1
|
Lydon E, Osborne CM, Wagner BD, Ambroggio L, Kirk Harris J, Reeder R, Carpenter TC, Maddux AB, Leroue MK, Yehya N, DeRisi JL, Hall MW, Zuppa AF, Carcillo J, Meert K, Sapru A, Pollack MM, McQuillen P, Notterman DA, Langelier CR, Mourani PM. Proteomic profiling of the local and systemic immune response to pediatric respiratory viral infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617294. [PMID: 39416167 PMCID: PMC11482837 DOI: 10.1101/2024.10.08.617294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Viral lower respiratory tract infection (vLRTI) is a leading cause of hospitalization and death in children worldwide. Despite this, no studies have employed proteomics to characterize host immune responses to severe pediatric vLRTI in both the lower airway and systemic circulation. To address this gap, gain insights into vLRTI pathophysiology, and test a novel diagnostic approach, we assayed 1,305 proteins in tracheal aspirate (TA) and plasma from 62 critically ill children using SomaScan. We performed differential expression (DE) and pathway analyses comparing vLRTI (n=40) to controls with non-infectious acute respiratory failure (n=22), developed a diagnostic classifier using LASSO regression, and analyzed matched TA and plasma samples. We further investigated the impact of viral load and bacterial coinfection on the proteome. The TA signature of vLRTI was characterized by 200 DE proteins (Padj<0.05) with upregulation of interferons and T cell responses and downregulation of inflammation-modulating proteins including FABP and MIP-5. A nine-protein TA classifier achieved an AUC of 0.96 (95% CI 0.90-1.00) for identifying vLRTI. In plasma, the host response to vLRTI was more muted with 56 DE proteins. Correlation between TA and plasma was limited, although ISG15 was elevated in both compartments. In bacterial coinfection, we observed increases in the TNF-stimulated protein TSG-6, as well as CRP, and interferon-related proteins. Viral load correlated positively with interferon signaling and negatively with neutrophil-activation pathways. Taken together, our study provides fresh insight into the lower airway and systemic proteome of severe pediatric vLRTI, and identifies novel protein biomarkers with diagnostic potential.
Collapse
Affiliation(s)
- Emily Lydon
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Christina M Osborne
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO
| | - Lilliam Ambroggio
- Sections of Emergency Medicine and Hospital Medicine, Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Aline B Maddux
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew K Leroue
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Mark W Hall
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joseph Carcillo
- Departments of Pediatrics and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kathleen Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Anil Sapru
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
| | - Murray M Pollack
- Department of Pediatrics, Children's National Medical Center and George Washington School of Medicine and Health Sciences, Washington, DC
| | - Patrick McQuillen
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | - Charles R Langelier
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Peter M Mourani
- Department of Pediatrics, Critical Care, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| |
Collapse
|
2
|
Wang Z, Cuthbertson LF, Thomas C, Sallah HJ, Mosscrop LG, Li H, Talts T, Kumar K, Moffatt MF, Tregoning JS. IL-1α is required for T cell-driven weight loss after respiratory viral infection. Mucosal Immunol 2024; 17:272-287. [PMID: 38382577 PMCID: PMC11009121 DOI: 10.1016/j.mucimm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1β) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | | | - Chubicka Thomas
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Hadijatou J Sallah
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Lucy G Mosscrop
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Haoyuan Li
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Tiina Talts
- Virus Reference Department, Public Health Microbiology, United Kingdom Health Security Agency, London, UK
| | - Kartik Kumar
- National Heart and Lung Institute, Imperial College London, UK
| | | | - John S Tregoning
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK.
| |
Collapse
|
3
|
Johnson M, Chelysheva I, Öner D, McGinley J, Lin GL, O'Connor D, Robinson H, Drysdale SB, Gammin E, Vernon S, Muller J, Wolfenden H, Westcar S, Anguvaa L, Thwaites RS, Bont L, Wildenbeest J, Martinón-Torres F, Aerssens J, Openshaw PJM, Pollard AJ. A Genome-Wide Association Study of Respiratory Syncytial Virus Infection Severity in Infants. J Infect Dis 2024; 229:S112-S119. [PMID: 38271230 DOI: 10.1093/infdis/jiae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a significant cause of infant morbidity and mortality worldwide. Most children experience at least one 1 RSV infection by the age of two 2 years, but not all develop severe disease. However, the understanding of genetic risk factors for severe RSV is incomplete. Consequently, we conducted a genome-wide association study of RSV severity. METHODS Disease severity was assessed by the ReSVinet scale, in a cohort of 251 infants aged 1 week to 1 year. Genotyping data were collected from multiple European study sites as part of the RESCEU Consortium. Linear regression models were used to assess the impact of genotype on RSV severity and gene expression as measured by microarray. RESULTS While no SNPs reached the genome-wide statistical significance threshold (P < 5 × 10-8), we identified 816 candidate SNPs with a P-value of <1 × 10-4. Functional annotation of candidate SNPs highlighted genes relevant to neutrophil trafficking and cytoskeletal functions, including LSP1 and RAB27A. Moreover, SNPs within the RAB27A locus significantly altered gene expression (false discovery rate, FDR P < .05). CONCLUSIONS These findings may provide insights into genetic mechanisms driving severe RSV infection, offering biologically relevant information for future investigations.
Collapse
Affiliation(s)
- Mari Johnson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Joseph McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Emma Gammin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Sophie Vernon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Jill Muller
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | | | | | | | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
- Genetics, Vaccines and Infections Research Group, Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
4
|
Fitzpatrick AM, Mohammad AF, Huang M, Stephenson ST, Patrignani J, Kamaleswaran R, Grunwell JR. Functional immunophenotyping of blood neutrophils identifies novel endotypes of viral response in preschool children with recurrent wheezing. J Allergy Clin Immunol 2023; 152:1433-1443. [PMID: 37604313 PMCID: PMC10841272 DOI: 10.1016/j.jaci.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Preschool children with recurrent wheezing are heterogeneous, with differing responses to respiratory viral infections. Although neutrophils are crucial for host defense, their function has not been studied in this population. OBJECTIVE We performed functional immunophenotyping on isolated blood neutrophils from 52 preschool children with recurrent wheezing (aeroallergen sensitization, n = 16; no sensitization, n = 36). METHODS Blood neutrophils were purified and cultured overnight with polyinosinic:polycytidylic acid [poly(I:C)] as a viral analog stimulus. Neutrophils underwent next-generation sequencing with Reactome pathway analysis and were analyzed for cytokine secretion, apoptosis, myeloperoxidase, and extracellular DNA release. CD14+ monocytes were also exposed to neutrophil culture supernatant and analyzed for markers of M1 and M2 activation. RESULTS A total of 495 genes, related largely to the innate immune system and neutrophil degranulation, were differently expressed in children with versus without aeroallergen sensitization. Functional experiments identified more neutrophil degranulation and extracellular trap formation (ie, more myeloperoxidase and extracellular DNA) and less neutrophil proinflammatory cytokine secretion in children with aeroallergen sensitization. Neutrophils also shifted CD14+ monocytes to a more anti-inflammatory (ie, M2) phenotype in sensitized children and a more proinflammatory (ie, M1) phenotype in nonsensitized children. Although both groups experienced viral exacerbations, annualized exacerbation rates prompting unscheduled health care were also higher in children without aeroallergen sensitization after enrollment. CONCLUSIONS Systemic neutrophil responses to viral infection differ by allergic phenotype and may be less effective in preschool children without allergic inflammation. Further studies of neutrophil function are needed in this population, which often has less favorable therapeutic responses to inhaled corticosteroids and other therapies directed at type 2-high inflammation.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga; Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, Ga.
| | | | - Min Huang
- Department of Biomedical Informatics, Emory University, Atlanta, Ga
| | | | | | | | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University, Atlanta, Ga; Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Ga
| |
Collapse
|
5
|
Sørensen KG, Øymar K, Dalen I, Halvorsen T, Bruun Mikalsen I. Blood eosinophils during bronchiolitis: Associations with atopy, asthma and lung function in young adults. Acta Paediatr 2023; 112:820-829. [PMID: 36627486 DOI: 10.1111/apa.16666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
AIM To study if blood eosinophils during bronchiolitis were associated with atopy, asthma and lung function in young adults and if these associations differed between respiratory syncytial virus (RSV) bronchiolitis and non-RSV bronchiolitis. METHODS This historical cohort enrolled 225 subjects. Blood eosinophils were measured during bronchiolitis in infancy, and the subjects were invited to a follow-up at 17-20 years of age including questionnaires for asthma and examinations of lung function and atopy. RESULTS The level of eosinophils was positively associated with subsequent atopy in the unadjusted analysis, but not in the adjusted analysis, and not with asthma. There was a negative association between the level of eosinophils and forced vital capacity (FVC) (-0.11; -0.19, -0.02) and forced expiratory volume in first second (FEV1 ) (-0.12; -0.21, -0.03) (regression coefficient; 95% confidence interval). The non-RSV group had higher levels of eosinophils during bronchiolitis, but there was no interaction between the level of eosinophils and RSV status for any outcome. CONCLUSIONS The level of eosinophils during bronchiolitis was negatively associated with lung function in young adult age, but we found no associations with atopy or asthma. These associations were not different after RSV bronchiolitis compared to non-RSV bronchiolitis.
Collapse
Affiliation(s)
- Karen Galta Sørensen
- Department of Paediatrics, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Knut Øymar
- Department of Paediatrics, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Dalen
- Department of Research, Section of Biostatistics, Stavanger University Hospital, Stavanger, Norway
| | - Thomas Halvorsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Bruun Mikalsen
- Department of Paediatrics, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Chan KR, Koh CWT, Ng DHL, Qin S, Ooi JSG, Ong EZ, Zhang SLX, Sam H, Kalimuddin S, Low JGH, Ooi EE. Early peripheral blood MCEMP1 and HLA-DRA expression predicts COVID-19 prognosis. EBioMedicine 2023; 89:104472. [PMID: 36801619 PMCID: PMC9934388 DOI: 10.1016/j.ebiom.2023.104472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.
Collapse
Affiliation(s)
- Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
| | - Clara W T Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dorothy H L Ng
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shijie Qin
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Justin S G Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eugenia Z Ong
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Summer L X Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Huizhen Sam
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jenny G H Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Eng Eong Ooi
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
7
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
8
|
He Y, Wang Z, Wei J, Yang Z, Ren L, Deng Y, Chen S, Zang N, Liu E. Exploring Key Genes and Mechanisms in Respiratory Syncytial Virus-Infected BALB/c Mice via Multi-Organ Expression Profiles. Front Cell Infect Microbiol 2022; 12:858305. [PMID: 35586251 PMCID: PMC9109604 DOI: 10.3389/fcimb.2022.858305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) a leading cause of pediatric and adult morbidity and mortality worldwide. It can cause complications in multiple organs, thus increasing hospital stays and costs. However, RSV-based studies have primarily focused on effects in the lungs and blood, thereby potentially neglecting critical genes and pathways. Hence, studying RSV infection via a novel multi-organ approach is important. In this study, lung, intestine, brain, and spleen tissues from six BALB/c mice (6–8 weeks old; three in control group and three in RSV-infected group) were subjected to RNA sequencing. Differentially expressed genes (DEGs) in each organ were obtained and functional enrichment analysis was performed. We first used CIBERSORT to evaluate the immune-infiltration landscape. Subsequently, common DEGs (co-DEGs) among the four organs were analyzed to identify key genes and pathways. After quantitative reverse transcription-polymerase chain reaction, western blotting, and external validation analysis of key hub genes, their correlation with immune cells and potential functions were explored. We found that the host response to RSV infection varied among the four organs regarding gene expression profiles and immune cell infiltration. Analysis of the 16 co-DEGs indicated enrichment in the platelet and neutrophil degranulation pathways. Importantly, the key gene hemopexin (Hpx) was strongly correlated with the immune cell fraction in the lungs and may participate in the regulation of platelet activation and immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Na Zang
- *Correspondence: Na Zang, ; Enmei Liu,
| | - Enmei Liu
- *Correspondence: Na Zang, ; Enmei Liu,
| |
Collapse
|
9
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
10
|
Wagatsuma K, Koolhof IS, Shobugawa Y, Saito R. Decreased human respiratory syncytial virus activity during the COVID-19 pandemic in Japan: an ecological time-series analysis. BMC Infect Dis 2021; 21:734. [PMID: 34344351 PMCID: PMC8329631 DOI: 10.1186/s12879-021-06461-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Non-pharmaceutical interventions (NPIs), such as sanitary measures and travel restrictions, aimed at controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may affect the transmission dynamics of human respiratory syncytial virus (HRSV). We aimed to quantify the contribution of the sales of hand hygiene products and the number of international and domestic airline passenger arrivals on HRSV epidemic in Japan. METHODS The monthly number of HRSV cases per sentinel site (HRSV activity) in 2020 was compared with the average of the corresponding period in the previous 6 years (from January 2014 to December 2020) using a monthly paired t-test. A generalized linear gamma regression model was used to regress the time-series of the monthly HRSV activity against NPI indicators, including sale of hand hygiene products and the number of domestic and international airline passengers, while controlling for meteorological conditions (monthly average temperature and relative humidity) and seasonal variations between years (2014-2020). RESULTS The average number of monthly HRSV case notifications in 2020 decreased by approximately 85% (p < 0.001) compared to those in the preceding 6 years (2014-2019). For every average ¥1 billion (approximately £680,000/$9,000,000) spent on hand hygiene products during the current month and 1 month before there was a 0.29% (p = 0.003) decrease in HRSV infections. An increase of average 1000 domestic and international airline passenger arrivals during the previous 1-2 months was associated with a 3.8 × 10- 4% (p < 0.001) and 1.2 × 10- 3% (p < 0.001) increase in the monthly number of HRSV infections, respectively. CONCLUSIONS This study suggests that there is an association between the decrease in the monthly number of HRSV cases and improved hygiene and sanitary measures and travel restrictions for COVID-19 in Japan, indicating that these public health interventions can contribute to the suppression of HRSV activity. These findings may help in public health policy and decision making.
Collapse
Affiliation(s)
- Keita Wagatsuma
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi dori, Chuo-ku, Niigata City, 951-8510, Japan.
| | - Iain S Koolhof
- College of Health and Medicine, School of Medicine, University of Tasmania, Hobart, Australia
| | - Yugo Shobugawa
- Department of Active Ageing (donated by Tokamachi city, Niigata, Japan), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi dori, Chuo-ku, Niigata City, 951-8510, Japan
| |
Collapse
|
11
|
Gupta R, Leimanis ML, Adams M, Bachmann AS, Uhl KL, Bupp CP, Hartog NL, Kort EJ, Olivero R, Comstock SS, Sanfilippo DJ, Lunt SY, Prokop JW, Rajasekaran S. Balancing precision versus cohort transcriptomic analysis of acute and recovery phase of viral bronchiolitis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1147-L1157. [PMID: 33851876 DOI: 10.1152/ajplung.00440.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Viral infections affecting the lower respiratory tract place enormous burdens on hospitals. As neither vaccines nor antiviral agents exist for many viruses, understanding risk factors and outcomes in each patient using minimally invasive analysis, such as blood, can lead to improved health care delivery. A cohort of PAXgene RNA sequencing of infants admitted with moderate or severe acute bronchiolitis and respiratory syncytial virus were compared with case-control statistical analysis and cohort-based outlier mapping for precision transcriptomics. Patients with severe bronchiolitis had signatures connected to the immune system, interferon signaling, and cytokine signaling, with marked sex differences in XIST, RPS4Y1, KDM5D, and LINC00278 for severity. Several patients had unique secondary infections, cytokine activation, immune responses, biological pathways, and immune cell activation, highlighting the need for defining patient-level transcriptomic signatures. Balancing relative contributions of cohort-based biomarker discoveries with patient's biological responses is needed to understand the totality of mechanisms of adverse outcomes in viral bronchiolitis.
Collapse
Affiliation(s)
- Ruchir Gupta
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Mara L Leimanis
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Marie Adams
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Caleb P Bupp
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | | | - Eric J Kort
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,DeVos Cardiovascular Research Program, Spectrum Health and Van Andel Institute, Grand Rapids, Michigan
| | - Rosemary Olivero
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Infectious Disease, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| | - Dominic J Sanfilippo
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Sophia Y Lunt
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Office of Research, Spectrum Health, Grand Rapids, Michigan
| |
Collapse
|
12
|
A new paradigm in bench to bedside research, with a stop in the dusty pharmaceutical cabinet? Pediatr Res 2021; 89:1604-1605. [PMID: 33824449 PMCID: PMC8023549 DOI: 10.1038/s41390-021-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/08/2022]
|