.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Booth L, Roberts JL, Spasojevic I, Baker KC, Poklepovic A, West C, Kirkwood JM, Dent P. GZ17-6.02 kills PDX isolates of uveal melanoma. Oncotarget 2024; 15:328-344. [PMID: 38758815 PMCID: PMC11101052 DOI: 10.18632/oncotarget.28586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ivan Spasojevic
- Department of Medicine, and PK/PD Core Laboratory, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaitlyn C Baker
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cameron West
- Genzada Pharmaceuticals, Hutchinson, KS 67502, USA
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Chen H, Dong K, Ding J, Xia J, Qu F, Lan F, Liao H, Qian Y, Huang J, Xu Z, Gu Z, Shi B, Yu M, Cui X, Yu Y. CRISPR genome-wide screening identifies PAK1 as a critical driver of ARSI cross-resistance in prostate cancer progression. Cancer Lett 2024; 587:216725. [PMID: 38364963 DOI: 10.1016/j.canlet.2024.216725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Next-generation androgen receptor signaling inhibitors (ARSIs), such as enzalutamide (Enza) and darolutamide (Daro), are initially effective for the treatment of advanced prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). However, patients often relapse and develop cross-resistance, which consequently makes drug resistance an inevitable cause of CRPC-related mortality. By conducting a comprehensive analysis of GEO datasets, CRISPR genome-wide screening results, ATAC-seq data, and RNA-seq data, we systemically identified PAK1 as a significant contributor to ARSI cross-resistance due to the activation of the PAK1/RELA/hnRNPA1/AR-V7 axis. Inhibition of PAK1 followed by suppression of NF-κB pathways and AR-V7 expression effectively overcomes ARSI cross-resistance. Our findings indicate that PAK1 represents a promising therapeutic target gene for the treatment of ARSI cross-resistant PCa patients in the clinic. STATEMENT OF SIGNIFICANCE: PAK1 drives ARSI cross-resistance in prostate cancer progression.
Collapse
Affiliation(s)
- Haojie Chen
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Keqin Dong
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430064, China
| | - Jie Ding
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jia Xia
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fajun Qu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fuying Lan
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Haihong Liao
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yuhang Qian
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jiacheng Huang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zihan Xu
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhengqin Gu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Bowen Shi
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingming Yu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xingang Cui
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yongjiang Yu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Rak M, Menge A, Tesch R, Berger LM, Balourdas DI, Shevchenko E, Krämer A, Elson L, Berger BT, Abdi I, Wahl LM, Poso A, Kaiser A, Hanke T, Kronenberger T, Joerger AC, Müller S, Knapp S. Development of Selective Pyrido[2,3- d]pyrimidin-7(8 H)-one-Based Mammalian STE20-Like (MST3/4) Kinase Inhibitors. J Med Chem 2024; 67:3813-3842. [PMID: 38422480 DOI: 10.1021/acs.jmedchem.3c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.
Collapse
Affiliation(s)
- Marcel Rak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Roberta Tesch
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ismahan Abdi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Laurenz M Wahl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
8
|
Li Y, Zheng Z, Xiao L, Chen Y, Liu X, Long D, Chai L, Li Y, Tan C. Dinaciclib exerts a tumor-suppressing effect via β-catenin/YAP axis in pancreatic ductal adenocarcinoma. Anticancer Drugs 2024; 35:140-154. [PMID: 37694833 DOI: 10.1097/cad.0000000000001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Dinaciclib, a cyclin-dependent kinase-5 (CDK5) inhibitor, has significant anti-tumor properties. However, the precise mechanism of dinaciclib requires further investigation. Herein, we investigated the anti-tumor functions and molecular basis of dinaciclib in pancreatic ductal adenocarcinoma (PDAC). PDAC and matched para-carcinoma specimens were collected from the patients who underwent radical resection. Immunohistochemistry was performed to assess CDK5 expression. Cell proliferation ability, migration, and invasion were measured using Cell Counting Kit-8, wound healing, and transwell assay, respectively. The cell cycle and apoptosis were assessed using flow cytometry. Gene expression was examined using RNA-seq and quantitative real-time PCR. Protein expression of proteins was measured by western blot analysis and immunofluorescence microscopy. Tumor-bearing mice were intraperitoneally injected with dinaciclib. CDK5 is highly expressed in PDAC. The expression level of CDK5 was significantly related to tumor size, T stage, and the American Joint Committee on Cancer stage. High CDK5 expression can predict poor survival in PDAC patients. In addition, the expression level of CDK5 might be an independent prognostic factor for PDAC patients. Dinaciclib inhibits the growth and motility of PDAC cells and induces apoptosis and cell cycle arrest in the G2/M phase. Mechanistically, dinaciclib down-regulated yes-associated protein (YAP) mRNA and protein expression by reducing β-catenin expression. Moreover, dinaciclib significantly inhibited PDAC cell growth in vivo . Our findings reveal a novel anti-tumor mechanism of dinaciclib in which it decreases YAP expression by down-regulating β-catenin at the transcriptional level rather than by activating Hippo pathway-mediated phosphorylation-dependent degradation.
Collapse
Affiliation(s)
- Yichen Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Zhenjiang Zheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Li Xiao
- Department of Traditional Chinese Medicine, Chengdu Third People's Hospital
| | - Yonghua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Diseaserelated Molecular Network, West China Hospital, Sichuan University
| | - Li Chai
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunlu Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| |
Collapse
|
9
|
Adamopoulos C, Cave DD, Papavassiliou AG. Inhibition of the RAF/MEK/ERK Signaling Cascade in Pancreatic Cancer: Recent Advances and Future Perspectives. Int J Mol Sci 2024; 25:1631. [PMID: 38338909 PMCID: PMC10855714 DOI: 10.3390/ijms25031631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donatella Delle Cave
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’, CNR, 80131 Naples, Italy
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
10
|
Guo L, Shao W, Zhou C, Yang H, Yang L, Cai Q, Wang J, Shi Y, Huang L, Zhang J. Neratinib for HER2-positive breast cancer with an overlooked option. Mol Med 2023; 29:134. [PMID: 37803271 PMCID: PMC10559443 DOI: 10.1186/s10020-023-00736-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Positive human epidermal growth factor receptor 2 (HER2) expression is associated with an increased risk of metastases especially those to the brain in patients with advanced breast cancer (BC). Neratinib as a tyrosine kinase inhibitor can prevent the transduction of HER1, HER2 and HER4 signaling pathways thus playing an anticancer effect. Moreover, neratinib has a certain efficacy to reverse drug resistance in patients with BC with previous HER2 monoclonal antibody or targeted drug resistance. Neratinib, as monotherapy and in combination with other therapies, has been tested in the neoadjuvant, adjuvant, and metastatic settings. Neratinib with high anticancer activity is indicated for the prolonged adjuvant treatment of HER2-positive early BC, or in combination with other drugs including trastuzumab, capecitabine, and paclitaxel for the treatment of advanced HER2-positive BC especially cancers with central nervous system (CNS) metastasis to reduce the risk of BC recurrence. This article reviewed the pharmacological profiles, efficacy, safety, tolerability, and current clinical trials pertaining to neratinib, with a particular focus on the use of neratinib in patients with metastatic breast cancer (MBC) involving the CNS. We further discussed the use of neratinib for HER2-negative and HER2-mutant breast cancers, and mechanisms of resistance to neratinib. The current evidence suggests that neratinib has promising efficacy in patients with BC which is at least non-inferior compared to previous therapeutic regimens. The most common AE was diarrhea, and the incidence, severity and duration of neratinib-related grade 3 diarrhea can be reduced with loperamide. Of note, neratinib has the potential to effectively control and prevent brain metastasis in patients with advanced BC, providing a therapeutic strategy for HER2-positive BC.
Collapse
Affiliation(s)
- Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Weiwei Shao
- Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Liu Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Gaoqiao Town, Shanghai, 200137, China.
| | - Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Medical Center on Aging of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| |
Collapse
|
11
|
Booth L, Poklepovic A, Hancock JF, Dent P. Cellular responses after (neratinib plus pemetrexed) exposure in NSCLC cells. Anticancer Drugs 2023; 34:1025-1034. [PMID: 37703296 DOI: 10.1097/cad.0000000000001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
We previously demonstrated that neratinib interacted with pemetrexed to kill non-small cell lung cancer (NSCLC) cells. From developing other drug combinations, we observed that several days following exposure, cells activated survival mechanisms to counteract drug toxicity. The present studies attempted to define mechanisms that evolve to reduce the efficacy of neratinib and pemetrexed. Neratinib and pemetrexed synergized to kill NSCLC cells expressing wild-type RAS proteins, mutant KRAS (G12S; Q61H; G12A and G12C) or mutant NRAS (Q61K) or mutant ERBB1 (L858R; L858R T790M and exon 19 deletion). Neratinib and pemetrexed interacted in a greater than additive fashion to kill after 24 h, and after a further 24 h culture in the absence of drugs. Mutant KRAS G12V was more cytoprotective than either activated MEK1 or activated AKT. Knockdown of mutant KRAS reduced drug combination killing at the 48 h timepoint. Despite culture for 24 h in the absence of the drugs, the expression and activities of ERBB1, ERBB2 and ERBB4 remained significantly lower as did the activities of mammalian target of rapamycin (mTOR) C1 and mTORC2. The drug combination reduced KRAS and NRAS levels for 24 h, however, in the absence of the drugs, RAS levels had normalized by 48 h. Expression of Beclin1 and ATG5 remained elevated and of MCL1 and BCL-XL lower. No evolutionary activations of survival signaling by ERBB3, c-KIT, c-MET or PDGFRβ or in intracellular signaling pathways were observed. These findings argue against the development of 'early' resistance mechanisms after neratinib and pemetrexed exposure. Future studies will be required to understand how NSCLC cells become resistant to neratinib and pemetrexed.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University
| | | | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGoven Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University
| |
Collapse
|
12
|
Bellese G, Tagliatti E, Gagliani MC, Santamaria S, Arnaldi P, Falletta P, Rusmini P, Matteoli M, Castagnola P, Cortese K. Neratinib is a TFEB and TFE3 activator that potentiates autophagy and unbalances energy metabolism in ERBB2+ breast cancer cells. Biochem Pharmacol 2023; 213:115633. [PMID: 37269887 DOI: 10.1016/j.bcp.2023.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Neratinib (NE) is an irreversible pan-ERBB tyrosine kinase inhibitor used to treat breast cancers (BCa) with amplification of the ERBB2/HER2/Neu gene or overexpression of the ERBB2 receptor. However, the mechanisms behind this process are not fully understood. Here we investigated the effects of NE on critical cell survival processes in ERBB2+ cancer cells. By kinome array analysis, we showed that NE time-dependently inhibited the phosphorylation of two distinct sets of kinases. The first set, including ERBB2 downstream signaling kinases such as ERK1/2, ATK, and AKT substrates, showed inhibition after 2 h of NE treatment. The second set, which comprised kinases involved in DNA damage response, displayed inhibition after 72 h. Flow cytometry analyses showed that NE induced G0/G1 cell cycle arrest and early apoptosis. By immunoblot, light and electron microscopy, we revealed that NE also transiently induced autophagy, mediated by increased expression levels and nuclear localization of TFEB and TFE3. Altered TFEB/TFE3 expression was accompanied by dysregulation of mitochondrial energy metabolism and dynamics, leading to a decrease in ATP production, glycolytic activity, and a transient downregulation of fission proteins. Increased TFEB and TFE3 expression was also observed in ERBB2-/ERBB1 + BCa cells, supporting that NE may act through other ERBB family members and/or other kinases. Overall, this study highlights NE as a potent activator of TFEB and TFE3, leading to the suppression of cancer cell survival through autophagy induction, cell cycle arrest, apoptosis, mitochondrial dysfunction and inhibition of DNA damage response.
Collapse
Affiliation(s)
- Grazia Bellese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Erica Tagliatti
- IRCCS Humanitas Research Hospital, Laboratory of Pharmacology and Brain Pathology, via Manzoni 56, 20089 Rozzano, Milano, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Sara Santamaria
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Pietro Arnaldi
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Paola Falletta
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, Laboratory of Pharmacology and Brain Pathology, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | | | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy.
| |
Collapse
|
13
|
Bordeaux ZA, Kwatra SG, Booth L, Dent P. A novel combination of isovanillin, curcumin, and harmine (GZ17-6.02) enhances cell death and alters signaling in actinic keratoses cells when compared to individual components and two-component combinations. Anticancer Drugs 2023; 34:544-550. [PMID: 36847046 DOI: 10.1097/cad.0000000000001425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Actinic keratosis is a pre-malignant skin disease caused by excessive exposure to ultraviolet light. The present studies further defined the biology of a novel combination of isovanillin, curcumin, and harmine in actinic keratosis cells in vitro . An oral formulation (GZ17-6.02) and topical preparation (GZ21T) comprised of the same fixed, stoichiometric ratio have been developed. Together, the three active ingredients killed actinic keratosis cells more effectively than any of its component parts as either individual agents or when combined in pairs. The three active ingredients caused greater levels of DNA damage than any of its component parts as either individual agents or when combined in pairs. As a single agent, compared to isolated components, GZ17-6.02/GZ21T caused significantly greater activation of PKR-like endoplasmic reticulum kinase, the AMP-dependent protein kinase, and ULK1 and significantly reduced the activities of mTORC1, AKT, and YAP. Knockdown of the autophagy-regulatory proteins ULK1, Beclin1, or ATG5 significantly reduced the lethality of GZ17-6.02/GZ21T alone. Expression of an activated mammalian target of rapamycin mutant suppressed autophagosome formation and autophagic flux and reduced tumor cell killing. Blockade of both autophagy and death receptor signaling abolished drug-induced actinic keratosis cell death. Our data demonstrate that the unique combination of isovanillin, curcumin, and harmine represents a novel therapeutic with the potential to treat actinic keratosis in a manner different from the individual components or pairs of the components.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Rasha F, Boligala GP, Yang MV, Martinez-Marin D, Castro-Piedras I, Furr K, Snitman A, Khan SY, Brandi L, Castro M, Khan H, Jahan N, Almodovar S, Melkus MW, Pruitt K, Layeequr Rahman R. Dishevelled 2 regulates cancer cell proliferation and T cell mediated immunity in HER2-positive breast cancer. BMC Cancer 2023; 23:172. [PMID: 36809986 PMCID: PMC9942370 DOI: 10.1186/s12885-023-10647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Dishevelled paralogs (DVL1, 2, 3) are key mediators of Wnt pathway playing a role in constitutive oncogenic signaling influencing the tumor microenvironment. While previous studies showed correlation of β-catenin with T cell gene expression, little is known about the role of DVL2 in modulating tumor immunity. This study aimed to uncover the novel interaction between DVL2 and HER2-positive (HER2+) breast cancer (BC) in regulating tumor immunity and disease progression. METHODS DVL2 loss of function studies were performed with or without a clinically approved HER2 inhibitor, Neratinib in two different HER2+ BC cell lines. We analyzed RNA (RT-qPCR) and protein (western blot) expression of classic Wnt markers and performed cell proliferation and cell cycle analyses by live cell imaging and flow cytometry, respectively. A pilot study in 24 HER2+ BC patients was performed to dissect the role of DVL2 in tumor immunity. Retrospective chart review on patient records and banked tissue histology were performed. Data were analyzed in SPSS (version 25) and GraphPad Prism (version 7) at a significance p < 0.05. RESULTS DVL2 regulates the transcription of immune modulatory genes involved in antigen presentation and T cell maintenance. DVL2 loss of function down regulated mRNA expression of Wnt target genes involved in cell proliferation, migration, invasion in HER2+ BC cell lines (±Neratinib). Similarly, live cell proliferation and cell cycle analyses reveal that DVL2 knockdown (±Neratinib) resulted in reduced proliferation, higher growth arrest (G1), limited mitosis (G2/M) compared to non-targeted control in one of the two cell lines used. Analyses on patient tissues who received neoadjuvant chemotherapy (n = 14) further demonstrate that higher DVL2 expression at baseline biopsy pose a significant negative correlation with % CD8α levels (r = - 0.67, p < 0.05) while have a positive correlation with NLR (r = 0.58, p < 0.05), where high NLR denotes worse cancer prognosis. These results from our pilot study reveal interesting roles of DVL2 proteins in regulating tumor immune microenvironment and clinical predictors of survival in HER2+ BC. CONCLUSION Our study demonstrates potential immune regulatory role of DVL2 proteins in HER2+ BC. More in-depth mechanistic studies of DVL paralogs and their influence on anti-tumor immunity may provide insight into DVLs as potential therapeutic targets benefiting BC patients.
Collapse
Affiliation(s)
- Fahmida Rasha
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Geetha Priya Boligala
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Mingxiao V. Yang
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Dalia Martinez-Marin
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Isabel Castro-Piedras
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Kathryn Furr
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Annie Snitman
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA
| | - Sonia Y. Khan
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Luis Brandi
- grid.416992.10000 0001 2179 3554Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Maribel Castro
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA
| | - Hafiz Khan
- grid.416992.10000 0001 2179 3554Department of Public Health, Julia Jones Matthews, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Nusrat Jahan
- grid.416992.10000 0001 2179 3554Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Sharilyn Almodovar
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Michael W. Melkus
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA. .,Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Rakhshanda Layeequr Rahman
- Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX, 79430, USA. .,Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
15
|
Muacevic A, Adler JR. Suspected Neratinib Macular Toxicity Presenting As Macular Telangiectasia Type II. Cureus 2023; 15:e33964. [PMID: 36824546 PMCID: PMC9941022 DOI: 10.7759/cureus.33964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
The purpose of this case report is to present the first case of neratinib maculopathy. We describe the initial presentation, baseline characteristics, imaging findings, and outcomes. The case report is accompanied by a thorough literature review including possible mechanisms of tyrosine kinase inhibitor (TKI) maculopathy. Neratinib is a novel TKI that is commonly used in the treatment of breast-associated malignancies. Neratinib toxicity presents similarly to macular telangiectasia type II but differs with the fine granular hypofluorescent areas spanning the limit of the posterior pole and vascular arcades as well as the nasal aspect of the optic nerve. We report a case of suspected macular toxicity secondary to neratinib. Concomitant use of neratinib in conjunction with docetaxel and other chemotherapeutics with known retinal side effects should alert clinicians of an increase in the risk of macular toxicity. Albeit commonly reported ocular side effects of TKIs, maculopathy is a rare and potentially overlooked side effect. Patients that have planned chemotherapy should undergo a baseline retinal examination.
Collapse
|
16
|
Srisongkram T, Weerapreeyakul N. Drug Repurposing against KRAS Mutant G12C: A Machine Learning, Molecular Docking, and Molecular Dynamics Study. Int J Mol Sci 2022; 24:ijms24010669. [PMID: 36614109 PMCID: PMC9821013 DOI: 10.3390/ijms24010669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The Kirsten rat sarcoma viral G12C (KRASG12C) protein is one of the most common mutations in non-small-cell lung cancer (NSCLC). KRASG12C inhibitors are promising for NSCLC treatment, but their weaker activity in resistant tumors is their drawback. This study aims to identify new KRASG12C inhibitors from among the FDA-approved covalent drugs by taking advantage of artificial intelligence. The machine learning models were constructed using an extreme gradient boosting (XGBoost) algorithm. The models can predict KRASG12C inhibitors well, with an accuracy score of validation = 0.85 and Q2Ext = 0.76. From 67 FDA-covalent drugs, afatinib, dacomitinib, acalabrutinib, neratinib, zanubrutinib, dutasteride, and finasteride were predicted to be active inhibitors. Afatinib obtained the highest predictive log-inhibitory concentration at 50% (pIC50) value against KRASG12C protein close to the KRASG12C inhibitors. Only afatinib, neratinib, and zanubrutinib covalently bond at the active site like the KRASG12C inhibitors in the KRASG12C protein (PDB ID: 6OIM). Moreover, afatinib, neratinib, and zanubrutinib exhibited a distance deviation between the KRASG2C protein-ligand complex similar to the KRASG12C inhibitors. Therefore, afatinib, neratinib, and zanubrutinib could be used as drug candidates against the KRASG12C protein. This finding unfolds the benefit of artificial intelligence in drug repurposing against KRASG12C protein.
Collapse
|
17
|
Dent P, Booth L, Roberts JL, Poklepovic A, Martinez J, Cridebring D, Reiman EM. AR12 increases BAG3 expression which is essential for Tau and APP degradation via LC3-associated phagocytosis and macroautophagy. Aging (Albany NY) 2022; 14:8221-8242. [PMID: 36227739 PMCID: PMC9648812 DOI: 10.18632/aging.204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
We defined the mechanisms by which the chaperone ATPase inhibitor AR12 and the multi-kinase inhibitor neratinib interacted to reduce expression of Tau and amyloid-precursor protein (APP) in microglia and neuronal cells. AR12 and neratinib interacted to increase the phosphorylation of eIF2A S51 and the expression of BAG3, Beclin1 and ATG5, and in parallel, enhanced autophagosome formation and autophagic flux. Knock down of BAG3, Beclin1 or ATG5 abolished autophagosome formation and significantly reduced degradation of p62, LAMP2, Tau, APP, and GRP78 (total and plasma membrane). Knock down of Rubicon, a key component of LC3-associated phagocytosis (LAP), significantly reduced autophagosome formation but not autophagic flux and prevented degradation of Tau, APP, and cell surface GRP78, but not ER-localized GRP78. Knock down of Beclin1, ATG5 or Rubicon or over-expression of GRP78 prevented the significant increase in eIF2A phosphorylation. Knock down of eIF2A prevented the increase in BAG3 expression and significantly reduced autophagosome formation, autophagic flux, and it prevented Tau and APP degradation. We conclude that AR12 has the potential to reduce Tau and APP levels in neurons and microglia via the actions of LAP, endoplasmic reticulum stress signaling and macroautophagy. We hypothesize that the initial inactivation of GRP78 catalytic function by AR12 facilitates an initial increase in eIF2A phosphorylation which in turn is essential for greater levels of eIF2A phosphorylation, greater levels of BAG3 and macroautophagy and eventually leading to significant amounts of APP/Tau degradation.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Martinez
- National Institute of Environmental Health Sciences, Inflammation and Autoimmunity Group, Triangle Park, Durham, NC 27709, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
18
|
Dent P, Booth L, Poklepovic A, Hancock JF. Neratinib as a Potential Therapeutic for Mutant RAS and Osimertinib-Resistant Tumours. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/10197202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neratinib was developed as an irreversible catalytic inhibitor of ERBB2, which also acts to inhibit ERBB1 and ERBB4. Neratinib is U.S. Food and Drug Administration (FDA)-approved as a neo-adjuvant therapy for use in HER2+ breast cancer. More recently, chemical biology analyses and the authors’ own bench work have demonstrated that neratinib has additional targets, which open up the possibility of using the drug in cell types that either lack ERBB receptor family expression or who rely on survival signalling downstream of growth factor receptors. Neratinib rapidly disrupted mutant RAS nanoclustering, which was followed by mutant rat sarcoma virus proteins translocating via LC3-associated phagocytosis into the cytosol where they were degraded by macroautophagy. Neratinib catalytically inhibited the MAP4K mammalian STE20-like protein kinase 4 and also caused its degradation via macroautophagy. This resulted in ezrin dephosphorylation and the plasma membrane becoming flaccid. Neratinib disrupted the nanoclustering of RAC1, which was associated with dephosphorylation of PAK1 and Merlin, and with increased phosphorylation of the Merlin binding partners large tumour suppressor kinase 1/2, YAP, and TAZ. YAP and TAZ exited the nucleus. Neratinib retained its anti-tumour efficacy against NSCLC cells made resistant to either afatinib or to osimertinib. Collectively, these findings argue that the possibilities for the further development of neratinib as cancer therapeutic in malignancies that do not express or over-express members of the ERBB receptor family are potentially wide-ranging.
Collapse
|
19
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
21
|
Li M, Xu D, Zhan Y, Tan S. IPO7 promotes pancreatic cancer progression via regulating ERBB pathway. Clinics (Sao Paulo) 2022; 77:100044. [PMID: 35588577 PMCID: PMC9119836 DOI: 10.1016/j.clinsp.2022.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Importin 7 (IPO7) belongs to the Importin β family and is implicated in the progression of diverse human malignancies. This work is performed to probe the role of IPO7 in pancreatic cancer development and its potential downstream mechanisms. METHODS IPO7 expression in PC and paracancerous tissues were measured using Immunohistochemistry (IHC) staining and qRT-PCR. Western blotting was utilized to detect the expression level of IPO7 in PC cells and immortalize the pancreatic ductal epithelial cell line. After constructing the IPO7 overexpression and knockdown models, the effect of IPO7 on the proliferation of PC cells was analyzed by the CCK-8 and EdU assay. The migration and invasion of PC cells were examined by wound healing assay and Transwell experiment. The apoptosis rate of PC cells was analyzed by flow cytometry and TUNEL assay. The Gene Set Enrichment Analysis (GSEA) was used to determine the enrichment pathways of IPO7. The effect of IPO7 on the ERBB2 expression was determined using Western blotting. A xenograft mouse model was applied to investigate the carcinogenic effect of IPO7 in vivo. RESULTS IPO7 expression was remarkably elevated in the cancer tissues of PC patients. IPO7 overexpression remarkably enhanced PC cell proliferation, migration and invasion and suppressed apoptosis, while knockdown of IPO7 exerted the opposite effect. Mechanistically, IPO7 facilitated the malignant phenotype of PC cells by up-regulating ERBB2 expression. In addition, knockdown of IPO7 inhibited tumor growth and lung metastasis in vivo. CONCLUSION IPO7 can act as an oncogenic factor and accelerate PC progression by modulating the ERBB pathway.
Collapse
Affiliation(s)
- Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Province, China
| | - Dongqiang Xu
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, China.
| | - Yijun Zhan
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Province, China
| |
Collapse
|
22
|
RNF6 promotes the migration and invasion of breast cancer by promoting the ubiquitination and degradation of MST1. Exp Ther Med 2022; 23:118. [PMID: 34970341 PMCID: PMC8713179 DOI: 10.3892/etm.2021.11041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ring finger protein 6 (RNF6), a member of E3 ubiquitin ligases, plays a potential role as a tumour promoter in numerous carcinomas. However, the role and expression of RNF6 in breast cancer (BC) remains to be elucidated. The present study showed that RNF6 upregulation was detected in BC tissues and was associated with short survival in patients with BC. Multivariate analysis also revealed that RNF6 overexpression is an independent predictor for poor outcome of patients with BC. Furthermore, migration and metastasis assay indicated that RNF6 silencing significantly inhibited the invasion and migration of BC cells in vivo and in vitro, and RNF6 suppression decreased YES-associated protein (YAP) expression. RNF6 promoted the metastatic ability of BC cells via YAP. Mechanistically, RNF6 interacts with mammalian STE20-like protein kinase 1 (MST1), a key factor that regulates YAP, and promoted its ubiquitination and degradation. Additionally, RNF6 regulated YAP signalling by promoting ubiquitination and degradation of MST1 in BC. Taken together, these data may highlight a role of RNF6 in BC, which could serve as a valuable prognostic indicator and potential therapeutic target for patients with BC.
Collapse
|
23
|
Angelis V, Johnston SRD, Ardestani A, Maedler K. Case Report: Neratinib Therapy Improves Glycemic Control in a Patient With Type 2 Diabetes and Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:830097. [PMID: 35370966 PMCID: PMC8968155 DOI: 10.3389/fendo.2022.830097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
A critical decline of functional insulin-producing pancreatic β-cells is the central pathologic element of both type 1 and type 2 diabetes. Mammalian Sterile 20-like kinase 1 (MST1) is a key mediator of β-cell failure and the identification of neratinib as MST1 inhibitor with potent effects on β-cell survival represents a promising approach for causative diabetes therapy. Here we report a case of robust glycemia and HbA1c normalization in a patient with breast cancer-T2D comorbidity under neratinib, a potent triple kinase inhibitor of HER2/EGFR and MST1. The patient, aged 62 years, was enrolled in the plasmaMATCH clinical trial and received 240 mg neratinib once daily. Neratinib therapy correlated with great improvement in glucose and HbA1c both to physiological levels during the whole treatment period (average reduction of random glucose from 13.6 ± 0.4 to 6.3 ± 0.5 mmol/l and of HbA1c from 82.2 ± 3.9 to 45.6 ± 4.2 mmol/mol before and during neratinib). 18 months later, when neratinib was withdrawn, random glucose rapidly raised together with high blood glucose fluctuations, which reflected in elevated HbA1c levels. This clinical case reports the combination of HER2/EGFR/MST1-inhibition by neratinib for the pharmacological intervention to effectively restore normoglycemia in a patient with poorly controlled T2D and suggests neratinib as potent therapeutic regimen for the cancer-diabetes comorbidity.
Collapse
Affiliation(s)
- Vasileios Angelis
- The Royal Marsden NHS Foundation Trust & The Institute of Cancer Research, London, United Kingdom
| | - Stephen R. D. Johnston
- The Royal Marsden NHS Foundation Trust & The Institute of Cancer Research, London, United Kingdom
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- *Correspondence: Kathrin Maedler,
| |
Collapse
|
24
|
Dent P, Booth L, Poklepovic A, Kirkwood JM. Neratinib kills B-RAF V600E melanoma via ROS-dependent autophagosome formation and death receptor signaling. Pigment Cell Melanoma Res 2022; 35:66-77. [PMID: 34482636 PMCID: PMC11559083 DOI: 10.1111/pcmr.13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Melanoma cells expressing mutant B-RAF V600E are susceptible to treatment with the combination of a B-RAF inhibitor and a MEK1/2 inhibitor. We investigated the impact of the ERBB family and MAP4K inhibitor neratinib on the biology of PDX isolates of cutaneous melanoma expressing B-RAF V600E. Neratinib synergized with HDAC inhibitors to kill melanoma cells at their physiologic concentrations. Neratinib activated ATM, AMPK, ULK1, and PERK and inactivated mTORC1/2, ERK1/2, eIF2 alpha, and STAT3. Neratinib increased expression of Beclin1, ATG5, CD95, and FAS-L and decreased levels of multiple toxic BH3 domain proteins, MCL1, BCL-XL, FLIP-s, and ERBB1/2/4. ATG13 S318 phosphorylation and autophagosome formation was dependent upon ATM, and activation of ATM was dependent on reactive oxygen species. Reduced expression of ERBB1/2/4 required autophagosome formation and reduced MCL1/BCL-XL levels required eIF2 alpha phosphorylation. Maximal levels of eIF2 alpha phosphorylation required signaling by ATM-AMPK and autophagosome formation. Knock down of eIF2 alpha, CD95, FAS-L, Beclin1, and ATG5 or over-expression of FLIP-s significantly reduced killing. Combined knock down of Beclin1 and CD95 abolished cell death. Our data demonstrate that PDX melanoma cells expressing B-RAF V600E are susceptible to being killed by neratinib and more so when combined with HDACi.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - John M. Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Dent P. Cell Signaling and Translational Developmental Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC7538147 DOI: 10.1016/b978-0-12-820472-6.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The relationships between drug pharmacodynamics and subsequent changes in cellular signaling processes are complex. Many in vitro cell signaling studies often use drug concentrations above physiologically safe drug levels achievable in a patient's plasma. Drug companies develop agents to inhibit or modify the activities of specific target enzymes, often without a full consideration that their compounds have additional unknown targets. These two negative sequelae, when published together, become impediments against successful developmental therapeutics and translation because this data distorts our understanding of signaling mechanisms and reduces the probability of successfully translating drug-based concepts from the bench to the bedside. This article will discuss cellular signaling in isolation and as it relates to extant single and combined therapeutic drug interventions. This will lead to a hypothetical series standardized sequential approaches describing a rigorous concept to drug development and clinical translation.
Collapse
|
26
|
P2RY2 Alleviates Cerebral Ischemia-Reperfusion Injury by Inhibiting YAP Phosphorylation and Reducing Mitochondrial Fission. Neuroscience 2021; 480:155-166. [PMID: 34780922 DOI: 10.1016/j.neuroscience.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023]
Abstract
P2Y purinoceptor 2 (P2RY2) is involved in the regulation of cell proliferation and apoptosis. The aim of this study was to explore the effects of P2RY2 on cerebral ischemia/reperfusion (I/R) injury and its molecular mechanism. Middle cerebral artery occlusion (MCAO) model in rats and OXYGEN and oxygen-glucose deprivation/reoxygenation (OGD/R) model in PC12 cells were established. P2RY2 expressions in I/R injury model in vitro and in vivo were up-regulated. In the OGD/R group, ROS level, cyto-CytC and mitochondrial fission factors expressions and cell apoptosis were increased, while SOD activity, mito-CytC and mitochondrial fusion factors expressions were decreased. P2RY2 overexpression could reverse these results. Up-regulated P2RY2 expression decreased Yes-associated protein (YAP) phosphorylation level, promote the nuclear translocation of YAP, and inhibit cell apoptosis, which can be reversed by YAP inhibitor verteporfin. The addition of PI3K/AKT inhibitor LY294002 could reverse the decrease of YAP phosphorylation level and cell apoptosis, and the increase of nuclear translocation caused by P2RY2 overexpression. Further in vivo studies validated that interference with P2RY2 increased the cerebral infarction area, decreased AKT expression, enhanced YAP phosphorylation, and inhibited the nuclear translocation of YAP. In conclusion, P2RY2 can alleviate cerebral I/R injury by inhibiting YAP phosphorylation and reducing mitochondrial fission.
Collapse
|
27
|
Dhasmana A, Dhasmana S, Kotnala S, A A, Kashyap VK, Shaji PD, Laskar P, Khan S, Pellicano R, Fagoonee S, Haque S, Yallapu MM, Chauhan SC, Jaggi M. A topography of immunotherapies against gastrointestinal malignancies. Panminerva Med 2021; 64:56-71. [PMID: 34664484 DOI: 10.23736/s0031-0808.21.04541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastrointestinal (GI) cancers are one of the leading causes of death worldwide. Although various approaches are implemented to improve the health condition of GI patients, none of the treatment protocols promise for eradicating cancer. However, a treatment mechanism against any kind of disease condition is already existing executing inside the human body. The 'immune system' is highly efficient to detect and destroy the unfavourable events of the body including tumor cells. The immune system can restrict the growth and proliferation of cancer. Cancer cells behave much smarter and adopt new mechanisms for hiding from the immune cells. Thus, cancer immunotherapy might play a decisive role to train the immune system against cancer. In this review, we have discussed the immunotherapy permitted for the treatment of GI cancers. We have discussed various methods and mechanisms, periodic development of cancer immunotherapies, approved biologicals, completed and ongoing clinical trials, role of various biopharmaceuticals, and epigenetic factors involved in GI cancer immunotherapies (graphical abstract Figure 1).
Collapse
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sudhir Kotnala
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Anukriti A
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University, Lakshamgarh, Rajasthan, India
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Poornima D Shaji
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA - meena.jaggi @utrgv.edu.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
28
|
Booth L, West C, Moore RP, Von Hoff D, Dent P. GZ17-6.02 and Pemetrexed Interact to Kill Osimertinib-Resistant NSCLC Cells That Express Mutant ERBB1 Proteins. Front Oncol 2021; 11:711043. [PMID: 34490108 PMCID: PMC8417372 DOI: 10.3389/fonc.2021.711043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
We determined the molecular mechanisms by which the novel therapeutic GZ17-6.02 killed non-small cell lung cancer (NSCLC) cells. Erlotinib, afatinib, and osimertinib interacted with GZ17-6.02 to kill NSCLC cells expressing mutant EGFR proteins. GZ17-6.02 did not interact with any EGFR inhibitor to kill osimertinib-resistant cells. GZ17-6.02 interacted with the thymidylate synthase inhibitor pemetrexed to kill NSCLC cells expressing mutant ERBB1 proteins or mutant RAS proteins or cells that were resistant to EGFR inhibitors. The drugs interacted to activate ATM, the AMPK, and ULK1 and inactivate mTORC1, mTORC2, ERK1/2, AKT, eIF2α; and c-SRC. Knockdown of ATM or AMPKα1 prevented ULK1 activation. The drugs interacted to cause autophagosome formation followed by flux, which was significantly reduced by knockdown of ATM, AMPKα1, and eIF2α, or by expression of an activated mTOR protein. Knockdown of Beclin1, ATG5, or [BAX + BAK] partially though significantly reduced drug combination lethality as did expression of activated mTOR/AKT/MEK1 or over-expression of BCL-XL. Expression of dominant negative caspase 9 weakly reduced killing. The drug combination reduced the expression of HDAC2 and HDAC3, which correlated with lower PD-L1, IDO1, and ODC levels and increased MHCA expression. Collectively, our data support consideration of combining GZ17-6.02 and pemetrexed in osimertinib-resistant NSCLC.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cameron West
- Genzada Pharmaceuticals, Sterling, KS, United States
| | | | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
29
|
Abstract
Pancreatic cancer is an almost incurable malignancy whose incidence has increased over the past 30 years. Instead of pursuing the development of modalities utilizing 'traditional' cytotoxic chemotherapeutic agents, we have explored the possibilities of developing novel multi-kinase inhibitor drug combinations to kill this tumor type. Several approaches using the multi-kinase inhibitors sorafenib, regorafenib, and neratinib have been safely translated from the bench to the bedside, with objective anti-tumor responses. This review will discuss our prior preclinical and clinical studies and discuss future clinical opportunities in this disease.
Collapse
|
30
|
Bartolacci C, Andreani C, El-Gammal Y, Scaglioni PP. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front Mol Biosci 2021; 8:706650. [PMID: 34485382 PMCID: PMC8415548 DOI: 10.3389/fmolb.2021.706650] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
Collapse
Affiliation(s)
| | | | | | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
31
|
Deng X, Fu X, Teng H, Fang L, Liang B, Zeng R, Chen L, Zou Y. E3 ubiquitin ligase TRIM29 promotes pancreatic cancer growth and progression via stabilizing Yes-associated protein 1. J Transl Med 2021; 19:332. [PMID: 34353343 PMCID: PMC8340474 DOI: 10.1186/s12967-021-03007-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most fatal digestive system cancers. tripartite motif-29 (TRIM29) has been reported as oncogene in several human cancers. However, the precise role and underlying signal cascade of TRIM29 in PC progression remain unclear. METHODS Western blot, qRT-PCR and immunohistochemistry were used to analyze TRIM29 and Yes-associated protein 1 (YAP1) levels. CCK8 assays, EdU assays and flow cytometry were designed to explore the function and potential mechanism of TRIM29 and YAP1 in the proliferation of PC. Next, a nude mouse model of PC was established for validating the roles of TRIM29 and YAP1 in vivo. The relationship among TRIM29 and YAP1 was explored by co-immunoprecipitation and in vitro ubiquitination assay. RESULTS TRIM29 and YAP1 was significantly upregulated in PC patient samples, and TRIM29 expression was closely related to a malignant phenotype and poorer overall survival (OS) of PC patients. Functional assays revealed that TRIM29 knockdown suppresses cell growth, arrests cell cycle progression and promotes cell apoptosis of PC cells in vivo and in vitro. Furthermore, the rescue experiments demonstrated that TRIM29-induced proliferation is dependent on YAP1 in PC cells. Mechanistically, TRIM29 regulates YAP1 expression by directly binding to YAP1, and reduced its ubiquitination and degradation. CONCLUSION Taken together, these results identify a novel mechanism used by PC growth, and provide insight regarding the role of TRIM29 in PC.
Collapse
Affiliation(s)
- Xueqiang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaowei Fu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Hong Teng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Lu Fang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rengui Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lian Chen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
32
|
Dent P, Booth L, Poklepovic A, Von Hoff D, Martinez J, Zhou Y, Hancock JF. Osimertinib-resistant NSCLC cells activate ERBB2 and YAP/TAZ and are killed by neratinib. Biochem Pharmacol 2021; 190:114642. [PMID: 34077739 PMCID: PMC11082938 DOI: 10.1016/j.bcp.2021.114642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
We performed additional mechanistic analyses to redefine neratinib biology and determined the mechanisms by which the multi-kinase inhibitor neratinib interacted with the thymidylate synthase inhibitor pemetrexed to kill NSCLC cells expressing either mutant KRAS (G12S; Q61H; G12A; G12C) or mutant NRAS (Q61K) or mutant ERBB1 (L858R; L858R T790M; exon 19 deletion). Neratinib rapidly reduced KRASG12V and RAC1G12V nanoclustering which was followed by KRASG12V, but not RAC1G12V, being extensively mislocalized away from the plasma membrane. This correlated with reduced levels of, and reorganized membrane localization of phosphatidylserine and cholesterol. Reduced nanoclustering was not associated with inactivation of ERBB1, Merlin or Ezrin. The drug combination killed cells expressing mutant KRAS, NRAS or mutant ERBB1 proteins. Afatinib or osimertinib resistant cells were killed with a similar efficacy to non-resistant cells. Compared to osimertinib-resistant cells, sensitive cells had less ERBB2 Y1248 phosphorylation. In osimertinib resistant H1975 cells, the drug combination was less capable of inactivating AKT, mTOR, STAT3, STAT5, ERK1/2 whereas it gained the ability to inactivate ERBB3. In resistant H1650 cells, the drug combination was less capable of inactivating JAK2 and STAT5. Sensitive cells exhibited elevated basal phosphorylation of YAP and TAZ. In resistant cells, portions of YAP and TAZ were localized in the nucleus. [Neratinib + pemetrexed] increased phosphorylation of YAP and TAZ, caused their nuclear exit, and enhanced ERBB2 degradation. Thus, neratinib targets an unidentified protein whose functional inhibition directly results in RAS inactivation and tumor cell killing. Our data prove that, albeit indirectly, oncogenic RAS proteins are druggable by neratinib.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States.
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Andrew Poklepovic
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Daniel Von Hoff
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Jennifer Martinez
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Yong Zhou
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - John F Hancock
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| |
Collapse
|
33
|
Dent P, Booth L, Roberts JL, Poklepovic A, Cridebring D, Reiman EM. Inhibition of heat shock proteins increases autophagosome formation, and reduces the expression of APP, Tau, SOD1 G93A and TDP-43. Aging (Albany NY) 2021; 13:17097-17117. [PMID: 34252884 PMCID: PMC8312464 DOI: 10.18632/aging.203297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression and denaturation of Tau, amyloid-beta and TDP-43 can lead to cell death and is a major component of pathologies such as Alzheimer’s Disease (AD). AD neurons exhibit a reduced ability to form autophagosomes and degrade proteins via autophagy. Using genetically manipulated colon cancer cells we determined whether drugs that directly inhibit the chaperone ATPase activity or cause chaperone degradation and endoplasmic reticulum stress signaling leading to macroautophagy could reduce the levels of these proteins. The antiviral chaperone ATPase inhibitor AR12 reduced the ATPase activities and total expression of GRP78, HSP90, and HSP70, and of Tau, Tau 301L, APP, APP692, APP715, SOD1 G93A and TDP-43. In parallel, it increased the phosphorylation of ATG13 S318 and eIF2A S51 and caused eIF2A-dependent autophagosome formation and autophagic flux. Knock down of Beclin1 or ATG5 prevented chaperone, APP and Tau degradation. Neratinib, used to treat HER2+ breast cancer, reduced chaperone levels and expression of Tau and APP via macroautophagy, and neratinib interacted with AR12 to cause further reductions in protein levels. The autophagy-regulatory protein ATG16L1 is expressed as two isoforms, T300 or A300: Africans trend to express T300 and Europeans A300. We observed higher basal expression of Tau in T300 cells when compared to isogenic A300 cells. ATG16L1 isoform expression did not alter basal levels of HSP90, HSP70 or HSP27, however, basal levels of GRP78 were reduced in A300 cells. The abilities of both AR12 and neratinib to stimulate ATG13 S318 and eIF2A S51 phosphorylation and autophagic flux was also reduced in A300 cells. Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Pharmacology and Toxicology, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
34
|
Santamaria S, Gagliani MC, Bellese G, Marconi S, Lechiara A, Dameri M, Aiello C, Tagliatti E, Castagnola P, Cortese K. Imaging of Endocytic Trafficking and Extracellular Vesicles Released Under Neratinib Treatment in ERBB2 + Breast Cancer Cells. J Histochem Cytochem 2021; 69:461-473. [PMID: 34126793 PMCID: PMC8246527 DOI: 10.1369/00221554211026297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progression, and lower survival rate. Deregulated intracellular trafficking and extracellular vesicle (EVs) release are mechanisms that support cancer progression and resistance to treatments. Neratinib (NE) is a Food and Drug Administration-approved pan-ERBB inhibitor employed for the treatment of ERBB2+ BCa that blocks signaling and causes survival inhibition. However, the effects of NE on ERBB2 internalization, its trafficking to multivesicular bodies (MVBs), and the release of EVs that originate from these organelles remain poorly studied. By confocal and electron microscopy, we observed that low nanomolar doses of NE induced a modest ERBB2 internalization along with an increase of clathrin-mediated endocytosis and of the CD63+ MVB compartment in SKBR-3 cells. Furthermore, we showed in the culture supernatant two distinct EV subsets, based on their size and ERBB2 positivity: small (30-100 nm) ERBB2- EVs and large (>100 nm) ERBB2+ EVs. In particular, we found that NE increased the overall release of EVs, which displayed a reduced ERBB2 positivity compared with controls. Taken together, these results provide novel insight into the effects of NE on ERBB2+ BCa cells that may lead to a reduction of ERBB2 potentially transferred to distant target cells by EVs.
Collapse
Affiliation(s)
- Sara Santamaria
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Grazia Bellese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Silvia Marconi
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Anastasia Lechiara
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Martina Dameri
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Cinzia Aiello
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Erica Tagliatti
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| |
Collapse
|
35
|
Jiu X, Liu Y, Wen J. Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the MALAT1/yes-associated protein signaling pathway. Oncol Lett 2021; 22:597. [PMID: 34188699 PMCID: PMC8228376 DOI: 10.3892/ol.2021.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Uveal melanoma (UM) is the most common ocular malignancy and has no effective clinical treatment. Therefore, novel drugs to suppress UM tumor progression are urgently required. The present study aimed to clarify the underlying mechanism of the inhibitory effects of artesunate on UM. By using plasmid transfection and detecting apoptotic level, the present study identified artesunate as a potential candidate for UM treatment. Compared with those in the vehicle (DMSO)-treated control cells, artesunate enhanced the apoptotic rate and increased lactate dehydrogenase release, reactive oxygen species and IL1b and IL18 levels in C918 cells. Overexpression of yes-associated protein (YAP) or metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in C918 cells reversed the effects of artesunate and reduced the apoptotic rate compared with those observed in cells transfected with the negative control plasmid. Notably, verteporfin enhanced the effects of artesunate on C918 cells by increasing the apoptotic rate, indicating that combined therapy was more effective compared with treatment with artesunate alone. In conclusion, the results of the present study demonstrated that artesunate elevated the apoptotic rate and suppressed C918 cell viability by regulating the MALAT1/YAP signaling pathway, and these effects were enhanced by supplementation with verteporfin. These results suggested that artesunate may exert an inhibitory effect on C918 cells and that the MALAT1/YAP signaling may serve important role in mediating these effects, providing evidence of its potential for treating UM in the clinic.
Collapse
Affiliation(s)
- Xudong Jiu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China
| | - Jin Wen
- Department of Ophthalmology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
36
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
37
|
Fan Y, Du Z, Ding Q, Zhang J, Op Den Winkel M, Gerbes AL, Liu M, Steib CJ. SEPT6 drives hepatocellular carcinoma cell proliferation, migration and invasion via the Hippo/YAP signaling pathway. Int J Oncol 2021; 58:25. [PMID: 33846777 PMCID: PMC8025964 DOI: 10.3892/ijo.2021.5205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Septin 6 (SEPT6) is a member of the GTP-binding protein family that is highly conserved in eukaryotes and regulates various biological functions, including filament dynamics, cytokinesis and cell migration. However, the functional importance of SEPT6 in hepatocellular carcinoma (HCC) is not completely understood. The present study aimed to investigate the expression levels and roles of SEPT6 in HCC, as well as the underlying mechanisms. The reverse transcription quantitative PCR, western blotting and immunohistochemistry staining results demonstrated that SEPT6 expression was significantly elevated in HCC tissues compared with corresponding adjacent non-tumor tissues, which indicated that SEPT6 expression may serve as a marker of poor prognosis for HCC. By performing plasmid transfection and G418 treatment, stable SEPT6-knockdown and SEPT6-overexpression cell lines were established. The Cell Counting Kit-8, flow cytometry and Transwell assay results demonstrated that SEPT6 overexpression significantly increased HCC cell proliferation, cell cycle transition, migration and invasion compared with the Vector group, whereas SEPT6 knockdown displayed significant suppressive effects on HCC cell lines in vitro compared with the control group. Mechanistically, SEPT6 might facilitate F-actin formation, which induced large tumor suppressor kinase 1 dephosphorylation, inhibited Hippo signaling, upregulated yes-associated protein (YAP) expression and nuclear translocation, and upregulated cyclin D1 and matrix metallopeptidase 2 (MMP2) expression. Furthermore, YAP overexpression significantly reversed SEPT6 knockdown-induced inhibitory effects on HCC, whereas YAP knockdown significantly inhibited the oncogenic effect of SEPT6 overexpression on HCC. Collectively, the present study demonstrated that SEPT6 may promote HCC progression by enhancing YAP activation, suggesting that targeting SEPT6 may serve as a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yuhui Fan
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Zhipeng Du
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Zhang
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Mark Op Den Winkel
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Alexander L Gerbes
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Christian J Steib
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| |
Collapse
|
38
|
Booth L, West C, Von Hoff D, Kirkwood JM, Dent P. GZ17-6.02 Interacts With [MEK1/2 and B-RAF Inhibitors] to Kill Melanoma Cells. Front Oncol 2021; 11:656453. [PMID: 33898322 PMCID: PMC8061416 DOI: 10.3389/fonc.2021.656453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
We defined the lethal interaction between the novel therapeutic GZ17-6.02 and the standard of care combination of the MEK1/2 inhibitor trametinib and the B-RAF inhibitor dabrafenib in PDX isolates of cutaneous melanoma expressing a mutant B-RAF V600E protein. GZ17-6.02 interacted with trametinib/dabrafenib in an additive fashion to kill melanoma cells. Regardless of prior vemurafenib resistance, the drugs when combined interacted to prolong ATM S1981/AMPK T172 and eIF2α S51 phosphorylation and prolong the reduced phosphorylation of JAK2 Y1007, STAT3 Y705 and STAT5 Y694. In vemurafenib-resistant cells GZ17-6.02 caused a prolonged reduction in mTORC1 S2448, mTORC2 S2481 and ULK1 S757 phosphorylation; regardless of vemurafenib resistance, GZ17-6.02 caused a prolonged elevation in CD95 and FAS-L expression. Knock down of eIF2α, Beclin1, ATG5, ATM, AMPKα, CD95 or FADD significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with the kinase inhibitors. Expression of activated mTOR, activated STAT3, activated MEK1 or activated AKT significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with kinase inhibitors; protective effects that were significantly less pronounced in cells treated with trametinib/dabrafenib. Regardless of vemurafenib resistance, the drugs alone or in combination all reduced the expression of PD-L1 and increased the levels of MHCA, which was linked to degradation of multiple HDAC proteins. Our findings support the use of GZ17-6.02 in combination with trametinib/dabrafenib in the treatment of melanomas expressing mutant B-RAF V600E proteins.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cameron West
- Genzada Pharmaceuticals, Sterling, KS, United States
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
39
|
Khan AA, Liu X, Yan X, Tahir M, Ali S, Huang H. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression. Cancer Metastasis Rev 2021; 40:245-272. [PMID: 33423164 DOI: 10.1007/s10555-020-09952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.
Collapse
Affiliation(s)
- Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinlong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| | - Muhammad Tahir
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Sakhawat Ali
- College of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| |
Collapse
|
40
|
Mao W, Mai J, Peng H, Wan J, Sun T. YAP in pancreatic cancer: oncogenic role and therapeutic strategy. Theranostics 2021; 11:1753-1762. [PMID: 33408779 PMCID: PMC7778590 DOI: 10.7150/thno.53438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), remains a fatal disease with few efficacious treatments. The Hippo signaling pathway, an evolutionarily conserved signaling module, plays critical roles in tissue homeostasis, organ size control and tumorigenesis. The transcriptional coactivator yes-associated protein (YAP), a major downstream effector of the Hippo pathway, is associated with various human cancers including PDAC. Considering its importance in cancer, YAP is emerging as a promising therapeutic target. In this review, we summarize the current understanding of the oncogenic role and regulatory mechanism of YAP in PDAC, and the potential therapeutic strategies targeting YAP.
Collapse
|
41
|
Booth LA, Roberts JL, Dent P. The role of cell signaling in the crosstalk between autophagy and apoptosis in the regulation of tumor cell survival in response to sorafenib and neratinib. Semin Cancer Biol 2020; 66:129-139. [PMID: 31644944 PMCID: PMC7167338 DOI: 10.1016/j.semcancer.2019.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms by which tumor cells survive or die following therapeutic interventions are complex. There are three broadly defined categories of cell death processes: apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). In hematopoietic tumor cells, the majority of toxic stimuli cause these cells to undergo a death process called apoptosis; apoptosis specifically involves the cleavage of DNA into large defined pieces and their subsequent localization in vesicles. Thus, 'pure' apoptosis largely lacks inflammatory potential. In carcinomas, however, the mechanisms by which tumor cells ultimately die are considerably more complex. Although the machinery of apoptosis is engaged by toxic stimuli, other processes such as autophagy ("self-eating") and replicative cell death can lead to observations that do not simplistically correspond to any of the individual Type I-III formalized death categories. The 'hybrid' forms of cell death observed in carcinoma cells result in cellular materials being released into the extracellular space without packaging, which promotes inflammation, potentially leading to the accelerated re-growth of surviving tumor cells by macrophages. Drugs as single agents or in combinations can simultaneously initiate signaling via both apoptotic and autophagic pathways. Based on the tumor type and its oncogene drivers, as well as the drug(s) being used and the duration and intensity of the autophagosome signal, apoptosis and autophagy have the potential to act in concert to kill or alternatively that the actions of either pathway can act to suppress signaling by the other pathway. And, there also is evidence that autophagic flux, by causing lysosomal protease activation, with their subsequent release into the cytosol, can directly mediate killing. This review will discuss the interactive biology between apoptosis and autophagy in carcinoma cells. Finally, the molecular actions of the FDA-approved drugs neratinib and sorafenib, and how they enhance both apoptotic and toxic autophagic processes, alone or in combination with other agents, is discussed in a bench-to-bedside manner.
Collapse
Affiliation(s)
- Laurence A Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, 401 College St, Richmond, VA 23298, United States
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, 401 College St, Richmond, VA 23298, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, 401 College St, Richmond, VA 23298, United States.
| |
Collapse
|
42
|
Wang D, He J, Huang B, Liu S, Zhu H, Xu T. Emerging role of the Hippo pathway in autophagy. Cell Death Dis 2020; 11:880. [PMID: 33082313 PMCID: PMC7576599 DOI: 10.1038/s41419-020-03069-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a dynamic circulatory system that occurs in all eukaryotic cells. Cytoplasmic material is transported to lysosomes for degradation and recovery through autophagy. This provides energy and macromolecular precursors for cell renewal and homeostasis. The Hippo-YAP pathway has significant biological properties in controlling organ size, tissue homeostasis, and regeneration. Recently, the Hippo-YAP axis has been extensively referred to as the pathophysiological processes regulating autophagy. Understanding the cellular and molecular basis of these processes is crucial for identifying disease pathogenesis and novel therapeutic targets. Here we review recent findings from Drosophila models to organisms. We particularly emphasize the regulation between Hippo core components and autophagy, which is involved in normal cellular regulation and the pathogenesis of human diseases, and its application to disease treatment.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Bingyu Huang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China.
| |
Collapse
|
43
|
Rayner JO, Roberts RA, Kim J, Poklepovic A, Roberts JL, Booth L, Dent P. AR12 (OSU-03012) suppresses GRP78 expression and inhibits SARS-CoV-2 replication. Biochem Pharmacol 2020; 182:114227. [PMID: 32966814 PMCID: PMC7502229 DOI: 10.1016/j.bcp.2020.114227] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
AR12 is a derivative of celecoxib which no-longer acts against COX2 but instead inhibits the ATPase activity of multiple chaperone proteins, in particular GRP78. GRP78 acts as a sensor of endoplasmic reticulum stress and is an essential chaperone required for the life cycle of all mammalian viruses. We and others previously demonstrated in vitro and in vivo that AR12 increases autophagosome formation and autophagic flux, enhances virus protein degradation, preventing virus reproduction, and prolonging the survival of infected animals. In this report, we determined whether AR12 could act against SARS-CoV-2. In a dose-dependent fashion AR12 inhibited SARS-CoV-2 spike protein expression in transfected or infected cells. AR12 suppressed the production of infectious virions via autophagosome formation, which was also associated with degradation of GRP78. After AR12 exposure, the colocalization of GRP78 with spike protein was reduced. Knock down of eIF2α prevented AR12-induced spike degradation and knock down of Beclin1 or ATG5 caused the spike protein to localize in LAMP2+ vesicles without apparent degradation. HCT116 cells expressing ATG16L1 T300, found in the majority of persons of non-European descent, particularly from Africa, expressed greater amounts of GRP78 and SARS-CoV-2 receptor angiotensin converting enzyme 2 compared to ATG16L1 A300, predominantly found in Europeans, suggestive that ATG16L1 T300 expression may be associated with a greater ability to be infected and to reproduce SARS-CoV-2. In conclusion, our findings demonstrate that AR12 represents a clinically relevant anti-viral drug for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Jonathan O Rayner
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Rosemary A Roberts
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Jin Kim
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Jane L Roberts
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States.
| |
Collapse
|
44
|
Neratinib decreases pro-survival responses of [sorafenib + vorinostat] in pancreatic cancer. Biochem Pharmacol 2020; 178:114067. [PMID: 32504550 DOI: 10.1016/j.bcp.2020.114067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
The combination of the multi-kinase and chaperone inhibitor sorafenib and the histone deacetylase inhibitor vorinostat in pancreatic cancer patients has proven to be a safe and efficacious modality (NCT02349867). We determined the evolutionary mechanisms by with pancreatic tumors become resistant to [sorafenib + vorinostat] and developed a new three-drug therapy to circumvent the resistant phenotype. Pancreatic tumors previously exposed to [sorafenib + vorinostat] evolved to activate the receptors ERBB1, ERBB2, ERBB3, c-MET and the intracellular kinase AKT. The irreversible ERBB receptor family and MAP4K inhibitor neratinib significantly enhanced the anti-tumor efficacy of [sorafenib + vorinostat]. We then determined the mechanisms by which neratinib enhanced the efficacy of [sorafenib + vorinostat]. Compared to [sorafenib + vorinostat] or to neratinib alone, the three-drug combination further enhanced the phosphorylation of eIF2α and NFκB and the expression of Beclin1, ATG5 and CD95; and suppressed the levels of β-catenin. Knock down of Beclin1, ATG5, CD95, eIF2 α or NFκB suppressed cell killing whereas knock down of β-catenin enhanced killing. The drugs interacted to increase autophagosome formation; and autophagy and cell killing were suppressed by expression of activated mTOR. A portion of the killing mechanism required CD95 signaling and knock down of NFκB prevented the drugs from increasing CD95 expression. We conclude that neratinib, by down-regulation of evolutionary activated growth factor receptors, may represent a novel follow-on clinical concept after the completion of NCT02349867.
Collapse
|
45
|
Zhao Z, Xiang S, Qi J, Wei Y, Zhang M, Yao J, Zhang T, Meng M, Wang X, Zhou Q. Correction of the tumor suppressor Salvador homolog-1 deficiency in tumors by lycorine as a new strategy in lung cancer therapy. Cell Death Dis 2020; 11:387. [PMID: 32439835 PMCID: PMC7242319 DOI: 10.1038/s41419-020-2591-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Salvador homolog-1 (SAV1) is a tumor suppressor required for activation of the tumor-suppressive Hippo pathway and inhibition of tumorigenesis. SAV1 is defective in several cancer types. SAV1 deficiency in cells promotes tumorigenesis and cancer metastasis, and is closely associated with poor prognosis for cancer patients. However, investigation of therapeutic strategies to target SAV1 deficiency in cancer is lacking. Here we found that the small molecule lycorine notably increased SAV1 levels in lung cancer cells by inhibiting SAV1 degradation via a ubiquitin-lysosome system, and inducing phosphorylation and activation of the SAV1-interacting protein mammalian Ste20-like 1 (MST1). MST1 activation then caused phosphorylation, ubiquitination, and degradation of the oncogenic Yes-associated protein (YAP), therefore inhibiting YAP-activated transcription of oncogenic genes and tumorigenic AKT and NF-κB signal pathways. Strikingly, treating tumor-bearing xenograft mice with lycorine increased SAV1 levels, and strongly inhibited tumor growth, vasculogenic mimicry, and metastasis. This work indicates that correcting SAV1 deficiency in lung cancer cells is a new strategy for cancer therapy. Our findings provide a new platform for developing novel cancer therapeutics.
Collapse
Affiliation(s)
- Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shufen Xiang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yijun Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and the Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
46
|
The multi-kinase inhibitor lenvatinib interacts with the HDAC inhibitor entinostat to kill liver cancer cells. Cell Signal 2020; 70:109573. [PMID: 32087304 DOI: 10.1016/j.cellsig.2020.109573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
Prior studies from our group have combined the multi-kinase inhibitor sorafenib with HDAC inhibitors in GI tumor cells that resulted in the trials NCT02349867 and NCT01075113. The multi-kinase inhibitor lenvatinib, for the treatment of liver cancer, has fewer negative sequelae than sorafenib. We determined the mechanisms by which lenvatinib interacted with the HDAC inhibitor entinostat to kill hepatoma cells. Lenvatinib and entinostat interacted in an additive to greater-than-additive fashion to kill liver cancer cells. The drugs inactivated mTORC1 and mTORC2 and interacted to further increase the phosphorylation of ATM, ATG13 and eIF2α. Elevated eIF2α phosphorylation was responsible for reduced MCL-1 and BCL-XL expression and for increased Beclin1 and ATG5 expression. Over-expression of BCL-XL or knock down of Beclin1 or ATG5, significantly reduced killing. The drugs synergized to elevate ROS production; activation of ATM was ROS-dependent. ATM activation was required for enhanced phosphorylation of γH2AX, eIF2α and ATG13 S318. The drug combination reduced histone deacetylase protein expression which required autophagy. Knock down of HDACs1/2/3 prevented the lenvatinib and entinostat combination from regulating PD-L1 and MHCA expression. Collectively, our data demonstrate that lenvatinib and entinostat interact to kill liver cancer cells via ROS-dependent activation of ATM and inactivation of eIF2α, resulting in greater levels of toxic autophagosome formation and reduced expression of protective mitochondrial proteins.
Collapse
|
47
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60:166-180. [PMID: 31369817 DOI: 10.1016/j.semcancer.2019.07.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood. Even though current treatments can reduce tumor size and increase life expectancy, relapse and multidrug resistance (MDR) ultimately remain the second cause of death in developed countries. Recent evidence points toward stem-like phenotypes in cancer cells, promoted by cancer stem cells (CSCs), as the main culprit of cancer relapse, resistance (radiotherapy, hormone therapy, and/or chemotherapy) and metastasis. Many mechanisms have been proposed for CSC resistance, such as drug efflux through ABC transporters, overactivation of the DNA damage response (DDR), apoptosis evasion, prosurvival pathways activation, cell cycle promotion and/or cell metabolic alterations. Nonetheless, targeted therapy toward these specific CSC mechanisms is only partially effective to prevent or abolish resistance, suggesting underlying additional causes for CSC resilience. This article aims to provide an integrated picture of the MDR mechanisms that operate in CSCs' behavior and to propose a novel model of tumor evolution during chemotherapy. Targeting the pathways mentioned here might hold promise and reveal new strategies for future clinical therapeutic approaches.
Collapse
Affiliation(s)
- Y Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - C Mir
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - F Masson
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - R Paciucci
- Clinical Biochemistry Group, Vall d'Hebron Hospital and Vall d´Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - M E LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Spain.
| |
Collapse
|
48
|
Dent P, Booth L, Roberts JL, Poklepovic A, Hancock JF. Fingolimod Augments Monomethylfumarate Killing of GBM Cells. Front Oncol 2020; 10:22. [PMID: 32047722 PMCID: PMC6997152 DOI: 10.3389/fonc.2020.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Previously we demonstrated that the multiple sclerosis drug dimethyl fumarate (DMF) and its plasma breakdown product MMF could interact with chemotherapeutic agents to kill both GBM cells and activated microglia. The trial NCT02337426 demonstrated the safety of DMF in newly diagnosed GBM patients when combined with the standard of care Stupp protocol. We hypothesized that another multiple sclerosis drug, fingolimod (FTY720) would synergize with MMF to kill GBM cells. MMF and fingolimod interacted in a greater than additive fashion to kill PDX GBM isolates. MMF and fingolimod radiosensitized glioma cells and enhanced the lethality of temozolomide. Exposure to [MMF + fingolimod] activated an ATM-dependent toxic autophagy pathway, enhanced protective endoplasmic reticulum stress signaling, and inactivated protective PI3K, STAT, and YAP function. The drug combination reduced the expression of protective c-FLIP-s, MCL-1, BCL-XL, and in parallel caused cell-surface clustering of the death receptor CD95. Knock down of CD95 or over-expression of c-FLIP-s or BCL-XL suppressed killing. Fingolimod and MMF interacted in a greater than additive fashion to rapidly enhance reactive oxygen species production and over-expression of either thioredoxin or super-oxide dismutase two significantly reduced the drug-induced phosphorylation of ATM, autophagosome formation and [MMF + fingolimod] lethality. In contrast, the production of ROS was only marginally reduced in cells lacking ATM, CD95, or Beclin1. Collectively, our data demonstrate that the primary generation of ROS by [MMF + fingolimod] plays a key role, via the induction of toxic autophagy and death receptor signaling, in the killing of GBM cells.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L Roberts
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
49
|
Booth L, Roberts JL, West C, Von Hoff D, Dent P. GZ17-6.02 initiates DNA damage causing autophagosome-dependent HDAC degradation resulting in enhanced anti-PD1 checkpoint inhibitory antibody efficacy. J Cell Physiol 2020; 235:8098-8113. [PMID: 31951027 DOI: 10.1002/jcp.29464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Our studies examined the molecular mechanisms by which the novel cancer therapeutic GZ17-6.02 (NCT03775525) killed GI tumor cells. TZ17-6.02 activated ATM which was responsible for increased phosphorylation of nuclear γH2AX and AMPKα T172. ATM-AMPK signaling was responsible for the subsequent inactivation of mTORC1 and mTORC2, dephosphorylation of ULK1 S757, and increased phosphorylation of ULK1 S317 and of ATG13 S318, which collectively caused enhanced autophagosome formation. GZ17-6.02 interacted with 5-fluorouracil in an additive to greater than additive fashion to kill all of the tested GI tumor cell types. This was associated with greater ATM activation and a greater mammalian target of rapamycin inactivation and autophagosome induction. As a result, autophagy-dependent degradation of multiple histone deacetylase (HDAC) proteins and chaperone proteins occurred. Loss of HDAC expression was causal in reduced expression of programed death ligand 1 (PD-L1), ornithine decarboxylase, and indole amine 2,3-dioxygenase (IDO1) and in the elevated expression of major histocompatibility complex Class IA (MHCA). Treatment with GZ17-6.02 also resulted in enhanced efficacy of a subsequently administered anti-PD1 checkpoint inhibitory antibody. Thus, the primary mode of GZ17-6.02 action is to induce a DNA damage response concomitant with ATM activation, that triggers a series of interconnected molecular events that result in tumor cell death and enhanced immunogenicity.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, Arizona
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
50
|
Dent P, Booth L, Poklepovic A, Martinez J, Hoff DV, Hancock JF. Neratinib degrades MST4 via autophagy that reduces membrane stiffness and is essential for the inactivation of PI3K, ERK1/2, and YAP/TAZ signaling. J Cell Physiol 2020; 235:7889-7899. [PMID: 31912905 DOI: 10.1002/jcp.29443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
The irreversible ERBB1/2/4 inhibitor neratinib causes plasma membrane-associated K-RAS to mislocalize into intracellular vesicles liminal to the plasma membrane; this effect is enhanced by HDAC inhibitors and is now a Phase I trial (NCT03919292). The combination of neratinib and HDAC inhibitors killed pancreatic cancer and lymphoma T cells. Neratinib plus HDAC inhibitor exposure was as efficacious as (paclitaxel+gemcitabine) at killing pancreatic cancer cells. Neratinib reduced the phosphorylation of PAK1, Merlin, LATS1/2, AKT, mTOR, p70 S6K, and ERK1/2 which required expression of Rubicon, Beclin1, and Merlin. Neratinib altered pancreatic tumor cell morphology which was associated with MST4 degradation reduced Ezrin phosphorylation and enhanced phosphorylation of MAP4K4 and LATS1/2. Knockdown of the MAP4K4 activator and sensor of membrane rigidity RAP2A reduced basal LATS1/2 and YAP phosphorylation but did not prevent neratinib from stimulating LATS1/2 or YAP phosphorylation. Beclin1 knockdown prevented MST4 degradation, Ezrin dephosphorylation and neratinib-induced alterations in tumor cell morphology. Our findings demonstrate that neratinib enhances LATS1/2 phosphorylation independently of RAP2A/MAP4K4 and that MST4 degradation and Ezrin dephosphorylation may represent a universal trigger for the biological actions of neratinib.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, North Carolina
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, Arizona
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|