1
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
3
|
Gu R, Fang H, Wang R, Dai W, Cai G. A comprehensive overview of the molecular features and therapeutic targets in BRAF V600E-mutant colorectal cancer. Clin Transl Med 2024; 14:e1764. [PMID: 39073010 DOI: 10.1002/ctm2.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
As one of the most prevalent digestive system tumours, colorectal cancer (CRC) poses a significant threat to global human health. With the emergence of immunotherapy and target therapy, the prognosis for the majority of CRC patients has notably improved. However, the subset of patients with BRAF exon 15 p.V600E mutation (BRAFV600E) has not experienced remarkable benefits from these therapeutic advancements. Hence, researchers have undertaken foundational investigations into the molecular pathology of this specific subtype and clinical effectiveness of diverse therapeutic drug combinations. This review comprehensively summarised the distinctive molecular features and recent clinical research advancements in BRAF-mutant CRC. To explore potential therapeutic targets, this article conducted a systematic review of ongoing clinical trials involving patients with BRAFV600E-mutant CRC.
Collapse
Affiliation(s)
- Ruiqi Gu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongsheng Fang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
El-Hachem N, Leclercq M, Susaeta Ruiz M, Vanleyssem R, Shostak K, Körner PR, Capron C, Martin-Morales L, Roncarati P, Lavergne A, Blomme A, Turchetto S, Goffin E, Thandapani P, Tarassov I, Nguyen L, Pirotte B, Chariot A, Marine JC, Herfs M, Rapino F, Agami R, Close P. Valine aminoacyl-tRNA synthetase promotes therapy resistance in melanoma. Nat Cell Biol 2024; 26:1154-1164. [PMID: 38849541 PMCID: PMC11252002 DOI: 10.1038/s41556-024-01439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/12/2024] [Indexed: 06/09/2024]
Abstract
Transfer RNA dynamics contribute to cancer development through regulation of codon-specific messenger RNA translation. Specific aminoacyl-tRNA synthetases can either promote or suppress tumourigenesis. Here we show that valine aminoacyl-tRNA synthetase (VARS) is a key player in the codon-biased translation reprogramming induced by resistance to targeted (MAPK) therapy in melanoma. The proteome rewiring in patient-derived MAPK therapy-resistant melanoma is biased towards the usage of valine and coincides with the upregulation of valine cognate tRNAs and of VARS expression and activity. Strikingly, VARS knockdown re-sensitizes MAPK-therapy-resistant patient-derived melanoma in vitro and in vivo. Mechanistically, VARS regulates the messenger RNA translation of valine-enriched transcripts, among which hydroxyacyl-CoA dehydrogenase mRNA encodes for a key enzyme in fatty acid oxidation. Resistant melanoma cultures rely on fatty acid oxidation and hydroxyacyl-CoA dehydrogenase for their survival upon MAPK treatment. Together, our data demonstrate that VARS may represent an attractive therapeutic target for the treatment of therapy-resistant melanoma.
Collapse
Affiliation(s)
- Najla El-Hachem
- Laboratory of Cancer Signaling, GIGA Institute, University of Liège, Liège, Belgium
| | - Marine Leclercq
- Laboratory of Cancer Signaling, GIGA Institute, University of Liège, Liège, Belgium
| | - Miguel Susaeta Ruiz
- Laboratory of Cancer Signaling, GIGA Institute, University of Liège, Liège, Belgium
| | - Raphael Vanleyssem
- Laboratory of Cancer Signaling, GIGA Institute, University of Liège, Liège, Belgium
| | - Kateryna Shostak
- Laboratory of Cancer Biology, GIGA Institute, University of Liège, Liège, Belgium
| | - Pierre-René Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Coralie Capron
- Laboratory of Cancer Stemness, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA Institute, University of Liège, Liège, Belgium
| | - Arnaud Lavergne
- Bioinformatics platform, GIGA Institute, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA Institute, University of Liège, Liège, Belgium
| | - Silvia Turchetto
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège, Belgium
| | - Eric Goffin
- Center for Interdisciplinary Research on Medicines-Laboratory of Medicinal Chemistry, University of Liège, Liège, Belgium
| | - Palaniraja Thandapani
- Department of Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, USA
| | - Ivan Tarassov
- UMR 7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg/CNRS, Strasbourg, France
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines-Laboratory of Medicinal Chemistry, University of Liège, Liège, Belgium
| | - Alain Chariot
- Laboratory of Cancer Biology, GIGA Institute, University of Liège, Liège, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA Institute, University of Liège, Liège, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Stemness, GIGA Institute, University of Liège, Liège, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, The Netherlands
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA Institute, University of Liège, Liège, Belgium.
- WELBIO department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
5
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Sorino C, Iezzi S, Ciuffreda L, Falcone I. Immunotherapy in melanoma: advances, pitfalls, and future perspectives. Front Mol Biosci 2024; 11:1403021. [PMID: 39086722 PMCID: PMC11289331 DOI: 10.3389/fmolb.2024.1403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 08/02/2024] Open
Abstract
Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.
Collapse
|
7
|
Nussinov R, Yavuz BR, Jang H. Anticancer drugs: How to select small molecule combinations? Trends Pharmacol Sci 2024; 45:503-519. [PMID: 38782689 PMCID: PMC11162304 DOI: 10.1016/j.tips.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Small molecules are at the forefront of anticancer therapies. Successive treatments with single molecules incur drug resistance, calling for combination. Here, we explore the tough choices oncologists face - not just which drugs to use but also the best treatment plans, based on factors such as target proteins, pathways, and gene expression. We consider the reality of cancer's disruption of normal cellular processes, highlighting why it's crucial to understand the ins and outs of current treatment methods. The discussion on using combination drug therapies to target multiple pathways sheds light on a promising approach while also acknowledging the hurdles that come with it, such as dealing with pathway crosstalk. We review options and provide examples and the mechanistic basis, altogether providing the first comprehensive guide to combinatorial therapy selection.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
8
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Park JJ, Hamad SA, Stewart A, Carlino MS, Lim SY, Rizos H. PKC-independent PI3K signalling diminishes PKC inhibitor sensitivity in uveal melanoma. Oncogenesis 2024; 13:9. [PMID: 38418838 PMCID: PMC10902289 DOI: 10.1038/s41389-024-00511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Protein kinase C (PKC) is activated downstream of gain-of-function GNAQ or GNA11 (GNAQ/GNA11) mutations in over 90% of uveal melanoma (UM). Phase I clinical trials of PKC inhibitors have shown modest response rates with no survival benefit in metastatic UM. Although PKC inhibitors actively suppress mitogen-activated protein kinase (MAPK) signalling in UM, the effect on other UM signalling cascades is not well understood. We examined the transcriptome of UM biopsies collected pre- and post-PKC inhibitor therapy and confirmed that MAPK, but not PI3K/AKT signalling, was inhibited early during treatment with the second-generation PKC inhibitor IDE196. Similarly, in GNAQ/GNA11-mutant UM cell models, PKC inhibitor monotherapy effectively suppressed MAPK activity, but PI3K/AKT signalling remained active, and thus, concurrent inhibition of PKC and PI3K/AKT signalling was required to synergistically induce cell death in a panel of GNAQ/GNA11-mutant UM cell lines. We also show that re-activation of MAPK signalling has a dominant role in regulating PKC inhibitor responses in UM and that PI3K/AKT signalling diminishes UM cell sensitivity to PKC inhibitor monotherapy. Thus, combination therapies targeting PKC and PKC-independent signalling nodes, including PI3K/AKT activity, are required to improve responses in patients with metastatic UM.
Collapse
Affiliation(s)
- John J Park
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Sabine Abou Hamad
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Su Yin Lim
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
11
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
12
|
Harmange G, Hueros RAR, Schaff DL, Emert B, Saint-Antoine M, Kim LC, Niu Z, Nellore S, Fane ME, Alicea GM, Weeraratna AT, Simon MC, Singh A, Shaffer SM. Disrupting cellular memory to overcome drug resistance. Nat Commun 2023; 14:7130. [PMID: 37932277 PMCID: PMC10628298 DOI: 10.1038/s41467-023-41811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/15/2023] [Indexed: 11/08/2023] Open
Abstract
Gene expression states persist for varying lengths of time at the single-cell level, a phenomenon known as gene expression memory. When cells switch states, losing memory of their prior state, this transition can occur in the absence of genetic changes. However, we lack robust methods to find regulators of memory or track state switching. Here, we develop a lineage tracing-based technique to quantify memory and identify cells that switch states. Applied to melanoma cells without therapy, we quantify long-lived fluctuations in gene expression that are predictive of later resistance to targeted therapy. We also identify the PI3K and TGF-β pathways as state switching modulators. We propose a pretreatment model, first applying a PI3K inhibitor to modulate gene expression states, then applying targeted therapy, which leads to less resistance than targeted therapy alone. Together, we present a method for finding modulators of gene expression memory and their associated cell fates.
Collapse
Affiliation(s)
- Guillaume Harmange
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raúl A Reyes Hueros
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dylan L Schaff
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Emert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Michael Saint-Antoine
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zijian Niu
- Department of Chemistry, College of the Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics, College of the Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shivani Nellore
- Department of Biology, College of the Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell E Fane
- Cancer Signaling and Microenvironment Research Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gretchen M Alicea
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sydney M Shaffer
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Ram T, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives. RSC Med Chem 2023; 14:1837-1857. [PMID: 37859720 PMCID: PMC10583825 DOI: 10.1039/d3md00145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 10/21/2023] Open
Abstract
MEK1/2 are critical components of the RAS-RAF-MEK-ERK or MAPK signalling pathway that regulates a variety of cellular functions including proliferation, survival, and differentiation. In 1997, a lung cancer cell line was first found to have a MEK mutation (encoding MEK2P298L). MEK is involved in various human cancers such as non-small cell lung cancer (NSCLC), spurious melanoma, and pancreatic, colorectal, basal, breast, and liver cancer. To date, 4 MEK inhibitors i.e., trametinib, cobimetinib, selumetinib, and binimetinib have been approved by the FDA and several are under clinical trials. In this review, we have highlighted structural insights into the MEK1/2 proteins, such as the αC-helix, catalytic loop, P-loop, F-helix, hydrophobic pocket, and DFG motif. We have also discussed current issues with all FDA-approved MEK inhibitors or drugs under clinical trials and combination therapies to improve the efficacy of clinical drugs. Finally, this study addressed recent developments on synthetic MEK inhibitors (from their discovery in 1997 to 2022), their unique properties, and their relevance to MEK mutant inhibition.
Collapse
Affiliation(s)
- Teja Ram
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus", GITAM (Deemed to be University) India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Amita Verma
- Bioorganic and Med. Chem. Res., Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
14
|
Liang J, Yu D, Luo C, Bennett C, Jedrychowski M, Gygi SP, Widlund HR, Puigserver P. Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas. Nat Commun 2023; 14:3251. [PMID: 37277330 PMCID: PMC10241879 DOI: 10.1038/s41467-023-38968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
While targeted treatment against BRAF(V600E) improve survival for melanoma patients, many will see their cancer recur. Here we provide data indicating that epigenetic suppression of PGC1α defines an aggressive subset of chronic BRAF-inhibitor treated melanomas. A metabolism-centered pharmacological screen further identifies statins (HMGCR inhibitors) as a collateral vulnerability within PGC1α-suppressed BRAF-inhibitor resistant melanomas. Lower PGC1α levels mechanistically causes reduced RAB6B and RAB27A expression, whereby their combined re-expression reverses statin vulnerability. BRAF-inhibitor resistant cells with reduced PGC1α have increased integrin-FAK signaling and improved extracellular matrix detached survival cues that helps explain their increased metastatic ability. Statin treatment blocks cell growth by lowering RAB6B and RAB27A prenylation that reduces their membrane association and affects integrin localization and downstream signaling required for growth. These results suggest that chronic adaptation to BRAF-targeted treatments drive novel collateral metabolic vulnerabilities, and that HMGCR inhibitors may offer a strategy to treat melanomas recurring with suppressed PGC1α expression.
Collapse
Affiliation(s)
- Jiaxin Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Parthenon Therapeutics, Boston, MA, 02135, USA
| | - Christopher Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Atavistik Bio, Cambridge, MA, 02139, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Florent L, Saby C, Slimano F, Morjani H. BRAF V600-Mutated Metastatic Melanoma and Targeted Therapy Resistance: An Update of the Current Knowledge. Cancers (Basel) 2023; 15:cancers15092607. [PMID: 37174072 PMCID: PMC10177463 DOI: 10.3390/cancers15092607] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is the most common cause of death in skin cancer due to its high metastatic potential. While targeted therapies have improved the care of patients with metastatic melanoma harboring the BRAFV600E mutation, these treatments are associated with a high frequency of resistance. Resistance factors are related to cellular adaptation as well as to changes in the tumor microenvironment. At the cellular level, resistance involves mutations, overexpression, activation, or inhibition of effectors involved in cell signaling pathways such as MAPK, PI3K/AKT, MITF, and epigenetic factors (miRNAs). In addition, several components of the melanoma microenvironment, such as soluble factors, collagen, and stromal cells also play a crucial role in this resistance. In fact, extracellular matrix remodeling impacts the physical and chemical properties with changes in the stiffness and acidity, respectively of the microenvironment. The cellular and immune components of the stroma are also affected, including immune cells and CAF. The aim of this manuscript is to review the mechanisms responsible for resistance to targeted therapies in BRAFV600E-mutated metastatic melanoma.
Collapse
Affiliation(s)
- Laetitia Florent
- Université de Reims Champagne-Ardenne, UFR de Pharmacie, BioSpecT EA 7506, 51097 Reims, France
| | - Charles Saby
- Université de Reims Champagne-Ardenne, UFR de Pharmacie, BioSpecT EA 7506, 51097 Reims, France
| | - Florian Slimano
- Université de Reims Champagne-Ardenne, UFR de Pharmacie, BioSpecT EA 7506, 51097 Reims, France
- CHU Reims, Department of Pharmacy, 51097 Reims, France
| | - Hamid Morjani
- Université de Reims Champagne-Ardenne, UFR de Pharmacie, BioSpecT EA 7506, 51097 Reims, France
| |
Collapse
|
16
|
Datta I, Vassel T, Linkous B, Odum T, Drew C, Taylor A, Bangi E. A targeted genetic modifier screen in Drosophila uncovers vulnerabilities in a genetically complex model of colon cancer. G3 (BETHESDA, MD.) 2023; 13:jkad053. [PMID: 36880303 PMCID: PMC10151408 DOI: 10.1093/g3journal/jkad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Received on 16 January 2023; accepted on 21 February 2023Kinases are key regulators of cellular signal transduction pathways. Many diseases, including cancer, are associated with global alterations in protein phosphorylation networks. As a result, kinases are frequent targets of drug discovery efforts. However, target identification and assessment, a critical step in targeted drug discovery that involves identifying essential genetic mediators of disease phenotypes, can be challenging in complex, heterogeneous diseases like cancer, where multiple concurrent genomic alterations are common. Drosophila is a particularly useful genetic model system to identify novel regulators of biological processes through unbiased genetic screens. Here, we report 2 classic genetic modifier screens focusing on the Drosophila kinome to identify kinase regulators in 2 different backgrounds: KRAS TP53 PTEN APC, a multigenic cancer model that targets 4 genes recurrently mutated in human colon tumors and KRAS alone, a simpler model that targets one of the most frequently altered pathways in cancer. These screens identified hits unique to each model and one shared by both, emphasizing the importance of capturing the genetic complexity of human tumor genome landscapes in experimental models. Our follow-up analysis of 2 hits from the KRAS-only screen suggests that classical genetic modifier screens in heterozygous mutant backgrounds that result in a modest, nonlethal reduction in candidate gene activity in the context of a whole animal-a key goal of systemic drug treatment-may be a particularly useful approach to identify the most rate-limiting genetic vulnerabilities in disease models as ideal candidate drug targets.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tajah Vassel
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Benjamin Linkous
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tyler Odum
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Christian Drew
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Andrew Taylor
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
17
|
Beretti F, Gatti M, Zavatti M, Bassoli S, Pellacani G, Maraldi T. Reactive Oxygen Species Regulation of Chemoresistance and Metastatic Capacity of Melanoma: Role of the Cancer Stem Cell Marker CD271. Biomedicines 2023; 11:biomedicines11041229. [PMID: 37189846 DOI: 10.3390/biomedicines11041229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BRAF mutations are present in 30-50% of cases of cutaneous melanoma, and treatment with selective BRAF and MEK inhibitors has been introduced. However, the development of resistance to these drugs often occurs. Chemo-resistant melanoma cells show increased expression of CD271, a stem cell marker that features increased migration. Concordantly, resistance to the selective inhibitor of oncogenic BRAFV600E/K, vemurafenib, is mediated by the increased expression of CD271. It has recently been shown that the BRAF pathway leads to an overexpression of the NADPH oxidase Nox4, which produces reactive oxygen species (ROS). Here, we examined in vitro how Nox-derived ROS in BRAF-mutated melanoma cells regulates their drug sensitivity and metastatic potential. We demonstrated that DPI, a Nox inhibitor, reduced the resistance of a melanoma cell line (SK-MEL-28) and a primary culture derived from a BRAFV600E-mutated biopsy to vemurafenib. DPI treatment affected the expression of CD271 and the ERK and Akt signaling pathways, leading to a drop in epithelial-mesenchymal transition (EMT), which undoubtedly promotes an invasive phenotype in melanoma. More importantly, the scratch test demonstrated the efficacy of the Nox inhibitor (DPI) in blocking migration, supporting its use to counteract drug resistance and thus cell invasion and metastasis in BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Manuela Zavatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Bassoli
- Department of Dermatology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00185 Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
18
|
Patel H, Mishra R, Wier A, Mokhtarpour N, Merino EJ, Garrett JT. RIDR-PI-103, ROS-activated prodrug PI3K inhibitor inhibits cell growth and impairs the PI3K/Akt pathway in BRAF and MEK inhibitor-resistant BRAF-mutant melanoma cells. Anticancer Drugs 2023; 34:519-531. [PMID: 36847042 PMCID: PMC9997637 DOI: 10.1097/cad.0000000000001500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Indexed: 03/01/2023]
Abstract
Reactive oxygen species (ROS) levels are elevated after acquisition of resistance to v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitors including dabrafenib and MEK inhibitors such as trametinib in BRAF-mutant melanoma. To circumvent toxicity to PI-103 (a pan PI3K inhibitor), we utilized a novel ROS-induced drug release (RIDR)-PI-103, with a self-cyclizing moiety linked to PI-103. Under high ROS conditions, RIDR-PI-103 releases PI-103, which inhibits conversion of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) to phosphatidylinositol 3,4,5-triphosphate (PIP 3 ). Previous findings demonstrate that trametinib and dabrafenib-resistant (TDR) cells maintain p-Akt levels compared to parental counterparts and have significantly higher ROS. This is a rationale to explore the efficacy RIDR-PI-103 in TDR cells. We tested the effect of RIDR-PI-103 on melanocytes and TDR cells. RIDR-PI-103 exhibited less toxicity compared to PI-103 at 5 µM in melanocytes. RIDR-PI-103 significantly inhibited TDR cell proliferation at 5 and 10 µM. Twenty-four hour treatment with RIDR-PI-103 inhibited p-Akt, p-S6 (Ser240/244) and p-S6 (Ser235/236). We assessed the mechanism of activation of RIDR-PI-103, using glutathione or t-butyl hydrogen peroxide (TBHP) on the TDR cells in the presence or absence of RIDR-PI-103. Addition of the ROS scavenger glutathione to RIDR-PI-103 significantly rescued the cell proliferation in TDR cell lines while addition of the ROS inducer TBHP and RIDR-PI-103 inhibited cell proliferation in WM115 and WM983B TDR cell lines. Examining the efficacy of RIDR-PI-103 on BRAF and MEK inhibitor-resistant cells will expand possible treatment options and open avenues for the development of new ROS-based treatment therapies for BRAF-mutant melanoma patients.
Collapse
Affiliation(s)
- Hima Patel
- UT Southwestern Medical Center, Harold C. Simmons Cancer Center, Dallas
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Adam Wier
- Department of Chemistry, Hillsdale College, Hillsdale, Michigan
| | | | - Edward J. Merino
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
19
|
Park BS, Jeon H, Chi SG, Kim T. Efficient prioritization of CRISPR screen hits by accounting for targeting efficiency of guide RNA. BMC Biol 2023; 21:45. [PMID: 36829149 PMCID: PMC9960226 DOI: 10.1186/s12915-023-01536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, observed frequency of indel mutations generated by gRNA. RESULTS Each gRNA was coupled with the "reporter sequence" that can be targeted by the same gRNA so that the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor contributing significant bias to screening results, and our method significantly removed such bias and was better at identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 cells to vemurafenib. CONCLUSIONS We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured differences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more accurately identify genes that confer the phenotype of interest.
Collapse
Affiliation(s)
- Byung-Sun Park
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Heeju Jeon
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Sung-Gil Chi
- grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Tackhoon Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792, Republic of Korea. .,Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841, Republic of Korea. .,Division of Bio-Medical Science and Technology, Korea University of Science and Technology, 217 GajeongRo YuseongGu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
20
|
Metastatic Melanoma: Liquid Biopsy as a New Precision Medicine Approach. Int J Mol Sci 2023; 24:ijms24044014. [PMID: 36835424 PMCID: PMC9962821 DOI: 10.3390/ijms24044014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Precision medicine has driven a major change in the treatment of many forms of cancer. The discovery that each patient is different and each tumor mass has its own characteristics has shifted the focus of basic and clinical research to the singular individual. Liquid biopsy (LB), in this sense, presents new scenarios in personalized medicine through the study of molecules, factors, and tumor biomarkers in blood such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes and circulating tumor microRNAs (ct-miRNAs). Moreover, its easy application and complete absence of contraindications for the patient make this method applicable in a great many fields. Melanoma, given its highly heterogeneous characteristics, is a cancer form that could significantly benefit from the information linked to liquid biopsy, especially in the treatment management. In this review, we will focus our attention on the latest applications of liquid biopsy in metastatic melanoma and possible developments in the clinical setting.
Collapse
|
21
|
da Silva TN, Rodrigues R, Saramago A, Pires C, Rito M, Horta M, Martins C, Leite V, Cavaco BM. Target therapy for BRAF mutated anaplastic thyroid cancer: a clinical and molecular study. Eur J Endocrinol 2023; 188:6979712. [PMID: 36651156 DOI: 10.1093/ejendo/lvac011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Anaplastic thyroid carcinoma (ATC) has a poor survival. The combination of Dabrafenib plus Trametinib (DT) had a significant impact in survival of BRAF p.V600E patients. However, durable responses may be compromised by resistance. We aim to present our experience with DT in BRAF positive ATC patients and compare the outcomes with usual therapy, and to study tumor molecular alterations in the DT group. METHODS Patients treated between May 2018 and April 2022 in a tertiary referral center, assessed for BRAF status were included. Patients were divided in three groups: BRAF p.V600E treated with DT, BRAF wild type (WT) under multimodal therapy (MT), and BRAF WT under compassionate care (CC). Response was assessed monthly in the first 6 months and every 3 months afterwards, by RECIST 1.1. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared with the log-rank test. RESULTS Twenty-seven ATC patients were included (DT = 9, MT = 8, and CC = 10). Median OS was 475 days for DT, 156 days for MT, and 39 days for CC (P < .001). At 12 months, only patients in the DT group were alive (71%). Median PFS was 270 days, in the DT group, compared with less than 32 days in BRAF WT (P < .001). No severe adverse events were reported. Molecular profiling showed that in one of the four clinical progressions, a pathogenic NRAS mutation was found. CONCLUSIONS Our results show a significant real-world efficacy of Dabrafenib plus Trametinib in both survival and recurrence compared with standard treatment, with a good safety profile.
Collapse
Affiliation(s)
- Tiago Nunes da Silva
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ricardo Rodrigues
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Carolina Pires
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Miguel Rito
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Mariana Horta
- Serviço de Radiologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Carmo Martins
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Valeriano Leite
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
- NOVA Medical School-Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| |
Collapse
|
22
|
Mehmood S, Aslam S, Dilshad E, Ismail H, Khan AN. Transforming Diagnosis and Therapeutics Using Cancer Genomics. Cancer Treat Res 2023; 185:15-47. [PMID: 37306902 DOI: 10.1007/978-3-031-27156-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell's genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.
Collapse
Affiliation(s)
- Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| | - Hammad Ismail
- Departments of Biochemistry and Biotechnology, University of Gujrat (UOG) Gujrat, Gujrat, Pakistan
| | - Amna Naheed Khan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| |
Collapse
|
23
|
Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis 2023; 10:76-88. [PMID: 37013062 PMCID: PMC10066287 DOI: 10.1016/j.gendis.2022.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular target inhibitors have been regularly approved by Food and Drug Administration (FDA) for tumor treatment, and most of them intervene in tumor cell proliferation and metabolism. The RAS-RAF-MEK-ERK pathway is a conserved signaling pathway that plays vital roles in cell proliferation, survival, and differentiation. The aberrant activation of the RAS-RAF-MEK-ERK signaling pathway induces tumors. About 33% of tumors harbor RAS mutations, while 8% of tumors are driven by RAF mutations. Great efforts have been dedicated to targeting the signaling pathway for cancer treatment in the past decades. In this review, we summarized the development of inhibitors targeting the RAS-RAF-MEK-ERK pathway with an emphasis on those used in clinical treatment. Moreover, we discussed the potential combinations of inhibitors that target the RAS-RAF-MEK-ERK signaling pathway and other signaling pathways. The inhibitors targeting the RAS-RAF-MEK-ERK pathway have essentially modified the therapeutic strategy against various cancers and deserve more attention in the current cancer research and treatment.
Collapse
Affiliation(s)
| | | | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
24
|
Schulz A, Raetz J, Karitzky PC, Dinter L, Tietze JK, Kolbe I, Käubler T, Renner B, Beissert S, Meier F, Westphal D. Head-to-Head Comparison of BRAF/MEK Inhibitor Combinations Proposes Superiority of Encorafenib Plus Trametinib in Melanoma. Cancers (Basel) 2022; 14:cancers14194930. [PMID: 36230853 PMCID: PMC9564158 DOI: 10.3390/cancers14194930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A decade ago, the diagnosis of metastatic melanoma was mostly a death sentence. This has changed since new therapies became widely available in the clinical setting. In addition to checkpoint inhibitors, targeted therapy with BRAF and MEK inhibitors is standard care for BRAF-mutated melanoma, which accounts for almost half of all melanoma cases. The second largest group of melanoma patients, whose tumors harbor a mutation in the NRAS gene, demonstrates only a limited response to targeted therapy with MEK inhibitors. The aim of this investigation was to directly compare all possible BRAF/MEK inhibitor combinations in addition to the currently applied regimens. The analyzed data suggested that the combination of the BRAF inhibitor encorafenib and the MEK inhibitor trametinib demonstrated the highest anti-tumor activity in both, BRAF- and NRAS-mutated melanoma. This combination is not presently used in patient treatment, and therefore, deserves an opportunity to become part of clinical trials. Abstract BRAFV600 mutations in melanoma are targeted with mutation-specific BRAF inhibitors in combination with MEK inhibitors, which have significantly increased overall survival, but eventually lead to resistance in most cases. Additionally, targeted therapy for patients with NRASmutant melanoma is difficult. Our own studies showed that BRAF inhibitors amplify the effects of MEK inhibitors in NRASmutant melanoma. This study aimed at identifying a BRAF and MEK inhibitor combination with superior anti-tumor activity to the three currently approved combinations. We, thus, assessed anti-proliferative and pro-apoptotic activities of all nine as well as resistance-delaying capabilities of the three approved inhibitor combinations in a head-to-head comparison in vitro. The unconventional combination encorafenib/trametinib displayed the highest activity to suppress proliferation and induce apoptosis, acting in an additive manner in BRAFmutant and in a synergistic manner in NRASmutant melanoma cells. Correlating with current clinical studies of approved inhibitor combinations, encorafenib/binimetinib prolonged the time to resistance most efficiently in BRAFmutant cells. Conversely, NRASmutant cells needed the longest time to establish resistance when treated with dabrafenib/trametinib. Together, our data indicate that the most effective combination might not be currently used in clinical settings and could lead to improved overall responses.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Jennifer Raetz
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Paula C. Karitzky
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lisa Dinter
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Julia K. Tietze
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18055 Rostock, Germany
| | - Isabell Kolbe
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Theresa Käubler
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden, University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-82274
| |
Collapse
|
25
|
Premi S, Qin Y, Ahmad N. Editorial: Mechanisms of resistance to the targeted therapy and immunotherapy in cutaneous melanoma. Front Oncol 2022; 12:1016901. [PMID: 36110949 PMCID: PMC9469656 DOI: 10.3389/fonc.2022.1016901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sanjay Premi
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, United States
- *Correspondence: Sanjay Premi,
| | - Yong Qin
- School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
26
|
Gu Y, Wei C, Chung M, Li H, Guo Z, Long M, Li Y, Wang W, Aimaier R, Li Q, Wang Z. Concurrent inhibition of FAK/SRC and MEK overcomes MEK inhibitor resistance in Neurofibromatosis Type I related malignant peripheral nerve sheath tumors. Front Oncol 2022; 12:910505. [PMID: 35965583 PMCID: PMC9372505 DOI: 10.3389/fonc.2022.910505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas which lack effective drugs. Loss of the RAS GTPase-activating protein NF1 and subsequent overactivation of mitogen-activated protein kinase kinase (MAPK) signaling exist nearly uniformly in MPNST, making MAPK inhibition a promising therapeutic intervention. However, the efficacy of MEK inhibitor (MEKi) monotherapy was limited in MPNST and the relative mechanisms remained largely unexplored. In this study, we generated three MEKi-resistant cell models and investigated the mechanisms of MEKi resistance using high-throughput transcriptomic sequencing. We discovered that cell apoptosis and cell cycle arrest induced by MEKi were rescued in MEKi-resistant cells and the upregulation of LAMA4/ITGB1/FAK/SRC signaling conferred resistance to MEKi. In addition, concurrent inhibition of MAPK signaling and FAK/SRC cascade could sensitize MPNST cells to MEKi. Our findings provide potential solutions to overcome MEKi resistance and effective combination therapeutic strategies for treating MPNSTs.
Collapse
Affiliation(s)
- Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| |
Collapse
|
27
|
Chousakos E, Katsoulas N, Kavantzas N, Stratigos A, Lazaris AC. The role of dual-specificity phosphatase 3 in melanocytic oncogenesis. Exp Dermatol 2022; 31:1466-1476. [PMID: 35899430 DOI: 10.1111/exd.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
Dual-specificity phosphatase 3 (DUSP3), also known as Vaccinia H1-related phosphatase, is a protein tyrosine phosphatase that typically performs its major role in the regulation of multiple cellular functions through the dephosphorylation of its diverse and constantly expanding range of substrates. Many of the substrates described so far as well as alterations in the expression or the activity of DUSP3 itself are associated with the development and progression of various types of neoplasms, indicating that DUSP3 may be an important player in oncogenesis and a promising therapeutic target. This review focuses exclusively on DUSP3's contribution to either benign or malignant melanocytic oncogenesis, as many of the established culprit pathways and mechanisms constitute DUSP3's regulatory targets, attempting to synthesize the current knowledge on the matter. The spectrum of the DUSP3 interactions analyzed in this review covers substrates implicated in cellular growth, cell cycle, proliferation, survival, apoptosis, genomic stability/repair, adhesion and migration of tumor melanocytes. Furthermore, the speculations raised, based on the evidence to date, may be considered a fundament for potential research regarding the oncogenesis, evolution, management and therapeutics of melanocytic tumors.
Collapse
Affiliation(s)
- Emmanouil Chousakos
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Nikolaos Katsoulas
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Nikolaos Kavantzas
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Alexandros Stratigos
- 1st Department of Dermatology-Venereology, "Andreas Syggros" Hospital, Medical School, National and Kapodistrian University of Athens
| | - Andreas C Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| |
Collapse
|
28
|
Gene Identification and Potential Drug Therapy for Drug-Resistant Melanoma with Bioinformatics and Deep Learning Technology. DISEASE MARKERS 2022; 2022:2461055. [PMID: 35915735 PMCID: PMC9338845 DOI: 10.1155/2022/2461055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Melanomas are skin malignant tumors that arise from melanocytes which are primarily treated with surgery, chemotherapy, targeted therapy, immunotherapy, radiation therapy, etc. Targeted therapy is a promising approach to treating advanced melanomas, but resistance always occurs. This study is aimed at identifying the potential target genes and candidate drugs for drug-resistant melanoma effectively with computational methods. Methods. Identification of genes associated with drug-resistant melanomas was conducted using the text mining tool pubmed2ensembl. Further gene screening was carried out by GO and KEGG pathway enrichment analyses. The PPI network was constructed using STRING database and Cytoscape. GEPIA was used to perform the survival analysis and conduct the Kaplan-Meier curve. Drugs targeted at these genes were selected in Pharmaprojects. The binding affinity scores of drug-target interactions were predicted by DeepPurpose. Results. A total of 433 genes were found associated with drug-resistant melanomas by text mining. The most statistically differential functional enriched pathways of GO and KEGG analyses contained 348 genes, and 27 hub genes were further screened out by MCODE in Cytoscape. Six genes were identified with statistical differences after survival analysis and literature review. 16 candidate drugs targeted at hub genes were found by Pharmaprojects under our restrictions. Finally, 11 ERBB2-targeted drugs with top affinity scores were predicted by DeepPurpose, including 10 ERBB2 kinase inhibitors and 1 antibody-drug conjugate. Conclusion. Text mining and bioinformatics are valuable methods for gene identification in drug discovery. DeepPurpose is an efficient and operative deep learning tool for predicting the DTI and selecting the candidate drugs.
Collapse
|
29
|
Gu Y, Wang W, Li Y, Li H, Guo Z, Wei C, Long M, Chung M, Aimaier R, Li Q, Wang Z. Preclinical Assessment of MEK Inhibitors for Malignant Peripheral Nerve Sheath Tumors Reveals Differences in Efficacy and Adaptive Response. Front Oncol 2022; 12:903177. [PMID: 35875109 PMCID: PMC9303010 DOI: 10.3389/fonc.2022.903177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are rare soft-tissue sarcomas refractory to standard therapies. Inactivation of NF1 and subsequent upregulation of RAS/RAF/MEK/ERK signaling exist in the majority of MPNSTs. However, the lack of preclinical assessment of MEK inhibitors in MPNSTs hinders the clinical application as well as the development of combination therapy. To guide further clinical studies, we evaluated different MEK inhibitors in terms of efficacy, safety, and mechanism of adaptive response in treating MPNSTs. Using a MPNST tissue microarray, we found that p-ERK could serve as a biomarker for predicting the prognosis of MPNST patients as well as an effective therapeutic target. Through in vitro and in vivo experiments, we identified trametinib as the most potent MEK inhibitor for the treatment of MPNSTs. Mechanistically, reduced reactivation of the MAPK pathway and compensatory activation of the parallel pathways contributed to better efficacy. Our results provide a basis for the further clinical application of MEK inhibitors as single agents or combinational therapies.
Collapse
Affiliation(s)
- Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| |
Collapse
|
30
|
Dandapath I, Gupta R, Singh J, Shukla N, Jha P, Sharma V, Suri A, Sharma MC, Suri V, Sarkar C, Kulshreshtha R. Long Non-coding RNA and mRNA Co-expression Network Reveals Novel Players in Pleomorphic Xanthoastrocytoma. Mol Neurobiol 2022; 59:5149-5167. [PMID: 35674862 DOI: 10.1007/s12035-022-02893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
Histological interpretation of the rare pleomorphic xanthoastrocytoma (PXA) has been the holy grail for treatment options. However, no stand-alone clinical interventions have been developed owing to the lack of gene expression profiling data in PXA/APXA patients. We first time report the comprehensive analyses of the coding as well as long non-coding RNA (lncRNA) signatures of PXA/APXA patients. Several genes such as IGFBP2, NF1, FOS, ERBB2, and lncRNAs such as NEAT1, HOTAIRM1, and GAS5 known to play crucial roles in glioma patients were also deregulated in PXA patients suggesting the commonality in the molecular signatures. PPI network, co-expression, and lncRNA-mRNA interaction studies unraveled hub genes (such as ERBB2, FOS, RPA1) and networks that may play a critical role in PXA biology. The most enriched pathways based on gene profiles were related to TLR, chemokine, MAPK, Rb, and PI3K-Akt signaling pathways. The lncRNA targets were enriched in glucuronidation, adipogenesis, TGF-beta signaling, EGF/EGFR signaling, and cell cycle pathways. Interestingly, several mRNAs like PARVG, and ABI2 were found to be targeted by multiple lncRNAs suggesting a tight control of their levels. Some of the most prominent lncRNA-mRNA pairs were LOC728730: MRPL9, XLOC_l2_011987: ASIC2, lnc-C1QTNF5-1: RNF26. Notably, several lncRNAs such as lnc-CETP-1, lnc-XRCC3-1, lnc-RPL31-1, lnc-USP13-1, and MAPKAPK5-AS1, and genes such as RPA1, NTRK3, and CNRP1 showed strong correlation to the progression-free survival of PXA patients suggesting their potential as novel biomarkers. Overall, the findings of this study may facilitate the development of a new realm of RNA biology in PXA that may have clinical significance in the future.
Collapse
Affiliation(s)
- Iman Dandapath
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Rahul Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Jyotsna Singh
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Nidhi Shukla
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Prerana Jha
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Vikas Sharma
- All India Institute of Medical Sciences, CCRF, New Delhi, 110029, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - M C Sharma
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Vaishali Suri
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India.
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
31
|
Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances. Biomaterials 2022; 285:121561. [DOI: 10.1016/j.biomaterials.2022.121561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 12/31/2022]
|
32
|
Candido S, Salemi R, Piccinin S, Falzone L, Libra M. The PIK3CA H1047R Mutation Confers Resistance to BRAF and MEK Inhibitors in A375 Melanoma Cells through the Cross-Activation of MAPK and PI3K-Akt Pathways. Pharmaceutics 2022; 14:pharmaceutics14030590. [PMID: 35335966 PMCID: PMC8950976 DOI: 10.3390/pharmaceutics14030590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/23/2023] Open
Abstract
The targeting of the Mitogen-Activated Protein Kinase (MAPK) signalling pathway in melanoma improves the prognosis of patients harbouring the V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) mutation. However, a fraction of these patients may experience tumour progression due to resistance to targeted therapy. Mutations affecting the Phosphoinositol-3-Kinase (PI3K)–Akt pathway may favour the onset of drug resistance, suggesting the existence of a crosstalk between the MAPK and PI3K–Akt pathways. We hypothesized that the inhibition of both pathways may be a therapeutic option in resistant melanoma. However, conflicting data have been generated in this context. In this study, three different A375 cell melanoma models either overexpressing or not expressing the wild-type or mutated form of the PhosphatidylInositol-4,5-bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) gene were used to clarify the therapeutic response of melanoma to BRAF, Mitogen-Activated Protein Kinase Kinase 1 (MEK), and PI3K inhibitors in the presence of the PIK3CA H1047R mutation. Our data strongly support the notion that the crosstalk between the MAPK and PI3K–Akt pathways is one of the main mechanisms associated with melanoma development and progression and that the combination of MAPK and PI3K inhibitors may sensitize melanoma cells to therapy.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
| | - Sara Piccinin
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-095-478-1278
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| |
Collapse
|
33
|
Martinez R, Huang W, Buck H, Rea S, Defnet AE, Kane MA, Shapiro P. Proteomic Changes in the Monolayer and Spheroid Melanoma Cell Models of Acquired Resistance to BRAF and MEK1/2 Inhibitors. ACS OMEGA 2022; 7:3293-3311. [PMID: 35128241 PMCID: PMC8811929 DOI: 10.1021/acsomega.1c05361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Extracellular signal-regulated kinase-1/2 (ERK1/2) pathway inhibitors are important therapies for treating many cancers. However, acquired resistance to most protein kinase inhibitors limits their ability to provide durable responses. Approximately 50% of malignant melanomas contain activating mutations in BRAF, which promotes cancer cell survival through the direct phosphorylation of the mitogen-activated protein kinase MAPK/ERK 1/2 (MEK1/2) and the activation of ERK1/2. Although the combination treatment with BRAF and MEK1/2 inhibitors is a recommended approach to treat melanoma, the development of drug resistance remains a barrier to achieving long-term patient benefits. Few studies have compared the global proteomic changes in BRAF/MEK1/2 inhibitor-resistant melanoma cells under different growth conditions. The current study uses high-resolution label-free mass spectrometry to compare relative protein changes in BRAF/MEK1/2 inhibitor-resistant A375 melanoma cells grown as monolayers or spheroids. While approximately 66% of proteins identified were common in the monolayer and spheroid cultures, only 6.2 or 3.6% of proteins that significantly increased or decreased, respectively, were common between the drug-resistant monolayer and spheroid cells. Drug-resistant monolayers showed upregulation of ERK-independent signaling pathways, whereas drug-resistant spheroids showed primarily elevated catabolic metabolism to support oxidative phosphorylation. These studies highlight the similarities and differences between monolayer and spheroid cell models in identifying actionable targets to overcome drug resistance.
Collapse
Affiliation(s)
- Ramon Martinez
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Weiliang Huang
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Heather Buck
- Nathan
Schnaper Internship Program in Translational Cancer Research, Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22S. Greene Street, Baltimore, Maryland 21201, United States
| | - Samantha Rea
- Nathan
Schnaper Internship Program in Translational Cancer Research, Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22S. Greene Street, Baltimore, Maryland 21201, United States
| | - Amy E. Defnet
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Maureen A. Kane
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Paul Shapiro
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| |
Collapse
|
34
|
Lee M, Untch BR, Xu B, Ghossein R, Han C, Kuo F, Valero C, Nadeem Z, Patel N, Makarov V, Dogan S, Wong RJ, Sherman EJ, Ho AL, Chan TA, Fagin JA, Morris LGT. Genomic and Transcriptomic Correlates of Thyroid Carcinoma Evolution after BRAF Inhibitor Therapy. Mol Cancer Res 2022; 20:45-55. [PMID: 34635506 PMCID: PMC8738128 DOI: 10.1158/1541-7786.mcr-21-0442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Targeted inhibition of BRAF V600E achieves tumor control in a subset of advanced thyroid tumors. Nearly all tumors develop resistance, and some have been observed to subsequently undergo dedifferentiation. The molecular alterations associated with thyroid cancer dedifferentiation in the setting of BRAF inhibition are unknown. We analyzed targeted next-generation sequencing data from 639 advanced, recurrent and/or metastatic thyroid carcinomas, including 15 tumors that were treated with BRAF inhibitor drugs and had tissue sampled during or posttreatment, 8 of which had matched pretherapy samples. Pre- and posttherapy tissues from one additional patient were profiled with whole-exome sequencing and RNA expression profiling. Mutations in genes comprising the SWI/SNF chromatin remodeling complex and the PI3K-AKT-mTOR, MAPK, and JAK-STAT pathways all increased in prevalence across more dedifferentiated thyroid cancer histologies. Of 7 thyroid cancers that dedifferentiated after BRAF inhibition, 6 had mutations in these pathways. These mutations were mostly absent from matched pretreatment samples and were rarely detected in tumors that did not dedifferentiate. Additional analyses in one of the vemurafenib-treated tumors before and after anaplastic transformation revealed the emergence of an oncogenic PIK3CA mutation, activation of ERK signaling, dedifferentiation, and development of an immunosuppressive tumor microenvironment. These findings validate earlier preclinical data implicating these genetic pathways in resistance to BRAF inhibitors, and suggest that genetic alterations mediating acquired drug resistance may also promote thyroid tumor dedifferentiation. IMPLICATIONS: The possibility that thyroid cancer dedifferentiation may be attributed to selective pressure applied by BRAF inhibitor-targeted therapy should be investigated further.
Collapse
Affiliation(s)
- Mark Lee
- Weill Cornell Medicine, New York, New York
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Han
- Weill Cornell Medicine, New York, New York
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fengshen Kuo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina Valero
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zaineb Nadeem
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neal Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric J Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - James A Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
35
|
Parkman GL, Foth M, Kircher DA, Holmen SL, McMahon M. The role of PI3'-lipid signalling in melanoma initiation, progression and maintenance. Exp Dermatol 2022; 31:43-56. [PMID: 34717019 PMCID: PMC8724390 DOI: 10.1111/exd.14489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Phosphatidylinositol-3'-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' hydroxyl (OH) of the inositol ring of phosphatidylinositides (PI). Through their downstream effectors, PI3K generated lipids (PI3K-lipids hereafter) such as PI(3,4,5)P3 and PI(3,4)P2 regulate myriad biochemical and biological processes in both normal and cancer cells including responses to growth hormones and cytokines; the cell division cycle; cell death; cellular growth; angiogenesis; membrane dynamics; and autophagy and many aspects of cellular metabolism. Engagement of receptor tyrosine kinase by their cognate ligands leads to activation of members of the Class I family of PI3'-kinases (PI3Kα, β, δ & γ) leading to accumulation of PI3K-lipids. Importantly, PI3K-lipid accumulation is antagonized by the hydrolytic action of a number of PI3K-lipid phosphatases, most notably the melanoma suppressor PTEN (lipid phosphatase and tensin homologue). Downstream of PI3K-lipid production, the protein kinases AKT1-3 are believed to be key effectors of PI3'-kinase signalling in cells. Indeed, in preclinical models, activation of the PI3K→AKT signalling axis cooperates with alterations such as expression of the BRAFV600E oncoprotein kinase to promote melanoma progression and metastasis. In this review, we describe the different classes of PI3K-lipid effectors, and how they may promote melanomagenesis, influence the tumour microenvironment, melanoma maintenance and progression to metastatic disease. We also provide an update on both FDA-approved or experimental inhibitors of the PI3K→AKT pathway that are currently being evaluated for the treatment of melanoma either in preclinical models or in clinical trials.
Collapse
Affiliation(s)
- Gennie L. Parkman
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Mona Foth
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - David A. Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Sheri L. Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Martin McMahon
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
36
|
Coleman N, Moyers JT, Harbery A, Vivanco I, Yap TA. Clinical Development of AKT Inhibitors and Associated Predictive Biomarkers to Guide Patient Treatment in Cancer Medicine. Pharmgenomics Pers Med 2021; 14:1517-1535. [PMID: 34858045 PMCID: PMC8630372 DOI: 10.2147/pgpm.s305068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The serine/threonine kinase AKT is a critical effector of the phosphoinositide 3-kinase (PI3K) signaling cascade and has a pivotal role in cell growth, proliferation, survival, and metabolism. AKT is one of the most commonly activated pathways in human cancer and dysregulation of AKT-dependent pathways is associated with the development and maintenance of a range of solid tumors. There are multiple small-molecule inhibitors targeting different components of the PI3K/AKT pathway currently at various stages of clinical development, in addition to new combination strategies aiming to boost the therapeutic efficacy of these drugs. Correlative and translational studies have been undertaken in the context of clinical trials investigating AKT inhibitors, however the identification of predictive biomarkers of response and resistance to AKT inhibition remains an unmet need. In this review, we discuss the biological function and activation of AKT, discuss its contribution to tumor development and progression, and review the efficacy and toxicity data from clinical trials, including both AKT inhibitor monotherapy and combination strategies with other agents. We also discuss the promise and challenges associated with the development of AKT inhibitors and associated predictive biomarkers of response and resistance.
Collapse
Affiliation(s)
- Niamh Coleman
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin T Moyers
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | - Alice Harbery
- Division of Cancer Therapeutics, Institute of Cancer Research, London, SM2 5NG, UK
| | - Igor Vivanco
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Targeting T-type channels in cancer: What is on and what is off? Drug Discov Today 2021; 27:743-758. [PMID: 34838727 DOI: 10.1016/j.drudis.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.
Collapse
|
38
|
RICTOR Affects Melanoma Tumorigenesis and Its Resistance to Targeted Therapy. Biomedicines 2021; 9:biomedicines9101498. [PMID: 34680615 PMCID: PMC8533235 DOI: 10.3390/biomedicines9101498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
The network defined by phosphatidylinositol-3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR) plays a major role in melanoma oncogenesis and has been implicated in BRAF inhibitor resistance. The central role of RICTOR (rapamycin-insensitive companion of mTOR) in this pathway has only recently begun to be unraveled. In the present study, we assessed the role of mTORC2/RICTOR in BRAF-mutated melanomas and their resistance to BRAF inhibition. We showed that RICTOR was significantly overexpressed in melanoma and associated with bad prognoses. RICTOR overexpression stimulated melanoma-initiating cells (MICs) with ‘stemness’ properties. We also showed that RICTOR contributed to melanoma resistance to BRAF inhibitors and rendered the cells very sensitive to mTORC2 inhibition. We highlighted a connection between mTORC2/RICTOR and STAT3 in resistant cells and revealed an interaction between RAS and RICTOR in resistant melanoma, which, when disrupted, impeded the proliferation of resistant cells. Therefore, as a key signaling node, RICTOR contributes to BRAF-dependent melanoma development and resistance to therapy and, as such, is a valuable therapeutic target in melanoma.
Collapse
|
39
|
Li B, Kong X, Post H, Raaijmakers L, Peeper DS, Altelaar M. Proteomics and Phosphoproteomics Profiling of Drug-Addicted BRAFi-Resistant Melanoma Cells. J Proteome Res 2021; 20:4381-4392. [PMID: 34343000 PMCID: PMC8419860 DOI: 10.1021/acs.jproteome.1c00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Acquired resistance to MAPK inhibitors limits the clinical efficacy in melanoma treatment. We and others have recently shown that BRAF inhibitor (BRAFi)-resistant melanoma cells can develop a dependency on the therapeutic drugs to which they have acquired resistance, creating a vulnerability for these cells that can potentially be exploited in cancer treatment. In drug-addicted melanoma cells, it was shown that this induction of cell death was preceded by a specific ERK2-dependent phenotype switch; however, the underlying molecular mechanisms are largely lacking. To increase the molecular understanding of this drug dependency, we applied a mass spectrometry-based proteomic approach on BRAFi-resistant BRAFMUT 451Lu cells, in which ERK1, ERK2, and JUNB were silenced separately using CRISPR-Cas9. Inactivation of ERK2 and, to a lesser extent, JUNB prevents drug addiction in these melanoma cells, while, conversely, knockout of ERK1 fails to reverse this phenotype, showing a response similar to that of control cells. Our analysis reveals that ERK2 and JUNB share comparable proteome responses dominated by reactivation of cell division. Importantly, we find that EMT activation in drug-addicted melanoma cells upon drug withdrawal is affected by silencing ERK2 but not ERK1. Moreover, transcription factor (regulator) enrichment shows that PIR acts as an effector of ERK2 and phosphoproteome analysis reveals that silencing of ERK2 but not ERK1 leads to amplification of GSK3 kinase activity. Our results depict possible mechanisms of drug addiction in melanoma, which may provide a guide for therapeutic strategies in drug-resistant melanoma.
Collapse
Affiliation(s)
- Bohui Li
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Xiangjun Kong
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Harm Post
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Linsey Raaijmakers
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Daniel S. Peeper
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
40
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
41
|
Yu Y, Tao M, Xu L, Cao L, Le B, An N, Dong J, Xu Y, Yang B, Li W, Liu B, Wu Q, Lu Y, Xie Z, Lian X. Systematic screening reveals synergistic interactions that overcome MAPK inhibitor resistance in cancer cells. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0560. [PMID: 34106558 PMCID: PMC8832956 DOI: 10.20892/j.issn.2095-3941.2020.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Effective adjuvant therapeutic strategies are urgently needed to overcome MAPK inhibitor (MAPKi) resistance, which is one of the most common forms of resistance that has emerged in many types of cancers. Here, we aimed to systematically identify the genetic interactions underlying MAPKi resistance, and to further investigate the mechanisms that produce the genetic interactions that generate synergistic MAPKi resistance. METHODS We conducted a comprehensive pair-wise sgRNA-based high-throughput screening assay to identify synergistic interactions that sensitized cancer cells to MAPKi, and validated 3 genetic combinations through competitive growth, cell viability, and spheroid formation assays. We next conducted Kaplan-Meier survival analysis based on The Cancer Genome Atlas database and conducted immunohistochemistry to determine the clinical relevance of these synergistic combinations. We also investigated the MAPKi resistance mechanisms of these validated synergistic combinations by using co-immunoprecipitation, Western blot, qRT-PCR, and immunofluorescence assays. RESULTS We constructed a systematic interaction network of MAPKi resistance and identified 3 novel synergistic combinations that effectively targeted MAPKi resistance (ITGB3 + IGF1R, ITGB3 + JNK, and HDGF + LGR5). We next analyzed their clinical relevance and the mechanisms by which they sensitized cancer cells to MAPKi exposure. Specifically, we discovered a novel protein complex, HDGF-LGR5, that adaptively responded to MAPKi to enhance cancer cell stemness, which was up- or downregulated by the inhibitors of ITGB3 + JNK or ITGB3 + IGF1R. CONCLUSIONS Pair-wise sgRNA library screening provided systematic insights into elucidating MAPKi resistance in cancer cells. ITGB3- + IGF1R-targeting drugs (cilengitide + linsitinib) could be used as an effective therapy for suppressing the adaptive formation of the HDGF-LGR5 protein complex, which enhanced cancer stemness during MAPKi stress.
Collapse
Affiliation(s)
- Yu Yu
- Department of Cell Biology, Basic Medical College, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minzhen Tao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Libin Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Baoyu Le
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Na An
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Jilin Dong
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Yajie Xu
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Baoxing Yang
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Wei Li
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Bing Liu
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinying Lu
- The Comprehensive Liver Cancer Center, The 5th Medical Center of PLA General Hospital, Beijing 100039, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xiaohua Lian
- Department of Cell Biology, Basic Medical College, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
42
|
Abstract
Malignant melanoma is a neoplasm originating in the melanocytes in the skin. Although malignant melanoma is the third most common cutaneous cancer, it is recognized as the main cause of skin cancer-related mortality, and its incidence is rising. The natural history of malignant melanoma involves an inconsistent and insidious skin cancer with great metastatic potential. Increased ultra-violet (UV) skin exposure is undoubtedly the greatest risk factor for developing cutaneous melanoma; however, a plethora of risk factors are now recognized as causative. Moreover, modern oncology now considers melanoma proliferation a complex, multifactorial process with a combination of genetic, epigenetic, and environmental factors all known to be contributory to tumorgenesis. Herein, we wish to outline the epidemiological, molecular, and biological processes responsible for driving malignant melanoma proliferation.
Collapse
Affiliation(s)
| | - Nicola Miller
- Surgery, National University of Ireland Galway, Galway, IRL
| | - Niall M McInerney
- Plastic, Aesthetic, and Reconstructive Surgery, Galway University Hospitals, Galway, IRL
| |
Collapse
|
43
|
Tudor DV, Bâldea I, Olteanu DE, Fischer-Fodor E, Piroska V, Lupu M, Călinici T, Decea RM, Filip GA. Celecoxib as a Valuable Adjuvant in Cutaneous Melanoma Treated with Trametinib. Int J Mol Sci 2021; 22:4387. [PMID: 33922284 PMCID: PMC8122835 DOI: 10.3390/ijms22094387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Melanoma patients stop responding to targeted therapies mainly due to mitogen activated protein kinase (MAPK) pathway re-activation, phosphoinositide 3 kinase/the mechanistic target of rapamycin (PI3K/mTOR) pathway activation or stromal cell influence. The future of melanoma treatment lies in combinational approaches. To address this, our in vitro study evaluated if lower concentrations of Celecoxib (IC50 in nM range) could still preserve the chemopreventive effect on melanoma cells treated with trametinib. MATERIALS AND METHODS All experiments were conducted on SK-MEL-28 human melanoma cells and BJ human fibroblasts, used as co-culture. Co-culture cells were subjected to a celecoxib and trametinib drug combination for 72 h. We focused on the evaluation of cell death mechanisms, melanogenesis, angiogenesis, inflammation and resistance pathways. RESULTS Low-dose celecoxib significantly enhanced the melanoma response to trametinib. The therapeutic combination reduced nuclear transcription factor (NF)-kB (p < 0.0001) and caspase-8/caspase-3 activation (p < 0.0001), inhibited microphthalmia transcription factor (MITF) and tyrosinase (p < 0.05) expression and strongly down-regulated the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway more significantly than the control or trametinib group (p < 0.0001). CONCLUSION Low concentrations of celecoxib (IC50 in nM range) sufficed to exert antineoplastic capabilities and enhanced the therapeutic response of metastatic melanoma treated with trametinib.
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Diana Elena Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Eva Fischer-Fodor
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Virag Piroska
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Mihai Lupu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Tudor Călinici
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Roxana Maria Decea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| |
Collapse
|
44
|
Huang H, Yi J, Park S, Zhang H, Kim E, Park S, Kwon W, Jang S, Zhang X, Chen H, Choi SK, Kim SH, Liu K, Dong Z, Lee MH, Ryoo Z, Kim MO. Costunolide suppresses melanoma growth via the AKT/mTOR pathway in vitro and in vivo. Am J Cancer Res 2021; 11:1410-1427. [PMID: 33948365 PMCID: PMC8085867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023] Open
Abstract
Melanoma is the most common type of skin cancer and its incidence is rapidly increasing. AKT, and its related signaling pathways, are highly activated in many cancers including lung, colon, and esophageal cancers. Costunolide (CTD) is a sesquiterpene lactone that has been reported to possess neuroprotective, anti-inflammatory, and anti-cancer properties. However, the target and mechanism underlying its efficacy in melanoma have not been identified. In this study, we elucidated the mechanism behind the anti-cancer effect of CTD in melanoma in vitro and in vivo by identifying CTD as an AKT inhibitor. We first verified that p-AKT and AKT are highly expressed in melanoma patient tissues and cell lines. CTD significantly inhibited the proliferation, migration, and invasion of melanoma cells including SK-MEL-5, SK-MEL-28, and A375 that are overexpressed p-AKT and AKT proteins. We investigated the mechanism of CTD using a computational docking modeling, pull-down, and site directed mutagenesis assay. CTD directly bound to AKT thereby arresting cell cycle at the G1 phase, and inducing the apoptosis of melanoma cells. In addition, CTD regulated the G1 phase and apoptosis biomarkers, and inhibited the expression of AKT/mTOR/GSK3b/p70S6K/4EBP cascade proteins. After reducing AKT expression in melanoma cells, cell growth was significantly decreased and CTD did not showed further inhibitory effects. Furthermore, CTD administration suppressed tumor growth and weight in cell-derived xenograft mice models in vivo without body weight loss and inhibited the expression of Ki-67, p-AKT, and p70S6K in tumor tissues. In summary, our study implied that CTD inhibited melanoma progression in vitro and in vivo. In this study, we reported that CTD could affect melanoma growth by targeting AKT. Therefore, CTD has considerable potential as a drug for melanoma therapy.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| | - Junkoo Yi
- Gyeongbuk Livestock Research InstituteYeongju 36052, South Korea
| | - Song Park
- Core Protein Resources Center, DGISTDaegu, Republic of Korea
- Department of Brian and Cognitive Sciences, DGISTDaegu, Republic of Korea
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| | - Sijun Park
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
| | - Wookbong Kwon
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
- Core Protein Resources Center, DGISTDaegu, Republic of Korea
| | - Soyoung Jang
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Hanyong Chen
- The Hormel Institute, University of MinnesotaAustin, Minnesota, USA
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGISTDaegu, Republic of Korea
- Division of Biotechnology, DGISTDaegu, Republic of Korea
| | - Sung-hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic CollegeChungnam, Korea
| | - Kangddong Liu
- Basic Medical College, Zhengzhou University ZhengzhouZhengzhou, Henan, China
| | - Zigang Dong
- Basic Medical College, Zhengzhou University ZhengzhouZhengzhou, Henan, China
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin UniversityNaju, Jeollanamdo 58245, Republic of Korea
| | - Zaeyoung Ryoo
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| |
Collapse
|
45
|
Valenti F, Falcone I, Ungania S, Desiderio F, Giacomini P, Bazzichetto C, Conciatori F, Gallo E, Cognetti F, Ciliberto G, Morrone A, Guerrisi A. Precision Medicine and Melanoma: Multi-Omics Approaches to Monitoring the Immunotherapy Response. Int J Mol Sci 2021; 22:3837. [PMID: 33917181 PMCID: PMC8067863 DOI: 10.3390/ijms22083837] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment and management of patients with metastatic melanoma have evolved considerably in the "era" of personalized medicine. Melanoma was one of the first solid tumors to benefit from immunotherapy; life expectancy for patients in advanced stage of disease has improved. However, many progresses have yet to be made considering the (still) high number of patients who do not respond to therapies or who suffer adverse events. In this scenario, precision medicine appears fundamental to direct the most appropriate treatment to the single patient and to guide towards treatment decisions. The recent multi-omics analyses (genomics, transcriptomics, proteomics, metabolomics, radiomics, etc.) and the technological evolution of data interpretation have allowed to identify and understand several processes underlying the biology of cancer; therefore, improving the tumor clinical management. Specifically, these approaches have identified new pharmacological targets and potential biomarkers used to predict the response or adverse events to treatments. In this review, we will analyze and describe the most important omics approaches, by evaluating the methodological aspects and progress in melanoma precision medicine.
Collapse
Affiliation(s)
- Fabio Valenti
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena Institute, 00144 Rome, Italy;
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Patrizio Giacomini
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Enzo Gallo
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Gennaro Ciliberto
- Scientific Direction IRCSS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Morrone
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Antonino Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| |
Collapse
|
46
|
Ottaviano M, Giunta EF, Tortora M, Curvietto M, Attademo L, Bosso D, Cardalesi C, Rosanova M, De Placido P, Pietroluongo E, Riccio V, Mucci B, Parola S, Vitale MG, Palmieri G, Daniele B, Simeone E. BRAF Gene and Melanoma: Back to the Future. Int J Mol Sci 2021; 22:ijms22073474. [PMID: 33801689 PMCID: PMC8037827 DOI: 10.3390/ijms22073474] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
As widely acknowledged, 40-50% of all melanoma patients harbour an activating BRAF mutation (mostly BRAF V600E). The identification of the RAS-RAF-MEK-ERK (MAP kinase) signalling pathway and its targeting has represented a valuable milestone for the advanced and, more recently, for the completely resected stage III and IV melanoma therapy management. However, despite progress in BRAF-mutant melanoma treatment, the two different approaches approved so far for metastatic disease, immunotherapy and BRAF+MEK inhibitors, allow a 5-year survival of no more than 60%, and most patients relapse during treatment due to acquired mechanisms of resistance. Deep insight into BRAF gene biology is fundamental to describe the acquired resistance mechanisms (primary and secondary) and to understand the molecular pathways that are now being investigated in preclinical and clinical studies with the aim of improving outcomes in BRAF-mutant patients.
Collapse
Affiliation(s)
- Margaret Ottaviano
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
- Correspondence:
| | - Emilio Francesco Giunta
- Department of Precision Medicine, Università Degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Marianna Tortora
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| | - Marcello Curvietto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy; (M.C.); (M.G.V.); (E.S.)
| | - Laura Attademo
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Davide Bosso
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Cinzia Cardalesi
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Mario Rosanova
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Vittorio Riccio
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Brigitta Mucci
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Sara Parola
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Maria Grazia Vitale
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy; (M.C.); (M.G.V.); (E.S.)
| | - Giovannella Palmieri
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| | - Bruno Daniele
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Ester Simeone
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy; (M.C.); (M.G.V.); (E.S.)
| | | |
Collapse
|
47
|
CDC42EP3 promotes colorectal cancer through regulating cell proliferation, cell apoptosis and cell migration. Cancer Cell Int 2021; 21:169. [PMID: 33726765 PMCID: PMC7962261 DOI: 10.1186/s12935-021-01845-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Nowadays, colorectal cancer (CRC) is one of the most commonly diagnosed malignant tumors worldwide, the incidence rate of which is still increasing year by year. Herein, the objective of this study is to investigate whether CDC42EP3 has regulatory effects in CRC. Methods First, CDC42EP3 knockdown cell model based on HCT116 and RKO cell lines was successfully constructed, which was further used for constructing mouse xenotransplantation models. Importantly, effects of CDC42EP3 knockdown on proliferation, colony formation, apoptosis, and migration of CRC were accessed by MTT assay, EdU staining assay, colony formation assay, Flow cytometry, and Transwell assay. Results As the results, we showed that CDC42EP3 was significantly upregulated in CRC, and its high expression was associated with tumor progression. Furthermore, knockdown of CDC42EP3 could inhibit proliferation, colony formation and migration, and promote apoptosis of CRC cells in vitro. In vivo results further confirmed knockdown of CDC42EP3 attenuated tumor growth in CRC. Interestingly, the regulation of CRC by CDC42EP3 involved not only the change of a variety of apoptosis-related proteins, but also the regulation of downstream signaling pathway. Conclusion In conclusion, the role of CDC42EP3 in CRC was clarified and showed its potential as a target of innovative therapeutic approaches for CRC.
Collapse
|
48
|
Hicks HM, McKenna LR, Espinoza VL, Pozdeyev N, Pike LA, Sams SB, LaBarbera D, Reigan P, Raeburn CD, E Schweppe R. Inhibition of BRAF and ERK1/2 has synergistic effects on thyroid cancer growth in vitro and in vivo. Mol Carcinog 2021; 60:201-212. [PMID: 33595872 DOI: 10.1002/mc.23284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/09/2022]
Abstract
Mutations in the BRAF gene are highly prevalent in thyroid cancer. However, the response rate of thyroid tumors to BRAF-directed therapies has been mixed. Increasingly, combination therapies inhibiting the MAPK pathway at multiple nodes have shown promise. Recently developed ERK1/2 inhibitors are of interest for use in combination therapies as they have the advantage of inhibiting the most downstream node of the MAPK pathway, therefore preventing pathway reactivation. Here, we examined the effect of combined BRAF inhibition (dabrafenib) and ERK1/2 inhibition (SCH772984) on the growth and survival of a panel of BRAF-mutant thyroid cancer cell lines using in vitro and in vivo approaches. We found that resistance due to MAPK pathway reactivation occurs quickly with single-agent BRAF inhibition, but can be prevented with combined BRAF and ERK1/2 inhibition. Combined inhibition also results in synergistic growth inhibition, decreased clonogenic survival, and enhanced induction of apoptosis in a subset of BRAF-mutant thyroid cancer cells. Finally, combined inhibition of BRAF and ERK1/2 results in enhanced inhibition of tumor growth in an anaplastic thyroid cancer in vivo model. These results provide key rationale to pursue combined BRAF and ERK1/2 inhibition as an alternative therapeutic strategy for BRAF-mutant advanced thyroid cancer patients.
Collapse
Affiliation(s)
- Hannah M Hicks
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Logan R McKenna
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Surgery, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Veronica L Espinoza
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Bioinformatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura A Pike
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sharon B Sams
- Department of Pathology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher D Raeburn
- Department of Surgery, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pathology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
49
|
Zhou Y, Zhao J, Fang J, Martin W, Li L, Nussinov R, Chan TA, Eng C, Cheng F. My personal mutanome: a computational genomic medicine platform for searching network perturbing alleles linking genotype to phenotype. Genome Biol 2021; 22:53. [PMID: 33514395 PMCID: PMC7845113 DOI: 10.1186/s13059-021-02269-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Massive genome sequencing data have inspired new challenges in personalized treatments and facilitated oncological drug discovery. We present a comprehensive database, My Personal Mutanome (MPM), for accelerating the development of precision cancer medicine protocols. MPM contains 490,245 mutations from over 10,800 tumor exomes across 33 cancer types in The Cancer Genome Atlas mapped to 94,563 structure-resolved/predicted protein-protein interaction interfaces ("edgetic") and 311,022 functional sites ("nodetic"), including ligand-protein binding sites and 8 types of protein posttranslational modifications. In total, 8884 survival results and 1,271,132 drug responses are obtained for these mapped interactions. MPM is available at https://mutanome.lerner.ccf.org .
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, NY, 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, 10032, USA
| | - Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - William Martin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Timothy A Chan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Zheng W, Li Y, Su Z, Zhang J, Shi F, Liang W. EIF3H knockdown inhibits malignant melanoma through regulating cell proliferation, apoptosis and cell cycle. Exp Cell Res 2021; 402:112488. [PMID: 33508274 DOI: 10.1016/j.yexcr.2021.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Malignant melanoma (MM) causes 80% of skin cancer-related deaths and becomes the most lethal type of skin cancer. The molecular mechanism of MM is still not clear. This study aimed to reveal the relationship between MM and EIF3H. Clinical specimens were collected to preliminarily explore the role of EIF3H in MM. MM cell lines with EIF3H knockdown were constructed for investigating the effects of EIF3H on cell proliferation, apoptosis, cell cycle and cell motility. Mice xenograft model was constructed for verification in vivo. We found that EIF3H was obviously upregulated in MM tissues compared with normal skin tissues, which was correlated with tumor stage and risk of lymphatic metastasis. The in vitro results indicated that silencing EIF3H in MM cells could significantly suppress cell proliferation, promote cell apoptosis and induce cell cycle arrest. Moreover, EIF3H knockdown significantly restrained cell motility through regulating EMT-related proteins. The effects of EIF3H knockdown were also verified in mice xenograft model, which were represented by slower growth rate, smaller volume and lighter weight of tumors. Therefore, EIF3H was identified as a critical factor in the development and progression of MM which may be used as a novel therapeutic target in the treatment of MM.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Li
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zheng Su
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fen Shi
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiqiang Liang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|