1
|
Xie Y, Zhao R, Zheng Y, Li Y, Wu F, Lei Y, Li L, Zeng H, Chen Z, Hou Y. Targeting KPNB1 suppresses AML cells by inhibiting HMGB2 nuclear import. Oncogene 2025; 44:1646-1661. [PMID: 40082556 DOI: 10.1038/s41388-025-03340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Acute myeloid leukemia (AML) represents the most prevalent malignancy within the hematologic system, characterized by refractory relapses and a scarcity of effective treatment options. Karyopherin subunit beta-1 (KPNB1) is a member of karyopherin β family, mediating the nuclear import of its cargoes. In this study, we found that elevated expression levels of KPNB1 are associated with unfavorable outcomes in patients with AML. The knockdown of KPNB1 resulted in growth inhibition and apoptosis in AML cells. Additionally, pharmacological inhibition of KPNB1 using the specific inhibitor importazole (IPZ) significantly reduced tumor burden and prolonged survival in MLL-AF9-induced AML mice. Notably, the inhibition of KPNB1 by IPZ significantly enhanced the sensitivity of both AML cell lines and patient-derived cells to venetoclax in vitro and in xenograft mice models. At the molecular level, we identified an unrecognized cargo of KPNB1, high mobility group 2 (HMGB2), which plays a crucial role in DNA damage repair. Inhibition of KPNB1 resulted in impaired nuclear import of HMGB2, eventually leading to compromised DNA damage repair in AML cells. Overall, our findings elucidate the essential roles of KPNB1 in AML cells through the HMGB2-DNA damage repair axis and highlight a promising therapeutic target for AML intervention.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Mice
- beta Karyopherins/antagonists & inhibitors
- beta Karyopherins/genetics
- beta Karyopherins/metabolism
- HMGB2 Protein/metabolism
- HMGB2 Protein/genetics
- Active Transport, Cell Nucleus/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Quinazolines
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Runlong Zhao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yingjiao Zheng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Feng Wu
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yufei Lei
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Zhe Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Yu Hou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
| |
Collapse
|
2
|
Li Q, Lin L, Gao S, Chen L, Zhang Z, Ma J, Liu S, Cao Z, Zhao H, Wang Y. Siglec6 CAR T cells suppressed progression of AML via inhibiting Siglec6 and SHP2 induced Src and ERK signaling activation. Sci Rep 2025; 15:18611. [PMID: 40436895 PMCID: PMC12119947 DOI: 10.1038/s41598-025-00456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
To explore the specific molecular mechanisms of Siglec6 CAR-T therapy in acute myeloid leukemia (AML). AML samples were selected from the GEO database for bioinformatics analysis. Siglec6 was knocked down and overexpressed in MOLM-13 cells through lentiviral infection, and then injected into NOD/SCID mice via the tail vein to detect the distribution of AML in mice using in vivo imaging. MOLM-13 cells were divided into six groups: oe-NC, oe-Siglec6, oe-Siglec6 + PHPS1, oe-Siglec6 + Dasatinib, oe-Siglec6 + Dasatinib + Lovastatin, and oe-Siglec6 + Dasatinib + Lovastatin + IL-3 neutralizing antibody. The expression levels of related proteins were detected by Western blot and immunofluorescence, and the cell invasion and proliferation abilities were tested by Transwell and CCK8 assays. Finally, MOLM-13 cells were co-cultured with CD19-CAR-T and Siglec6-CAR-T cells, and the apoptosis level of MOLM-13 cells after co-culture was detected by flow cytometry. In vivo imaging found that after overexpression of Siglec6 in MOLM-13 cells, AML cells were more widely distributed in mice; Western blot and immunofluorescence detected the protein levels in AML cells and found that compared with the oe-NC group, the expression levels of Siglec6, p-SHP2, IL-3, and p-ERK1/2 proteins were increased in the oe-Siglec6 group; cell invasion, migration, and proliferation abilities were enhanced, and these abilities were reversed after treatment with SHP2 inhibitors, Src inhibitors, SHP2 agonists, and IL-3 neutralizing antibodies. Finally, both in vitro and in vivo, it was found that compared with CD19 CAR-T, the apoptosis level of AML cells treated with Siglec6 CAR-T was increased, and their distribution in mice was reduced. Siglec6 CAR-T reduces the proliferation, invasion, and migration abilities of AML cells by acting on the SHP2/Src/ERK/IL-3 axis.
Collapse
MESH Headings
- Animals
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Humans
- Mice
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Cell Line, Tumor
- MAP Kinase Signaling System
- src-Family Kinases/metabolism
- Cell Proliferation
- Mice, SCID
- Immunotherapy, Adoptive/methods
- Mice, Inbred NOD
- Apoptosis
- Disease Progression
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Movement
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
Collapse
Affiliation(s)
- Qian Li
- Department of Hematology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Li Lin
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Shuang Gao
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Lin Chen
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Zhiying Zhang
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Jing Ma
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Su Liu
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Zeng Cao
- Department of Hematology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haifeng Zhao
- Department of Hematology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Yafei Wang
- Department of Hematology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.
| |
Collapse
|
3
|
Zhang Y, Lu Y, Mai L, Wen Z, Dai M, Xu S, Lin X, Luo Y, Qiu Y, Chen Y, Dong Z, Chen C, Meng W, Luo X, Lin G, Tam PKH, Pan X. Dynamic heterogeneity towards drug resistance in AML cells is primarily driven by epigenomic mechanism unveiled by multi-omics analysis. J Adv Res 2025:S2090-1232(25)00358-3. [PMID: 40409464 DOI: 10.1016/j.jare.2025.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/06/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025] Open
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a hematologic malignancy characterized by aggressive proliferation and chemoresistance, leading to poor patient outcomes. Despite advances in chemotherapy, resistance mechanisms remain inadequately understood, particularly at the cellular and molecular level. OBJECTIVES This study aims to elucidate the cellular and molecular mechanisms underlying drug resistance in AML cells. METHODS A multi-omics approach was employed, integrating single-cell RNA sequencing (scRNA-seq), chromatin accessibility profiling (scATAC-seq), DNA methylation analysis, and whole-exome sequencing (WES). AML cell lines (KG-1a, Kasumi-1, and HL-60) were treated with standard chemotherapeutic agents, including cytarabine (Ara-C), daunorubicin (DNR), azacitidine (AZA), and decitabine (DEC). Additionally, we developed a novel multiplexed scRNA-seq strategy, NAMUL-seq, to enhance the efficiency and scalability of single-cell transcriptomic research. RESULTS We observed substantial cellular heterogeneity and dynamic transcriptomic trajectories in AML cells subjected to various treatments, uncovering a tendency for reprogramming towards a more stem-like state. Notably, Ara-C-resistant KG-1a cells predominantly originated from G2/M phase subpopulations, suggesting a resistance mechanism linked to specific cell cycle stages. Our findings further indicate that rapid Ara-C resistance is primarily driven by epigenomic changes, including alterations in DNA methylation, chromatin architecture, and transcription factor activity, whereas exonic mutations played a minimal role. CONCLUSION This study demonstrates that AML drug resistance is predominantly driven by epigenomic mechanisms rather than genetic mutations. This study provides a detailed cellular and molecular characterization of AML drug response and resistance, identifying potential therapeutic targets and laying the groundwork for future efforts to overcome chemoresistance.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China; Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Yanfang Lu
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan International Joint Laboratory of Kidney Disease and Microenvironment, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan 450053, China
| | - Liyao Mai
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Zebin Wen
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China
| | - Min Dai
- Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Siwen Xu
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China
| | - Xianwei Lin
- SequMed Institute of Biomedical Sciences, Guangzhou 510530 Guangdong Province, China
| | - Yongjian Luo
- SequMed Institute of Biomedical Sciences, Guangzhou 510530 Guangdong Province, China
| | - Yinbin Qiu
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China
| | - Yuting Chen
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China; Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Zhanying Dong
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China
| | - Caiming Chen
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China; Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Guanchuan Lin
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China.
| | - Paul K H Tam
- Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, School of Basic Medical Sciences, Guangzhou, Guangdong, China; Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Key Laboratory of Infectious Diseases Research in South China (China Ministry Education), Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
4
|
Cao S, Wang Q, Zhu G. From Chemotherapy to Targeted Therapy: Unraveling Resistance in Acute Myeloid Leukemia Through Genetic and Non-Genetic Insights. Int J Mol Sci 2025; 26:4005. [PMID: 40362245 PMCID: PMC12071668 DOI: 10.3390/ijms26094005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease characterized by extensive inter-patient and intra-patient heterogeneity. Despite the introduction of intensive chemotherapy in the 1970s as the standard treatment, the development of mechanism-based targeted therapies since 2017 has been broadening the therapeutic landscape. However, both chemotherapy and targeted therapies continue to face the challenges of primary and secondary resistance. This review summarizes the mechanisms underlying resistance to chemotherapy and targeted therapies in AML and discusses the opportunities and challenges brought by the transition from chemotherapy to precision medicine.
Collapse
Affiliation(s)
| | | | - Ganqian Zhu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China; (S.C.); (Q.W.)
| |
Collapse
|
5
|
Chi X, Chen R, Yang X, He X, Pan Z, Yao C, Peng H, Yang H, Huang W, Chen Z. Discovery of Novel DDR1 Inhibitors through a Hybrid Virtual Screening Pipeline, Biological Evaluation and Molecular Dynamics Simulations. ACS Med Chem Lett 2025; 16:602-610. [PMID: 40236534 PMCID: PMC11995236 DOI: 10.1021/acsmedchemlett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 02/20/2025] [Indexed: 04/17/2025] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy with limited therapeutic options for many patients. Discoidin domain receptor 1 (DDR1), a transmembrane tyrosine kinase receptor, has been implicated in AML progression and represents a promising therapeutic target. In this study, we employed a hybrid virtual screening workflow that integrates deep learning-based binding affinity predictions with molecular docking techniques to identify potential DDR1 inhibitors. A multistage screening process involving PSICHIC, KarmaDock, Vina-GPU, and similarity-based scoring was conducted, leading to the selection of seven candidate compounds. The biological evaluation identified Compound 4 as a novel DDR1 inhibitor, demonstrating significant DDR1 inhibitory activity with an IC50 of 46.16 nM and a 99.86% inhibition rate against Z-138 cells at 10 μM. Molecular dynamics simulations and binding free energy calculations further validated the stability and strong binding interactions of Compound 4 with DDR1. This study highlights the utility of combining deep learning models with traditional molecular docking techniques to accelerate the discovery of potent and selective DDR1 inhibitors. The identified compounds hold promise for further development as targeted therapies for AML.
Collapse
Affiliation(s)
- Xinglong Chi
- Department
of Hematology, Tongde Hospital of Zhejiang
Province, No. 234, Gucui Road, Hangzhou 310012, Zhejiang, P.R. China
- Affiliated
Yongkang First People’s Hospital and School of Pharmaceutical
Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
| | - Roufen Chen
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinle Yang
- College
of Pharmaceutical Sciences, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Xinjun He
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Pan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenpeng Yao
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huilin Peng
- Department
of Lymphoma, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Haiyan Yang
- Department
of Lymphoma, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wenhai Huang
- Affiliated
Yongkang First People’s Hospital and School of Pharmaceutical
Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
| | - Zhilu Chen
- Department
of Hematology, Tongde Hospital of Zhejiang
Province, No. 234, Gucui Road, Hangzhou 310012, Zhejiang, P.R. China
| |
Collapse
|
6
|
Wu Q, Zhong L, Zhang G, Han L, Xie J, Xu Y. Complementing therapeutic strategies for acute myeloid leukemia: Signaling pathways and targets of traditional Chinese medicine. Leuk Res 2025; 151:107672. [PMID: 40022774 DOI: 10.1016/j.leukres.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Leukemia is a heterogeneous malignant tumor of the hematopoietic system and is characterized by the blockage of differentiation and uncontrolled proliferation of myeloid or lymphoid progenitor cells in the bone marrow and peripheral blood. Currently, intensified chemotherapy regimens and hematopoietic stem cell transplantation (HSCT) are the most common treatment methods for various types of leukemia. However, they are associated with severe side effects and multidrug resistance. Therefore, developing new treatment approaches with sufficient therapeutic effects to eliminate leukemia cells and improve leukemia outcomes selectively is essential. Traditional Chinese Medicine (TCM) has received widespread attention as an alternative treatment for acute myeloid leukemia (AML) because of its multi-component and multi-target characteristics. Increasing evidence suggests that TCM blocks AML progression by regulating various biological processes. Herein, we review the effects of TCM therapies for AML and its potential mechanisms and targets. Our findings will promote further research and improve the clinical application of TCM in treating AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Medicine, Chinese Traditional/methods
- Signal Transduction/drug effects
- Drugs, Chinese Herbal/therapeutic use
- Animals
Collapse
Affiliation(s)
- Qiaoliang Wu
- Department of Hematology, The First People's Hospital of Jiashan, China
| | - Lei Zhong
- Department of Laboratory Medicine, Tongxiang Traditional Chinese Medicine Hospital, China
| | - Guibing Zhang
- Department of Hematology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Liying Han
- Department of Laboratory Medicine, Tongxiang Traditional Chinese Medicine Hospital, China
| | - Jing Xie
- Department of Laboratory Medicine, Taizhou First People's Hospital, China
| | - Yao Xu
- Department of Pediatric Medicine, The First People's Hospital of Jiashan, China.
| |
Collapse
|
7
|
Zhong L, Luo J, Dong J, Yang X, Wang X. Identifying acute myeloid leukemia subtypes based on pathway enrichment. Front Pharmacol 2025; 16:1557112. [PMID: 40191420 PMCID: PMC11968745 DOI: 10.3389/fphar.2025.1557112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults and the second most common in children. Despite the introduction of targeted therapies, AML survival rates have shown limited improvement, particularly among older patients. This study explored personalized treatment strategies for AML by proposing a novel subtyping method. Through unsupervised clustering based on the enrichment scores of 14 pathways related to metabolism, immunity, DNA repair, and oncogenic signaling, we identified three AML subtypes: DNA repair (DR), immune-enriched (ImE), and immune-deprived (ImD), consistent in four independent datasets. DR is marked by high expression of DNA repair and metabolic pathways, high stemness and proliferation potential, as well as high sensitivity to chemotherapy. ImD is characterized by low expression of immune and oncogenic pathways, favorable survival prognosis, low mutation rates of RUNX1 and TP53, high homeostasis, and low migration potential. ImE exhibits high enrichment of immune and oncogenic pathways, low stemness and proliferation capacity, low homeostasis, high migration potential, and low sensitivity to chemotherapy. Our pathway enrichment-based subtyping approach would offer a promising framework for understanding the molecular heterogeneity of AML and guiding personalized treatment of this disease.
Collapse
Affiliation(s)
- Ling Zhong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China
| | - Junze Dong
- Nanjing Foreign Language School, Nanjing, China
| | - Xiang Yang
- Department of Oncology, JunXie Hospital, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Xuan F, Liu N, Zhang BX, Wen WX, Wang YC, Zhang HF, Wu XL. High expression and regulatory mechanisms of ANGPT1 and HOXA3 in acute myeloid leukemia. Bull Cancer 2025:S0007-4551(25)00118-3. [PMID: 40107921 DOI: 10.1016/j.bulcan.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Acute Myeloid Leukemia (AML) is a type of leukemia characterized by the malignant clonal proliferation of hematopoietic stem cells in the bone marrow. This study aims to investigate the role of ANGPT1 and HOXA3 in the leukemia cell line KG-1a. METHODS The expression patterns of ANGPT1 and HOXA3 in AML patients were determined by analyzing the TCGA database and clinical samples. Experiments were conducted using the KG-1a cell line, including flow cytometry and SA-β-Gal staining, to knock down ANGPT1 and HOXA3 and evaluate their functions. RESULTS ANGPT1 and HOXA3 were found to be highly expressed in AML patients. Knocking down ANGPT1 and HOXA3 promoted apoptosis and senescence in KG-1a cells by inhibiting proliferation-related genes and upregulating apoptosis-related genes. There is a reciprocal regulatory relationship between ANGPT1 and HOXA3, forming a positive feedback loop. Treatment with ATRA downregulated the expression of HOXA3 and induced apoptosis in KG-1a cells, highlighting the importance of HOXA3 as a therapeutic target in AML. CONCLUSION ANGPT1 and HOXA3 are highly expressed in AML, and knocking them down can promote apoptosis and senescence in leukemia cells. They exhibit a mutual regulatory relationship, forming a positive feedback loop. These findings contribute to a better understanding of the functional roles and regulatory mechanisms of ANGPT1 and HOXA3, and provide new scientific evidence for the treatment and prognosis improvement of AML patients.
Collapse
Affiliation(s)
- Fan Xuan
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Na Liu
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Bao-Xi Zhang
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Wen-Xiao Wen
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yong-Cai Wang
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hui-Feng Zhang
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiao-Li Wu
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
9
|
Casado P, Marfa S, Hadi MM, Gerdes H, Martin-Guerrero SM, Miraki-Moud F, Rajeeve V, Cutillas PR. Phosphoproteomics identifies determinants of PAK inhibitor sensitivity in leukaemia cells. Cell Commun Signal 2025; 23:135. [PMID: 40082888 PMCID: PMC11907924 DOI: 10.1186/s12964-025-02107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The P21 activated kinases (PAK) are frequently dysregulated in cancer and have central roles in oncogenic signalling, prompting the development of PAK inhibitors (PAKi) as anticancer agents. However, such compounds have not reached clinical use because, at least partially, there is a limited mechanistic understanding of their mode of action. Here, we aimed to characterize functional and molecular responses to PAKi (PF-3758309, FRAX-486 and IPA-3) in multiple acute myeloid leukaemia (AML) models to gain insights on the biochemical pathways affected by these inhibitors in this disease and identify determinants of response in patient samples. METHODS We mined phosphoproteomic datasets of primary AML, and used proteomics and phosphoproteomics to profile PAKi impact in immortalized (P31/Fuj and MV4-11), and primary AML cells from 8 AML patients. These omics datasets were integrated with gene dependency data to identify which proteins targeted by PAKi are necessary for the proliferation of AML. We studied the effect PAKi on cell cycle progression, proliferation, differentiation and apoptosis. Finally, we used phosphoproteomics data as input for machine learning models that predicted ex vivo response in two independent datasets of primary AML cells (with 36 and 50 cases, respectively) to PF-3758309 and identify markers of response. RESULTS We found that PAK1 activation- measured from phosphoproteomics data- was predictive of poor prognosis in primary AML cases. PF-3758309 was the most effective PAKi in reducing proliferation and inducing apoptosis in AML cell lines. In cell lines and primary cells, PF-3758309 inhibited PAK, AMPK and PKCA activities, reduced c-MYC transcriptional activity and the expression of ribosomal proteins, and targeted the FLT3 pathway in FLT3-ITD mutated cells. In primary cells, PF-3758309 reduced STAT5 phosphorylation at Tyr699. Functionally, PF-3758309 reduced cell-growth, induced apoptosis, blocked cell cycle progression and promoted differentiation in a model-dependent manner. ML modelling accurately classified primary AML samples as sensitive or resistant to PF-3758309 ex vivo treatment, and highlighted PHF2 phosphorylation at Ser705 as a robust response biomarker. CONCLUSIONS In summary, our data define the proteomic, molecular and functional responses of primary and immortalised AML cells to PF-3758309 and suggest a route to personalise AML treatments based on PAK inhibitors.
Collapse
Affiliation(s)
- Pedro Casado
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK.
| | - Santiago Marfa
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Marym M Hadi
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Henry Gerdes
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Sandra M Martin-Guerrero
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Farideh Miraki-Moud
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Vinothini Rajeeve
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Pedro R Cutillas
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK.
| |
Collapse
|
10
|
Han Yu P, Yan Zhang Z, Yuan Kang Y, Huang P, Yang C, Naranmandura H. Acute myeloid leukemia with t(8;21) translocation: Molecular pathogenesis, potential therapeutics and future directions. Biochem Pharmacol 2025; 233:116774. [PMID: 39864466 DOI: 10.1016/j.bcp.2025.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive blood cancer. Genetic abnormalities, such as the t(8;21) rearrangement, play a significant role in AML onset. This rearrangement leads to the formation of the RUNX1/RUNX1T1 fusion protein, disrupting gene regulation and genomic stability, ultimately causing full-blown leukemia. Despite a generally favorable prognosis, t(8;21) patients face relapse and chemotherapy resistance, particularly when harboring cooperating mutations. While advances in cellular genetics and molecular biology have improved AML treatment, there are currently no specific targeted therapies against RUNX1/RUNX1T1. Therefore, investigating targeted therapies for this AML subtype holds promise for patients. This review explores the complex landscape of t(8;21) AML, unravels the molecular mechanisms of RUNX1/RUNX1T1-driven leukemogenesis, and discusses recent advancements in target therapies including small molecule drugs and PROTAC. Our goal is to develop more effective and less toxic strategies for managing t(8;21) AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Translocation, Genetic/genetics
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 21/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Animals
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Antineoplastic Agents/therapeutic use
- Oncogene Proteins, Fusion/genetics
- Molecular Targeted Therapy/methods
Collapse
Affiliation(s)
- Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Gdesz-Birula K, Drobczyński S, Sarat K, Duś-Szachniewicz K. Sonidegib Inhibits the Adhesion of Acute Myeloid Leukemia to the Bone Marrow in Hypoxia: An Optical Tweezer Study. Biomedicines 2025; 13:578. [PMID: 40149555 PMCID: PMC11940413 DOI: 10.3390/biomedicines13030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Acute myeloid leukemia (AML) is a heterogeneous disease highly resistant to chemotherapeutic agents. Leukemia stem cells (LSCs) can enter a dormant state and avoid apoptosis in the protective niche of the bone marrow (BM) microenvironment. Moreover, bone marrow stromal cells protect leukemia cells by promoting pro-survival signaling pathways and drug resistance. Therefore, attenuating interactions between leukemia cells and BM cells may have a positive therapeutic effect. Objectives: In this work, we hypothesized that sondages may inhibit the adhesion of leukemia cells to the bone marrow by inhibiting the Hedgehog (Hh) signaling pathway. The Hedgehog pathway is a key therapeutic target in AML due to its role in leukemic cell growth and survival. Methods: We investigated the effects of sonidegib on the adhesion of individual OCI-AML3 cells to a bone marrow stromal spheroid derived from the HS-5 cell line. For this purpose, we precisely determined the minimum cell-to-cell adhesion time using optical tweezers under normoxic (21% of O2) and hypoxic (1% of O2) conditions. Results: Our results demonstrated that sonidegib significantly increased the minimum cell-to-cell adhesion time necessary for leukemic cells to establish adhesive bonds with bone marrow stromal cells, thereby indicating a reduction in their adhesive properties. Additionally, we showed that sonidegib is particularly effective at hypoxic oxygen concentrations. Conclusions: The results obtained in this study suggest that sonidegib, through its modulation of the Hedgehog signaling pathway, holds promise as a potential therapeutic approach to target leukemic cell adhesion within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Katarzyna Gdesz-Birula
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Sławomir Drobczyński
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Krystian Sarat
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | - Kamila Duś-Szachniewicz
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, 50-368 Wrocław, Poland
| |
Collapse
|
12
|
Sicurella M, De Chiara M, Neri LM. Hedgehog and PI3K/Akt/mTOR Signaling Pathways Involvement in Leukemic Malignancies: Crosstalk and Role in Cell Death. Cells 2025; 14:269. [PMID: 39996741 PMCID: PMC11853774 DOI: 10.3390/cells14040269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These pathways are often dysregulated in leukemia cells, leading to increased cell growth, survival, and drug resistance while also impairing mechanisms of cell death. In leukemia, the Hh pathway can be abnormally activated by genetic mutations. Additionally, the PI3K/Akt/mTOR pathway is frequently overactive due to genetic changes. A key aspect of these pathways is their interaction: activation of the PI3K/Akt pathway can trigger a non-canonical activation of the Hh pathway, which further promotes leukemia cell growth and survival. Targeted inhibitors of these pathways, such as Gli inhibitors and PI3K/mTOR inhibitors, have shown promise in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Marica De Chiara
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- LTTA-Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
13
|
Hu X, Li L, Nkwocha J, Kmieciak M, Shang S, Cowart LA, Yue Y, Horimoto K, Hawkridge A, Rijal A, Mauro AG, Salloum FN, Hazlehurst L, Sdrimas K, Moore Z, Zhou L, Ginder GD, Grant S. Src inhibition potentiates MCL-1 antagonist activity in acute myeloid leukemia. Signal Transduct Target Ther 2025; 10:50. [PMID: 39924517 PMCID: PMC11808118 DOI: 10.1038/s41392-025-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/14/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
The importance of MCL-1 in leukemogenesis has prompted development of MCL-1 antagonists e.g., S63845, MIK665. However, their effectiveness in acute myeloid leukemia (AML) is limited by compensatory MCL-1 accumulation via the ubiquitin proteasome system. Here, we investigated mechanisms by which kinase inhibitors with Src inhibitory activity e.g., bosutinib (SKI-606) might circumvent this phenomenon. MCL-1 antagonist/SKI-606 co-administration synergistically induced apoptosis in diverse AML cell lines. Consistently, Src or MCL-1 knockdown with shRNA markedly sensitized cells to MCL-1 inhibitors or SKI-606 respectively, while ectopic MCL-1 expression significantly diminished apoptosis. Mechanistically, MCL-1 antagonist exposure induced MCL-1 up-regulation, an event blocked by Src inhibitors or Src shRNA knock-down. MCL-1 down-regulation was associated with diminished transcription and increased K48-linked degradative ubiquitination. Enhanced cell death depended functionally upon down-regulation of phosphorylated STAT3 (Tyr705/Ser727) and cytoprotective downstream targets c-Myc and BCL-xL, as well as BAX/BAK activation, and NOXA induction. Importantly, the Src/MCL-1 inhibitor regimen robustly killed primary AML cells, including primitive progenitors, but spared normal hematopoietic CD34+ cells and human cardiomyocytes. Notably, the regimen significantly improved survival in an MV4-11 cell xenograft model, while reducing tumor burden in two patient-derived xenograft (PDX) AML models and increased survival in a third. These findings argue that Src inhibitors such as SKI-606 potentiate MCL-1 antagonist anti-leukemic activity in vitro and in vivo by blocking MCL-1 antagonist-mediated cytoprotective MCL-1 accumulation by promoting degradative ubiquitination, disrupting STAT-3-mediated transcription, and inducing NOXA-mediated MCL-1 degradation. They also suggest that this strategy may improve MCL-1 antagonist efficacy in AML and potentially other malignancies.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Shengzhe Shang
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yang Yue
- Office of the Vice President for Research Infrastructure, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Adam Hawkridge
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Arjun Rijal
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Adolfo G Mauro
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lori Hazlehurst
- Department of Pharmaceutical Science, WVU Cancer Institute, Morgantown, WV, USA
| | | | - Zackary Moore
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Department of Translational Medicine, Asklepios BioPharmaceutical, Inc., Durham, NC, USA
| | - Gordon D Ginder
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Lawal AO, Ogunniyi TJ, Oludele OI, Olorunfemi OA, Okesanya OJ, Ogaya JB, Manirambona E, Ahmed MM, Lucero-Prisno DE. Innovative laboratory techniques shaping cancer diagnosis and treatment in developing countries. Discov Oncol 2025; 16:137. [PMID: 39921787 PMCID: PMC11807038 DOI: 10.1007/s12672-025-01877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Cancer is a major global health challenge, with approximately 19.3 million new cases and 10 million deaths estimated by 2020. Laboratory advancements in cancer detection have transformed diagnostic capabilities, particularly through the use of biomarkers that play crucial roles in risk assessment, therapy selection, and disease monitoring. Tumor histology, single-cell technology, flow cytometry, molecular imaging, liquid biopsy, immunoassays, and molecular diagnostics have emerged as pivotal tools for cancer detection. The integration of artificial intelligence, particularly deep learning and convolutional neural networks, has enhanced the diagnostic accuracy and data analysis capabilities. However, developing countries face significant challenges including financial constraints, inadequate healthcare infrastructure, and limited access to advanced diagnostic technologies. The impact of COVID-19 has further complicated cancer management in resource-limited settings. Future research should focus on precision medicine and early cancer diagnosis through sophisticated laboratory techniques to improve prognosis and health outcomes. This review examines the evolving landscape of cancer detection, focusing on laboratory research breakthroughs and limitations in developing countries, while providing recommendations for advancing tumor diagnostics in resource-constrained environments.
Collapse
Affiliation(s)
- Azeez Okikiola Lawal
- Department of Medical Laboratory Science, Kwara State University, Malete, Nigeria
| | | | | | | | - Olalekan John Okesanya
- Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Institute of Health Sciences and Nursing, Far Eastern University, Manila, Philippines
| | | | | | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Leyte, Philippines
- Research and Development Office, Biliran Province State University, Biliran, Philippines
| |
Collapse
|
15
|
Zhang L, Zhang H, Wang T, Li M, Chan AK, Kang H, Foong LC, Liu Q, Pokharel SP, Mattson NM, Singh P, Elsayed Z, Kuang B, Wang X, Rosen ST, Chen J, Yang L, Chou T, Su R, Chen CD. Nuclear Control of Mitochondrial Homeostasis and Venetoclax Efficacy in AML via COX4I1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404620. [PMID: 39716856 PMCID: PMC11809339 DOI: 10.1002/advs.202404620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/14/2024] [Indexed: 12/25/2024]
Abstract
Cell signaling pathways are enriched for biological processes crucial for cellular communication, response to external stimuli, and metabolism. Here, a cell signaling-focused CRISPR screen identified cytochrome c oxidase subunit 4 isoform 1 (COX4I1) as a novel vulnerability in acute myeloid leukemia (AML). Depletion of COX4I1 hindered leukemia cell proliferation and impacted in vivo AML progression. Mechanistically, loss of COX4I1 induced mitochondrial stress and ferroptosis, disrupting mitochondrial ultrastructure and oxidative phosphorylation. CRISPR gene tiling scans, coupled with mitochondrial proteomics, dissected critical regions within COX4I1 essential for leukemia cell survival, providing detailed insights into the mitochondrial Complex IV assembly network. Furthermore, COX4I1 depletion or pharmacological inhibition of Complex IV (using chlorpromazine) synergized with venetoclax, providing a promising avenue for improved leukemia therapy. This study highlights COX4I1, a nuclear encoded mitochondrial protein, as a critical mitochondrial checkpoint, offering insights into its functional significance and potential clinical implications in AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Mitochondria/metabolism
- Mitochondria/drug effects
- Mitochondria/genetics
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Electron Transport Complex IV/metabolism
- Electron Transport Complex IV/genetics
- Animals
- Mice
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Homeostasis/drug effects
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Leisi Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow University296 Shizi StSuzhouJiangsu215005China
| | - Honghai Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Ting‐Yu Wang
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Mingli Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Anthony K.N. Chan
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Hyunjun Kang
- Department of Hematologic Malignancies Translational ScienceBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010
| | - Lai C. Foong
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Qiao Liu
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Sheela Pangeni Pokharel
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Nicole M. Mattson
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Priyanka Singh
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Zeinab Elsayed
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Benjamin Kuang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Xueer Wang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Steven T. Rosen
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Jianjun Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Lu Yang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Tsui‐Fen Chou
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Rui Su
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Chun‐Wei David Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| |
Collapse
|
16
|
Zhao R, Cui Y, Li D, Guo X, Cheng C, He R, Hu C, Wei X. Anlotinib enhances the pro-apoptotic effect of APG-115 on acute myeloid leukemia cell lines by inhibiting the P13K/AKT signaling pathway. Leuk Res 2025; 149:107637. [PMID: 39732045 DOI: 10.1016/j.leukres.2024.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND APG-115 is a novel small-molecule selective inhibitor that destabilizes the p53-MDM2 complex and activates p53-mediated apoptosis in tumor cells. Anlotinib inhibits tumor angiogenesis and promotes apoptosis. In this study, we investigated the apoptotic effect and potential mechanism of APG-115 and anlotinib combination on AML cell lines with different p53 backgrounds. MATERIAL AND METHODS The IC50 values of APG-115 and anlotinib were detected by CCK-8 assay. The apoptosis rate of AML cells was evaluated by Annexin-V and PI double staining. Transcriptome sequencing was performed on the MOLM16 cell line treated with APG-115 and anlotinib, and differential analysis and enrichment analysis were performed. Real-time quantitative PCR and Western blot were used to detect the changes in cell cycle and pathway-related genes and proteins in AML cell lines after drug treatment. In vivo experiments, the anti-leukemia effects of APG-115 and anlotinib on AML xenograft mouse models were evaluated. RESULTS APG-115 and anlotinib could independently promote AML cell apoptosis, and the combination of the two drugs could produce a synergistic effect. Transcriptome sequencing showed that compared with the APG-115 monotherapy group, the differentially expressed genes were mainly enriched in the MDM2-p53 and PI3K/AKT pathways. In vivo experiments showed that compared with AML xenograft mice treated with either drug alone, AML progression was slowed in AML xenograft mice treated with APG-115 and anlotinib. CONCLUSION In vivo and in vitro experimental have shown that APG-115 combined with anlotinib can promote AML cells apoptosis and inhibit the progression of disease is independent of the p53 status.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Yu Cui
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Dongbei Li
- Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoli Guo
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Cheng Cheng
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Rongheng He
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Chenxi Hu
- Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xudong Wei
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China; The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
17
|
Carter JL, Su Y, Al-Antary ET, Zhao J, Qiao X, Wang G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Buck SA, Hüttemann M, Allen JE, Prabhu VV, Yang J, Taub JW, Ge Y. ONC213: a novel strategy to resensitize resistant AML cells to venetoclax through induction of mitochondrial stress. J Exp Clin Cancer Res 2025; 44:10. [PMID: 39780285 PMCID: PMC11714820 DOI: 10.1186/s13046-024-03267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction. We previously reported that ONC213 disrupts oxidative phosphorylation and decreases Mcl-1 protein, which play a key role in venetoclax resistance. Here we investigated the antileukemic activity and underlying molecular mechanism of the combination of ONC213 + venetoclax against AML cells. METHODS Flow cytometry was used to determine drug-induced apoptosis. Protein level changes were determined by western blot. An AML cell line-derived xenograft mouse model was used to determine the effects of ONC213 + venetoclax on survival. A patient-derived xenograft (PDX) mouse model was used to determine drug effects on CD45+/CD34+/CD38-/CD123 + cells. Colony formation assays were used to assess drug effects on AML progenitor cells. Mcl-1 and Bax/Bak knockdown and Mcl-1 overexpression were used to confirm their role in the mechanism of action. The effect of ONC213 + venetoclax on mitochondrial respiration was determined using a Seahorse bioanalyzer. RESULTS ONC213 + venetoclax synergistically kills AML cells, including those resistant to venetoclax alone as well as venetoclax + azacitidine. The combination significantly reduced colony formation capacity of primary AML progenitors compared to the control and either treatment alone. Further, the combination prolonged survival in an AML cell line-derived xenograft model and significantly decreased LSCs in an AML PDX model. CONCLUSIONS ONC213 can resensitize VEN + AZA-resistant AML cells to venetoclax therapy and target LSCs ex vivo and in vivo.
Collapse
MESH Headings
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Mice
- Mitochondria/metabolism
- Mitochondria/drug effects
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Female
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Steven A Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Maik Hüttemann
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | | | | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA.
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA.
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
18
|
Zhang Y, Zhong L, Wan P, Zhao Y, Wang M, Zhang H, Liao Y, Deng Y, Liu B. NACC1 accelerates the progression of AML by regulating the ADAM9/PI3K/AKT axis. Int J Med Sci 2025; 22:630-640. [PMID: 39898241 PMCID: PMC11783076 DOI: 10.7150/ijms.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Nucleus accumbens-associated protein 1 (NACC1) regulates various types of biological processes. It is a transcription factor associated with cancer. NACC1 is overexpressed in many human malignancies and can regulate the progression, metastasis, and drug resistance of cancer cells. However, its precise role in acute myeloid leukemia (AML) remains unknown. This study aimed to unravel the basic mechanism of NACC1 in AML. Our findings demonstrated that NACC1 is immensely expressed in AML cells. Lentiviral vector-mediated knockdown of NACC1 inhibited the PI3K/AKT signaling pathway. Simultaneously, NACC1 knockdown promoted apoptosis, suppressed the proliferative capacity of AML cells, and resulted in cell cycle arrest during the G0/G1 phase. Additionally, A disintegrin and metalloproteinase 9 (ADAM9) was markedly expressed in AML cells. NACC1 regulated ADAM9 expression. ADAM9 expression was also downregulated after NACC1 knockdown. Concurrently, ADAM9 knockdown affected the activity of AML cells by decelerating the growth rate, promoting apoptosis, and blocking cell cycle progression. In addition, the AKT activator SC79 restored the inhibited cell proliferation after NACC1 knockdown and ADAM9 knockdown. In conclusion, our study suggested that the NACC1/ADAM9/PI3K/AKT axis is crucial for sustaining the survival of AML cells, indicating that NACC1 may be a viable target for treating AML.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Yi Zhao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Yang Liao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ying Deng
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Clinical Laboratory of The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing 400050, China
| |
Collapse
|
19
|
Sajana M, Gopenath T, Kanthesh BM. A comprehensive review of phytochemical approaches in treatment of acute myeloid leukemia: Associated pathways and molecular mechanisms. CHINESE HERBAL MEDICINES 2025; 17:41-55. [PMID: 39949810 PMCID: PMC11814269 DOI: 10.1016/j.chmed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 02/16/2025] Open
Abstract
Acute myeloid leukemia (AML) is a type of cancer that affects the blood and bone marrow. This review conducts a thorough analysis of AML, addressing its genetic modification. The examination extends to the current therapeutic approaches employed for AML, shedding light on their efficacy and the notable side effects experienced by patients undergoing these treatments, leading to a low overall survival rate. Therefore, exploring alternative treatments, such as phytochemicals, is necessary. Furthermore, the review explores the complex landscape of phytochemicals, categorizing them based on their diverse properties, which include alkaloids, phenols, terpenoids, organo-sulfur compounds, and other compounds, including quinones, and elucidating their mechanisms of action. Special emphasis is placed on their involvement in critical signaling pathways, with a particular focus on how these phytochemicals impact AML when evaluated across a spectrum of cell lines. This in-depth exploration aims to uncover potential targets within the molecular landscape of AML where phytochemicals can exert their therapeutic effects. The review investigates the potential role of plant-derived phytochemicals as adjunctive therapies for AML. This exploration encompasses the identification of specific phytochemicals that exhibit promising anti-leukemic properties and evaluates their potential in clinical settings. Beyond conventional treatments, the review explores the integration of complementary and alternative medicine as a holistic approach to managing AML. The examination encompasses the synergy between conventional therapies and alternative interventions, exploring how these combined strategies may enhance overall therapeutic outcomes and mitigate side effects. From a forward-looking perspective, the overarching goal is to contribute to the evolving landscape of AML treatment by considering innovative approaches that harness the therapeutic potential of phytochemicals, both independently and in conjunction with established medical interventions.
Collapse
Affiliation(s)
- Mouvanal Sajana
- Division of Molecular Biology, School of Life Sciences, JSS AHER, SS Nagar, Mysuru, Karnataka 570015, India
| | - T.S. Gopenath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS AHER, SS Nagar, Mysuru, Karnataka 570015, India
| | - Basalingappa M. Kanthesh
- Division of Molecular Biology, School of Life Sciences, JSS AHER, SS Nagar, Mysuru, Karnataka 570015, India
| |
Collapse
|
20
|
Li A, Pan W, Zhang Z, Yang F, Gou Y, Zhang Y, Ma L. Hydrazone copper(II) complexes suppressed lung adenocarcinoma by activating multiple anticancer pathway. Bioorg Chem 2025; 154:107994. [PMID: 39603071 DOI: 10.1016/j.bioorg.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Activating multiple anti-cancer pathways has great potential for tumor treatment. Herein, we synthesized two binuclear Cu(II) hydrazone complexes ([Cu2(HL1)2Cl2] 1 and [Cu2(HL1)2Br2] 2) and two mononuclear hydrazone-Cu(II) complexes ([Cu(HL2)Cl]·CH3OH 3 and [Cu(HL2)(H2O)Br]·2H2O 4), to evaluate their anti-lung cancer activities. MTT assays revealed that the Cu(II) complexes demonstrate superior anticancer activity compared to cisplatin. Among them, complex 3 exhibited selective toxicity towards A549 cancer cells in comparison to normal cells and demonstrated hemolytic activity comparable to cisplatin. The low toxicity and effective antitumor capabilities of complex 3 have been confirmed in xenograft experiments using A549 tumor-bearing mice. Interestingly, complex 3 eradicates lung tumor cells both in vivo and in vitro by initiating multiple anticancer pathways, including cuproptosis. Our research extends the study of hydrazone copper complexes and provides strategies for the treatment of lung cancer.
Collapse
Affiliation(s)
- Aili Li
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, Guangxi, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Weiping Pan
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - ZhenLei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, China
| | - Yi Gou
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, Guangxi, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China.
| | - Libing Ma
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, Guangxi, China.
| |
Collapse
|
21
|
Cai Q, Lan H, Yi D, Xian B, Zidan L, Li J, Liao Z. Flow cytometry in acute myeloid leukemia and detection of minimal residual disease. Clin Chim Acta 2025; 564:119945. [PMID: 39209245 DOI: 10.1016/j.cca.2024.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of acute leukemia (AL), belonging to malignant tumors of the hematopoietic system with the characteristics of rapid disease development, control with extreme difficulties, easy recurrence, poor prognosis, and incidence rate increasing with age. The traditionally diagnostic standard of French American British (FAB), being based on the morphological examination with high human subjectivity, can no longer meet the demand of clinical diagnosis and treatment of AML. Requirements of objective accuracy and low-dose sample, have become the indispensable method for AML diagnosis and monitoring prognosis. Flow cytometry is a modern technology that can quickly and accurately detect the series, antigen distribution, differentiation stage of AML cells, minimal residual lesions after AML therapy, so as to provide the great significance in guiding clinical diagnosis, hierarchical treatment, and prognosis judgement. This article will systematically elaborate on the application of flow cytometry in the diagnosis and classification of AML, and the detection of minimal residual lesions, thereby providing reference significance for dynamic monitoring and prognostic observation of AML with different immune subtypes of FAB.
Collapse
Affiliation(s)
- Qihui Cai
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Haiqiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Deng Yi
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Bojun Xian
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Luo Zidan
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Jianqiao Li
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Zhaohong Liao
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
22
|
Ma D, Liu S, Liu K, Kong L, Xiao L, Xin Q, Jiang C, Wu J. MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells by binding ITGB4/LAMB3 to activate the AKT signaling pathway. Cancer Biol Ther 2024; 25:2314324. [PMID: 38375821 PMCID: PMC10880501 DOI: 10.1080/15384047.2024.2314324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.
Collapse
Affiliation(s)
- Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| |
Collapse
|
23
|
Coutinho D, Freitas TR, Silva Batista AC, Quezado
de Magalhães MT, Sabino ADP. Clinical Peptidomics in Acute Leukemias: Current Advances and Future Perspectives. J Proteome Res 2024; 23:5263-5273. [PMID: 39556650 PMCID: PMC11629390 DOI: 10.1021/acs.jproteome.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The study of circulating peptides in the blood offers significant opportunities for diagnosing, stratifying, and managing various diseases. With recent technological advances and the ongoing need to understand complex diseases such as acute leukemias (AL), peptidomic analysis of peripheral blood, especially serum and plasma, has become increasingly important for studying human biology and pathophysiology. Here, we provide insights and perspectives on technological developments and potential clinical applications using widely used peptidomic analysis methods. We discuss examples where peptidomics using serum or plasma has contributed to the understanding of AL. Specifically, we highlight the scarcity of peptidomic studies applied to AL and emphasize the importance of exploring this area, as the few published studies present promising results that can significantly contribute to precision medicine.
Collapse
Affiliation(s)
- Danila
Felix Coutinho
- Department
of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Túlio Resende Freitas
- Department
of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ana Carolina Silva Batista
- Department
of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mariana Torquato Quezado
de Magalhães
- Department
of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Adriano de Paula Sabino
- Department
of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
24
|
Zhang X, Liu L. Senescent T Cells: The Silent Culprit in Acute Myeloid Leukemia Progression? Int J Mol Sci 2024; 25:12550. [PMID: 39684260 DOI: 10.3390/ijms252312550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Malignant tumors can evade immune surveillance and elimination through multiple mechanisms, with the induction of immune cell dysfunction serving as a crucial strategy. Mounting evidence indicates that T cell senescence constitutes the primary mechanism underlying T cell dysfunction in acute myeloid leukemia (AML) and represents one of the potential causes of immunotherapy failure. AML usually progresses rapidly and is highly susceptible to drug resistance, thereby resulting in recurrence and patient mortality. Hence, disrupting the immune interface within the bone marrow microenvironment of AML has emerged as a critical objective for synergistically enhancing tumor immunotherapy. In this review, we summarize the general characteristics, distinctive phenotypes, and regulatory signaling networks of senescent T cells and highlight their potential clinical significance in the bone marrow microenvironment of AML. Additionally, we discuss potential therapeutic strategies for alleviating and reversing T cell senescence.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Peng M, Guo Q, Dang Z, Zhang B, Li M, Wang Z, Lu X, Lin J. A real-world study of adverse drug reactions of two isocitrate dehydrogenase inhibitor based on the US FDA adverse event reporting system and VigiAccess databases. Front Pharmacol 2024; 15:1489045. [PMID: 39575391 PMCID: PMC11578689 DOI: 10.3389/fphar.2024.1489045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Background and objectives Isocitrate dehydrogenase (IDH) inhibitor drugs (Enasidenib, Ivosidenib) restore normal metabolism and epigenetic regulation in cells, offering a precision-targeted therapeutic option for acute myeloid leukemia (AML) patients with IDH mutations by specifically inhibiting mutated IDH enzymes. This research evaluates the relationship between adverse drug reactions (ADR) and the use of two isocitrate dehydrogenase inhibitors by using the database from the World Health Organization (WHO) VigiAccess and compares the characteristics of ADRs of the two drugs. Methods This study design used the retrospective descriptive analysis. We calculated the ratio of ADRs recorded in reports to compare the same points and different points in ADRs between two medications. Proportional reporting ratio (PRR) and reported odds ratio were used to evaluate the relationship between these two isocitrate dehydrogenase inhibitor medications and adverse events. Results Overall, during the search, 4,072 adverse events related to two types of isocitrate dehydrogenase inhibitors were reported in VigiAccess. The results revealed that the top 10 most common AEs were off label use, death, fatigue, nausea, diarrhea, acute myeloid leukemia, drug ineffective, differentiation syndrome, platelet count decreased and decreased appetite. Compared two drugs, enasidinib had the highest adverse reaction reporting rate in general disorders and administration site conditions while ivosidenib had the highest adverse drug reactions reporting rate in injury, poisoning and procedural complications. Conclusion Based on the current comparative observational studies, the ADR reports received by the World Health Organization, Food and Drug Administration for these drugs list common and specific adverse drug reactions. Clinical doctors should develop individualized treatment plans based on the adverse reactions of different drugs and the specific conditions of patients to promote the rational use of these expensive medications.
Collapse
Affiliation(s)
- Mengmeng Peng
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complication, Wenzhou, China
| | - Qian Guo
- Department of Rhinolohy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihan Dang
- Department of Health Studies and Applied Educational Psychology, Columbia University, New York, NY, United States
| | - Baiquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manjuan Li
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complication, Wenzhou, China
| | - Zixuan Wang
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complication, Wenzhou, China
| | - Xuemian Lu
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complication, Wenzhou, China
| | - Jie Lin
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Xu T, Shen Y, Guo R, Luo C, Niu Y, Luo Z, Zhu Z, Wu Z, Zhao X, Luo H, Gao Y. Mutual regulation between histone methyltransferase Suv39h1 and the Wnt/β-catenin signaling pathway promoted cell proliferation and inhibited apoptosis in bone marrow mesenchymal stem cells exposed to hydroquinone. Toxicology 2024; 508:153932. [PMID: 39179171 DOI: 10.1016/j.tox.2024.153932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Hydroquinone (HQ), a metabolite of benzene, is frequently utilized as a surrogate for benzene in in vitro studies and is associated with the development of acute myeloid leukemia (AML). In the hemotoxicity caused by benzene and HQ, cell apoptosis plays a key role. However, the molecular mechanisms underlying HQ are unknown. Studies have indicated that Suv39h1 is involved in regulating cell division and proliferation by regulating histone H3K9me3. Meanwhile, the Wnt/β-catenin signaling pathway also plays a significant role in cell proliferation and apoptosis. Therefore, this study was aimed at exploring the regulatory role of Suv39h1 and the Wnt/β-catenin signaling pathway in the effects of HQ on bone marrow mesenchymal stem cells (BMSCs), as well as its influence on cell proliferation and apoptosis. The results demonstrated that HQ elevated the levels of Suv39h1 and H3K9me3 and activated the Wnt/β-catenin signaling pathway by upregulating β-catenin, Wnt2b, C-myc, and Cyclin D1 and downregulating Wnt5a, resulting in an increase in cell growth and a decrease in apoptosis. Suv39h1 knockdown inhibited the Wnt/β-catenin signaling pathway. Meanwhile, inhibition of the Wnt/β-catenin signaling pathway resulted in the down-regulation of Suv39h1 and H3K9me3 in BMSCs. They both promoted cell proliferation and inhibited apoptosis in the effects of HQ on BMSCs by downregulating the expression of Cyt-C, Bax, Caspase 3, and Caspase 9 and upregulating the expression of Bcl-xl. Therefore, we concluded that Suv39h1 and the Wnt/β-catenin signaling pathway may mutually regulate each other in the effects of HQ on BMSCs in order to ameliorate the altered function of BMSCs.
Collapse
Affiliation(s)
- Tao Xu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Yilin Shen
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Runmin Guo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Chiheng Luo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Yibo Niu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Zhilong Luo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Zhongxin Zhu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Zehui Wu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Xinyu Zhao
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Hao Luo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Yuting Gao
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| |
Collapse
|
27
|
Xu T, Shen Y, Guo R, Luo C, Niu Y, Luo Z, Zhu Z, Wu Z, Zhao X, Luo H, Gao Y. Mutual regulation between histone methyltransferase Suv39h1 and the Wnt/β-catenin signaling pathway promoted cell proliferation and inhibited apoptosis in bone marrow mesenchymal stem cells exposed to hydroquinone. Toxicology 2024; 508:153932. [DOI: https:/doi.org/10.1016/j.tox.2024.153932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
28
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
29
|
Yen JH, Keak PY, Wu CL, Chen HJ, Gao WY, Liou JW, Chen YR, Lin LI, Chen PY. Shikonin, a natural naphthoquinone phytochemical, exerts anti-leukemia effects in human CBF-AML cell lines and zebrafish xenograft models. Biomed Pharmacother 2024; 179:117395. [PMID: 39241566 DOI: 10.1016/j.biopha.2024.117395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Core binding factor acute myeloid leukemia (CBF-AML) stands out as the most common type of adult AML, characterized by specific chromosomal rearrangements involving CBF genes, particularly t(8;21). Shikonin (SHK), a naphthoquinone phytochemical widely employed as a food colorant and traditional Chinese herbal medicine, exhibits antioxidant, anti-inflammatory, and anti-cancer activities. In this study, we aim to investigate the antileukemic effects of SHK and its underlying mechanisms in human CBF-AML cells and zebrafish xenograft models. Our study revealed that SHK reduced the viability of CBF-AML cells. SHK induced cell cycle arrest, promoted cell apoptosis, and induced differentiation in Kasumi-1 cells. Additionally, SHK downregulated the gene expression of AML1-ETO and c-KIT in Kasumi-1 cells. In animal studies, SHK showed no toxic effects in zebrafish and markedly inhibited the growth of leukemia cells in zebrafish xenografts. Transcriptomic analysis showed that differentially expressed genes (DEGs) altered by SHK are linked to key biological processes like DNA repair, replication, cell cycle regulation, apoptosis, and division. Furthermore, KEGG pathways associated with cell growth, such as the cell cycle and p53 signaling pathway, were significantly enriched by DEGs. Analysis of AML-associated genes in response to SHK treatment using DisGeNET and the STRING database indicated that SHK downregulates the expression of cell division regulators regarding AML progression. Finally, we found that SHK combined with cytarabine synergistically reduced the viability of Kasumi-1 cells. In conclusion, our findings provide novel insights into the mechanisms of SHK in suppressing leukemia cell growth, suggesting its potential as a chemotherapeutic agent for human CBF-AML.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei Ying Keak
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Hsuan-Jan Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yi-Ruei Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City 10048, Taiwan
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan.
| |
Collapse
|
30
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
31
|
Lu Y, Jiang X, Li Y, Li F, Zhao M, Lin Y, Jin L, Zhuang H, Li S, Ye P, Pei R, Jin J, Jiang L. NL101 synergizes with the BCL-2 inhibitor venetoclax through PI3K-dependent suppression of c-Myc in acute myeloid leukaemia. J Transl Med 2024; 22:867. [PMID: 39334157 PMCID: PMC11429391 DOI: 10.1186/s12967-024-05647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) comprises a group of heterogeneous and aggressive haematological malignancies with unsatisfactory prognoses and limited treatment options. Treatments targeting B-cell lymphoma-2 (BCL-2) with venetoclax have been approved for patients with AML, and venetoclax-based drug combinations are becoming the standard of care for older patients unfit for intensive chemotherapy. However, the therapeutic duration of either single or combination strategies is limited, and the development of resistance seems inevitable. Therefore, more effective combination regimens are urgently needed. METHODS The efficacy of combination therapy with NL101, a SAHA-bendamustine hybrid, and venetoclax was evaluated in preclinical models of AML including established cell lines, primary blasts from patients, and animal models. RNA-sequencing and immunoblotting were used to explore the underlying mechanism. RESULTS NL101 significantly potentiated the activity of venetoclax in AML cell lines, as evidenced by the enhanced decrease in viability and induction of apoptosis. Mechanistically, the addition of NL101 to venetoclax decreased the stability of the antiapoptotic protein myeloid cell leukaemia-1 (MCL-1) by inhibiting ERK, thereby facilitating the release of BIM and triggering mitochondrial apoptosis. Moreover, the strong synergy between NL101 and venetoclax also relied on the downregulation of c-Myc via PI3K/Akt/GSK3β signalling. The combination of NL101 and venetoclax synergistically eliminated primary blasts from 10 AML patients and reduced the leukaemia burden in an MV4-11 cell-derived xenograft model. CONCLUSIONS Our results encourage the pursuit of clinical trials of combined treatment with NL101 and venetoclax and provide a novel venetoclax-incorporating therapeutic strategy for AML.
Collapse
Affiliation(s)
- Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Fenglin Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ye Lin
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Haihui Zhuang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Shuangyue Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
32
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
33
|
Hong Y, Liu Q, Xin C, Hu H, Zhuang Z, Ge H, Shen Y, Zhao Y, Zhou Y, Ye B, Wu D. Ferroptosis-Related Gene Signature for Prognosis Prediction in Acute Myeloid Leukemia and Potential Therapeutic Options. Int J Gen Med 2024; 17:3837-3853. [PMID: 39246807 PMCID: PMC11380859 DOI: 10.2147/ijgm.s460164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Background Limited data were available to understand the significance of ferroptosis in leukemia prognosis, regardless of the genomic background. Methods RNA-seq data from 151 AML patients were analyzed from The Cancer Genome Atlas (TCGA) database, along with 70 healthy samples from the Genotype-Tissue Expression (GTEx) database. Ferroptosis-related genes (FRGs) features were constructed by multivariate COX regression analysis and risk scores were calculated for each sample and a novel prediction model was identified. The validation was carried out using data from 35 AML patients and 13 healthy controls in our cohort. Drug sensitivity analysis was conducted on various chemotherapeutic drugs. Results A signature of 10 FRGs was identified, as prognostic predictors for AML, and the risk scores were calculated to constructed the prognostic features of FRGs. Significantly lower overall survival was observed in the high-risk group. The predictive ability of these features for AML prognosis was confirmed using Cox regression analysis, ROC curves, and DCA. The prediction model performed well in our clinical practices, and had its potential superiority when comparing to classical NCCN risk stratification. Multiple chemotherapy drugs, including paclitaxel, dactinomycin, cisplatin, etc. had a lower IC50 in FRGs high-risk group than low-risk group. Conclusion The AML prognosis model based on FRGs accurately predicts AML prognosis and drug sensitivity, and the drugs identified worthy further investigation.
Collapse
Affiliation(s)
- Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanao Xin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhenchao Zhuang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Li P, Hu X, Fan Z, Sun S, Ran Q, Wei T, Wei P, Jiang Q, Yan J, Yang N, Jia C, Yang T, Mao Y, Cai X, Xu T, Zhao Z, Qian X, Qin W, Zhuang X, Fan F, Xiao J, Zheng Z, Li S. Novel potent molecular glue degraders against broad range of hematological cancer cell lines via multiple neosubstrates degradation. J Hematol Oncol 2024; 17:77. [PMID: 39218923 PMCID: PMC11367868 DOI: 10.1186/s13045-024-01592-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeted protein degradation of neosubstrates plays a crucial role in hematological cancer treatment involving immunomodulatory imide drugs (IMiDs) therapy. Nevertheless, the persistence of inevitable drug resistance and hematological toxicities represents a significant obstacle to their clinical effectiveness. METHODS Phenotypic profiling of a small molecule compounds library in multiple hematological cancer cell lines was conducted to screen for hit degraders. Molecular dynamic-based rational design and cell-based functional assays were conducted to develop more potent degraders. Multiple myeloma (MM) tumor xenograft models were employed to investigate the antitumor efficacy of the degraders as single or combined agents with standard of care agents. Unbiased proteomics was employed to identify multiple therapeutically relevant neosubstrates targeted by the degraders. MM patient-derived cell lines (PDCs) and a panel of solid cancer cell lines were utilized to investigate the effects of candidate degrader on different stage of MM cells and solid malignancies. Unbiased proteomics of IMiDs-resistant MM cells, cell-based functional assays and RT-PCR analysis of clinical MM specimens were utilized to explore the role of BRD9 associated with IMiDs resistance and MM progression. RESULTS We identified a novel cereblon (CRBN)-dependent lead degrader with phthalazinone scaffold, MGD-4, which induced the degradation of Ikaros proteins. We further developed a novel potent candidate, MGD-28, significantly inhibited the growth of hematological cancer cells and induced the degradation of IKZF1/2/3 and CK1α with nanomolar potency via a Cullin-CRBN dependent pathway. Oral administration of MGD-4 and MGD-28 effectively inhibited MM tumor growth and exhibited significant synergistic effects with standard of care agents. MGD-28 exhibited preferentially profound cytotoxicity towards MM PDCs at different disease stages and broad antiproliferative activity in multiple solid malignancies. BRD9 modulated IMiDs resistance, and the expression of BRD9 was significant positively correlated with IKZF1/2/3 and CK1α in MM specimens at different stages. We also observed pronounced synergetic efficacy between the BRD9 inhibitor and MGD-28 for MM treatment. CONCLUSIONS Our findings present a strategy for the multi-targeted degradation of Ikaros proteins and CK1α against hematological cancers, which may be expanded to additional targets and indications. This strategy may enhance efficacy treatment against multiple hematological cancers and solid tumors.
Collapse
Affiliation(s)
- Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaotong Hu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiya Fan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Shiyang Sun
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qijie Ran
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, 430012, China
| | - Ting Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengli Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qiyu Jiang
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jian Yan
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Yang
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Changkai Jia
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tingting Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yaqiu Mao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xu Cai
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tingting Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiyuan Zhao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaomei Zhuang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Feng Fan
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Junhai Xiao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
35
|
Deng H, Zhang J, Liu L, Zhang H, Han Y, Wu L, Jing Y, Huang M, Zhao L. Discovery of Novel Mcl-1 Inhibitors with a 3-Substituted-1 H-indole-1-yl Moiety Binding to the P1-P3 Pockets to Induce Apoptosis in Acute Myeloid Leukemia Cells. J Med Chem 2024; 67:13925-13958. [PMID: 39121336 DOI: 10.1021/acs.jmedchem.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Mcl-1 is a main antiapoptotic protein in acute myeloid leukemia (AML) and is used as a target to develop inhibitors. Currently, potent Mcl-1 inhibitors primarily interact with the P2-P4 pockets of Mcl-1, but pharmacological modulation by targeting the P1 pocket is less explored. We designed a series of 1H-indole-2-carboxylic acid compounds as novel Mcl-1 inhibitors occupying the P1-P3 pockets and evaluated their Mcl-1 inhibition and apoptosis induction in AML cells. Two-dimensional 15N-HSQC spectroscopy indicated that 47 (Ki = 24 nM) bound to the BH3 binding groove, occupied the P1 pocket in Mcl-1, and formed interactions with Lys234 and Val249. 47 exhibited good microsomal stability and pharmacokinetic profiles, with low potential risk of cardiotoxicity. 47 inhibited tumor growth in HL-60 and THP-1 xenograft models with growth inhibition rate of 63.7% and 57.4%, respectively. Collectively, 47 represents a novel Mcl-1 inhibitor targeting the P1-P3 pockets with excellent antileukemia effects.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyi Zhang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linlin Wu
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
36
|
Abulimiti M, Jia ZY, Wu Y, Yu J, Gong YH, Guan N, Xiong DQ, Ding N, Uddin N, Wang J. Exploring and clinical validation of prognostic significance and therapeutic implications of copper homeostasis-related gene dysregulation in acute myeloid leukemia. Ann Hematol 2024; 103:2797-2826. [PMID: 38879648 DOI: 10.1007/s00277-024-05841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024]
Abstract
The patterns and biological functions of copper homeostasis-related genes (CHRGs) in acute myeloid leukemia (AML) remain unclear. We explored the patterns and biological functions of CHRGs in AML. Using independent cohorts, including TCGA-GTEx, GSE114868, GSE37642, and clinical samples, we identified 826 common differentially expressed genes. Specifically, 12 cuproptosis-related genes (e.g., ATP7A, ATP7B) were upregulated, while 17 cuproplasia-associated genes (e.g., ATOX1, ATP7A) were downregulated in AML. We used LASSO-Cox, Kaplan-Meier, and Nomogram analyses to establish prognostic risk models, effectively stratifying patients with AML into high- and low-risk groups. Subgroup analysis revealed that high-risk patients exhibited poorer overall survival and involvement in fatty acid metabolism, apoptosis, and glycolysis. Immune infiltration analysis indicated differences in immune cell composition, with notable increases in B cells, cytotoxic T cells, and memory T cells in the low-risk group, and increased monocytes and neutrophils in the high-risk group. Single-cell sequencing analysis corroborated the expression characteristics of critical CHRGs, such as MAPK1 and ATOX1, associated with the function of T, B, and NK cells. Drug sensitivity analysis suggested potential therapeutic agents targeting copper homeostasis, including Bicalutamide and Sorafenib. PCR validation confirmed the differential expression of 4 cuproptosis-related genes (LIPT1, SLC31A1, GCSH, and PDHA1) and 9 cuproplasia-associated genes (ATOX1, CCS, CP, MAPK1, SOD1, COA6, PDK1, DBH, and PDE3B) in AML cell line. Importantly, these genes serve as potential biomarkers for patient stratification and treatment. In conclusion, we shed light on the expression patterns and biological functions of CHRGs in AML. The developed risk models provided prognostic implications for patient survival, offering valuable information on the regulatory characteristics of CHRGs and potential avenues for personalized treatment in AML.
Collapse
Affiliation(s)
| | - Zheng-Yi Jia
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yun Wu
- Department of General Medicine, The First Affiliated Hospital of the Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Yu
- Department of Teaching and Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yue-Hong Gong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Na Guan
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Dai-Qin Xiong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Nan Ding
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Jie Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China.
| |
Collapse
|
37
|
Wang S, Chen X, Zhang X, Wen K, Chen X, Gu J, Li J, Wang Z. Pro-apoptotic gene BAX is a pan-cancer predictive biomarker for prognosis and immunotherapy efficacy. Aging (Albany NY) 2024; 16:11289-11317. [PMID: 39074253 PMCID: PMC11315380 DOI: 10.18632/aging.206003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Apoptosis Regulator BCL2 Associated X (BAX) is a pro-apoptotic gene. Apoptosis is one of the important components of immune response and immune regulation. However, there is no systematic pan-cancer analysis of BAX. METHODS Original data of this study were downloaded from TCGA databases and GTEX databases. We conducted the gene expression analysis and survival analysis of BAX in 33 types of cancer via Gene Expression Profiling Interactive Analysis (GEPIA) database. Real-time PCR and immunohistochemistry (IHC) were further performed to examine the BAX expression in cancer cells and tissues. Moreover, the relationship between BAX and immune infiltration and gene alteration was studied by the Tumor Immune Estimation Resource (TIMER) and cBioPortal tools. Protein-protein interaction analysis was performed in the STRING database. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to evaluate the enrichment analysis. RESULTS BAX was highly expressed in most cancers and was associated with poor prognosis in nine cancer types. In addition, BAX showed significant clinical relevance, and the mRNA expression of BAX was also strongly associated with drug sensitivity of many drugs. Furthermore, BAX may participate in proliferation and metastasis of many cancers and was associated with methylation. Importantly, BAX expression was positively correlated with most immune infiltrating cells. CONCLUSION Our findings suggested that BAX can function as an oncogene and may be used as a potential predictive biomarker for prognosis and immunotherapy efficacy of human cancer, which could provide a new approach for cancer therapy.
Collapse
Affiliation(s)
- Siying Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Xuyu Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, Jiangsu, P.R. China
| | - Xiaofei Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Kang Wen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Xin Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Jingyao Gu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Juan Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| |
Collapse
|
38
|
de Freitas Gomes A, Batalha ADDSJ, de Castro Alves CE, Galvão de Azevedo R, Rodriguez Amado JR, Pereira de Souza T, Koolen HHF, da Silva FMA, Chaves FCM, Florentino Neto S, Boechat AL, Soares Pontes G. Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia. Pharmaceutics 2024; 16:828. [PMID: 38931948 PMCID: PMC11207419 DOI: 10.3390/pharmaceutics16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Nanocapsules provide selective delivery and increase the bioavailability of bioactive compounds. In this study, we examined the anticancer and immunomodulatory potential of Fridericia chica (crajiru) extract encapsulated in nanocapsules targeting myeloid leukemias. Nanocapsules containing crajiru (nanocapsules-CRJ) were prepared via interfacial polymer deposition and solvent displacement. Size and polydispersity were measured by dynamic light scattering. Biological assays were performed on leukemia cell lines HL60 and K562 and on non-cancerous Vero cells and human PBMC. The anticancer activity was evaluated using cytotoxicity and clonogenic assays, while the immunomodulatory activity was evaluated by measuring the levels of pro- and anti-inflammatory cytokines in PBMC supernatants treated with concentrations of nanocapsules-CRJ. Nanocapsules-CRJ exhibited significant cytotoxic activity against HL60 and K562 cells at concentrations ranging from 0.75 to 50 μg/mL, with the greatest reductions in cell viability observed at 50 μg/mL (p < 0.001 for HL60; p < 0.01 for K562), while not affecting non-cancerous Vero cells and human PBMCs. At concentrations of 25 μg/mL and 50 μg/mL, nanocapsules-CRJ reduced the formation of HL60 and K562 colonies by more than 90% (p < 0.0001). Additionally, at a concentration of 12 μg/mL, nanocapsules-CRJ induced the production of the cytokines IL-6 (p = 0.0002), IL-10 (p = 0.0005), IL-12 (p = 0.001), and TNF-α (p = 0.005), indicating their immunomodulatory potential. These findings suggest that nanocapsules-CRJ hold promise as a potential therapeutic agent with both cytotoxic and immunomodulatory properties.
Collapse
Affiliation(s)
- Alice de Freitas Gomes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Adriane Dâmares de Souza Jorge Batalha
- Laboratory of Innovative Therapies, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Carlos Eduardo de Castro Alves
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Renata Galvão de Azevedo
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Jesus Rafael Rodriguez Amado
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Tatiane Pereira de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
| | | | | | | | - Serafim Florentino Neto
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Antônio Luiz Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Gemilson Soares Pontes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| |
Collapse
|
39
|
Yuan R, Xu ZJ, Zhang SK, Cao XY, Dai AG, Song L. New evidence for a role of DANCR in cancers: a comprehensive review. J Transl Med 2024; 22:569. [PMID: 38877534 PMCID: PMC11177382 DOI: 10.1186/s12967-024-05246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer remains a leading cause of mortality and poses a substantial threat to public health. Studies have revealed that Long noncoding RNA DANCR is a cytoplasmic lncRNA whose aberrant expression plays a pivotal role in various cancer types. Within tumour biology, DANCR exerts regulatory control over crucial processes such as proliferation, invasion, metastasis, angiogenesis, inflammatory responses, cellular energy metabolism reprogramming, and apoptosis. By acting as a competitive endogenous RNA for miRNAs and by interacting with proteins and mRNAs at the molecular level, DANCR contributes significantly to cancer progression. Elevated DANCR levels have also been linked to heightened resistance to anticancer drugs. Moreover, the detection of circulating DANCR holds promise as a valuable biomarker for aiding in the clinical differentiation of different cancer types. This article offers a comprehensive review and elucidation of the primary functions and molecular mechanisms through which DANCR influences tumours.
Collapse
Affiliation(s)
- Rong Yuan
- School of Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
| | - Zhao-Jun Xu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Sheng-Kang Zhang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Xian-Ya Cao
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ai-Guo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| | - Lan Song
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
40
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
41
|
Bahattab S, Assiri A, Alhaidan Y, Trivilegio T, AlRoshody R, Huwaizi S, Almuzzaini B, Alamro A, Abudawood M, Alehaideb Z, Matou-Nasri S. Pharmacological p38 MAPK inhibitor SB203580 enhances AML stem cell line KG1a chemosensitivity to daunorubicin by promoting late apoptosis, cell growth arrest in S-phase, and miR-328-3p upregulation. Saudi Pharm J 2024; 32:102055. [PMID: 38699598 PMCID: PMC11063648 DOI: 10.1016/j.jsps.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Acute myeloid leukaemia (AML) is characterized by uncontrolled proliferation of myeloid progenitor cells and impaired maturation, leading to immature cell accumulation in the bone marrow and bloodstream, resulting in hematopoietic dysfunction. Chemoresistance, hyperactivity of survival pathways, and miRNA alteration are major factors contributing to treatment failure and poor outcomes in AML patients. This study aimed to investigate the impact of the pharmacological p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 on the chemoresistance potential of AML stem cell line KG1a to the therapeutic drug daunorubicin (DNR). KG1a and chemosensitive leukemic HL60 cells were treated with increasing concentrations of DNR. Cell Titer-Glo®, flow cytometry, phosphokinase and protein arrays, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were employed for assessment of cell viability, half-maximal inhibitory concentration (IC50) determination, apoptotic status detection, cell cycle analysis, apoptosis-related protein and gene expression monitoring. Confocal microscopy was used to visualize caspase and mitochondrial permeability transition pore (mPTP) activities. Exposed at various incubation times, higher DNR IC50 values were determined for KG1a cells than for HL60 cells, confirming KG1a cell chemoresistance potential. Exposed to DNR, late apoptosis induction in KG1a cells was enhanced after SB203580 pretreatment, defined as the combination treatment. This enhancement was confirmed by increased cleavage of poly(ADP-ribose) polymerase, caspase-9, caspase-3, and augmented caspase-3/-7 and mPTP activities in KG1a cells upon combination treatment, compared to DNR. Using phosphokinase and apoptosis protein arrays, the combination treatment decreased survival Akt phosphorylation and anti-apoptotic Bcl-2 expression levels in KG1a cells while increasing the expression levels of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21, compared to DNR. Cell cycle analysis revealed KG1a cell growth arrest in G2/M-phase caused by DNR, while combined treatment led to cell growth arrest in S-phase, mainly associated with cyclin B1 expression levels. Remarkably, the enhanced KG1a cell sensitivity to DNR after SB203580 pretreatment was associated with an increased upregulation of miR-328-3p and slight downregulation of miR-26b-5p, compared to DNR effect. Altogether, these findings could contribute to the development of a new therapeutic strategy by targeting the p38 MAPK pathway to improve treatment outcomes in patients with refractory or relapsed AML.
Collapse
Affiliation(s)
- Sara Bahattab
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Assiri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Rehab AlRoshody
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Abir Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Zeyad Alehaideb
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School of Systems Biology, George Mason University, Manassas, VA 20110, United States
| |
Collapse
|
42
|
Wang M, Zhong L, Zhang H, Wan P, Chu X, Shao X, Chen S, Zhou Z, Yu L, Liu B. p200CUX1-regulated BMP8B inhibits the progression of acute myeloid leukemia via the MAPK signaling pathway. Med Oncol 2024; 41:166. [PMID: 38819709 DOI: 10.1007/s12032-024-02398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The full-length p200CUX1 protein encoded by the homology frame CUT-like protein (CUX1) plays an important role in tumors as a pro-oncogene or oncogene. However, its role and mechanism in acute myeloid leukemia remain unknown. p200CUX1 regulates several pathways, including the MAPK signaling pathway. Our data showed that p200CUX1 is lowly expressed in THP1 and U937 AML cell lines. Lentiviral overexpression of p200CUX1 reduced proliferation and promoted apoptosis and G0/G1 phase blockade, correlating with MAPK pathway suppression. Additionally, p200CUX1 regulated the expression of bone morphogenetic protein 8B (BMP8B), which is overexpressed in AML. Overexpression of p200CUX1 downregulated BMP8B expression and inhibited the MAPK pathway. Furthermore, BMP8B knockdown inhibited AML cell proliferation, enhanced apoptosis and the sensitivity of ATRA-induced cell differentiation, and blocked G0/G1 transition. Our findings demonstrate the pivotal function of the p200CUX1-BMP8B-MAPK axis in maintaining the viability of AML cells. Consequently, targeting p200CUX1 could represent a viable strategy in AML therapy.
Collapse
Affiliation(s)
- Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xuan Chu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Lihua Yu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
43
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
44
|
Georgievski A, Bellaye PS, Tournier B, Choubley H, Pais de Barros JP, Herbst M, Béduneau A, Callier P, Collin B, Végran F, Ballerini P, Garrido C, Quéré R. Valrubicin-loaded immunoliposomes for specific vesicle-mediated cell death in the treatment of hematological cancers. Cell Death Dis 2024; 15:328. [PMID: 38734740 PMCID: PMC11088660 DOI: 10.1038/s41419-024-06715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
| | - Pierre-Simon Bellaye
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Plateforme d'imagerie et de radiothérapie précliniques, Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Benjamin Tournier
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Service de Pathologie, Plateforme de génétique somatique des cancers de Bourgogne, CHU Dijon-Bourgogne, Dijon, France
| | - Hélène Choubley
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Plateforme DiviOmics, UMS58 Inserm BioSanD, Université de Bourgogne, Dijon, France
| | - Jean-Paul Pais de Barros
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Plateforme DiviOmics, UMS58 Inserm BioSanD, Université de Bourgogne, Dijon, France
| | - Michaële Herbst
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR6303 CNRS/Université de Bourgogne, Dijon, France
| | - Arnaud Béduneau
- LipSTIC Labex, Dijon, France
- Université de Franche-Comté, EFS, Inserm, UMR1098 RIGHT, Besançon, France
| | - Patrick Callier
- Laboratoire de Génétique Chromosomique et Moléculaire, CHU Dijon-Bourgogne, Dijon, France
| | - Bertrand Collin
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Plateforme d'imagerie et de radiothérapie précliniques, Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Frédérique Végran
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Paola Ballerini
- Laboratoire d'Hématologie, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Carmen Garrido
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Centre Georges François Leclerc-Unicancer, Dijon, France
- Label of excellence from la Ligue Nationale contre le Cancer, Paris, France
| | - Ronan Quéré
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France.
- LipSTIC Labex, Dijon, France.
| |
Collapse
|
45
|
Zheng H, Wu T, Lin Z, Wang D, Zhang J, Zeng T, Liu L, Shen J, Zhao M, Li JD, Yang M. Targeting BMAL1 reverses drug resistance of acute myeloid leukemia cells and promotes ferroptosis through HMGB1-GPX4 signaling pathway. J Cancer Res Clin Oncol 2024; 150:231. [PMID: 38703241 PMCID: PMC11069489 DOI: 10.1007/s00432-024-05753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Ferroptosis/drug effects
- HMGB1 Protein/metabolism
- HMGB1 Protein/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Mice, Nude
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Prognosis
- Signal Transduction
- Sulfonamides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ting Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Dan Wang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Ting Zeng
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
46
|
Bashi AC, Coker EA, Bulusu KC, Jaaks P, Crafter C, Lightfoot H, Milo M, McCarten K, Jenkins DF, van der Meer D, Lynch JT, Barthorpe S, Andersen CL, Barry ST, Beck A, Cidado J, Gordon JA, Hall C, Hall J, Mali I, Mironenko T, Mongeon K, Morris J, Richardson L, Smith PD, Tavana O, Tolley C, Thomas F, Willis BS, Yang W, O'Connor MJ, McDermott U, Critchlow SE, Drew L, Fawell SE, Mettetal JT, Garnett MJ. Large-scale Pan-cancer Cell Line Screening Identifies Actionable and Effective Drug Combinations. Cancer Discov 2024; 14:846-865. [PMID: 38456804 PMCID: PMC11061612 DOI: 10.1158/2159-8290.cd-23-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/01/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marta Milo
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | | | - Syd Barthorpe
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | | | | | | | - Caitlin Hall
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - James Hall
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Iman Mali
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | - James Morris
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Paul D. Smith
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Omid Tavana
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | | | | | - Wanjuan Yang
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | | | - Lisa Drew
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | | | | |
Collapse
|
47
|
Deng H, Han Y, Liu L, Zhang H, Liu D, Wen J, Huang M, Zhao L. Targeting Myeloid Leukemia-1 in Cancer Therapy: Advances and Directions. J Med Chem 2024; 67:5963-5998. [PMID: 38597264 DOI: 10.1021/acs.jmedchem.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
48
|
Macečková D, Vaňková L, Holubová M, Jindra P, Klieber R, Jandová E, Pitule P. Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML. Mol Biol Rep 2024; 51:521. [PMID: 38625438 DOI: 10.1007/s11033-024-09452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Acute myeloid leukaemia (AML) is a complex haematological malignancy characterised by diverse genetic alterations leading to abnormal proliferation of myeloid precursor cells. One of the most significant genetic alterations in AML involves mutations in the FLT3 gene, which plays a critical role in haematopoiesis and haematopoietic homeostasis. This review explores the current understanding of FLT3 gene mutations and isoforms and the importance of the FLT3 protein in AML. FLT3 mutations, including internal tandem duplications (FLT3-ITD) and point mutations in the tyrosine kinase domain (FLT3-TKD), occur in 25-30% in AML and are associated with poor prognosis. FLT3-ITD mutations lead to constitutive activation of the FLT3 signalling pathway, promoting cell survival and proliferation. FLT3-TKD mutations affect the tyrosine kinase domain and affect AML prognosis in various ways. Furthermore, FLT3 isoforms, including shorter variants, contribute to the complexity of FLT3 biology. Additionally, nonpathological polymorphisms in FLT3 are being explored for their potential impact on AML prognosis and treatment response. This review also discusses the development of molecular treatments targeting FLT3, including first-generation and next-generation tyrosine kinase inhibitors, highlighting the challenges of resistance that often arise during therapy. The final chapter describes FLT3 protein domain rearrangements and their relevance to AML pathogenesis.
Collapse
Affiliation(s)
- Diana Macečková
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia.
| | - Lenka Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Monika Holubová
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Robin Klieber
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Eliška Jandová
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
49
|
Li Y, Zhao M, Lin Y, Jiang X, Jin L, Ye P, Lu Y, Pei R, Jiang L. Licochalcone A induces mitochondria-dependent apoptosis and interacts with venetoclax in acute myeloid leukemia. Eur J Pharmacol 2024; 968:176418. [PMID: 38350590 DOI: 10.1016/j.ejphar.2024.176418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
The management of patients with acute myeloid leukemia (AML) remains a challenge because of the complexity and heterogeneity of this malignancy. Despite the recent approval of several novel targeted drugs, resistance seems inevitable, and clinical outcomes are still suboptimal. Increasing evidence supports the use of natural plants as an important source of anti-leukemic therapeutics. Licochalcone A (LCA) is an active flavonoid isolated from the roots of licorice, Glycyrrhiza uralensis Fisch., possessing extensive anti-tumor activities. However, its effects on AML and the underlying mechanisms remain unknown. Here, we showed that LCA decreased the viability of established human AML cell lines in a dose- and time-dependent manner. LCA significantly induced mitochondrial apoptotic cell death, accompanied by the downregulation of MCL-1, upregulation of BIM, truncation of BID, and cleavage of PARP. A prominent decline in the phosphorylation of multiple critical molecules, including AKT, glycogen synthase kinase-3β (GSK3β), ERK, and P38 was observed upon LCA treatment, indicating PI3K and MAPK signals were suppressed. Both transcription and translation of c-Myc were also inhibited by LCA. In addition, LCA enhanced the cytotoxicity of the BCL-2 inhibitor venetoclax. Furthermore, the anti-survival and pro-apoptotic effects were confirmed in primary blasts from 10 patients with de novo AML. Thus, our results expand the applications of LCA, which can be regarded as a valuable agent in treating AML.
Collapse
Affiliation(s)
- Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Ye Lin
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China.
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
50
|
Jin F, Tian W, Xia L, Yang M, Chen Y, Li J, Liu L. Knowledge, attitude, and practice toward leukemia in the general population and among family members of patients with leukemia: A cross-sectional study. Heliyon 2024; 10:e26276. [PMID: 38439856 PMCID: PMC10909635 DOI: 10.1016/j.heliyon.2024.e26276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Background Patients with leukemia rely on social and family support. This study aimed to explore the knowledge, attitude, and practice (KAP) toward leukemia among family members of patients with leukemia and the general population in southeast China. Methods A cross-sectional study was conducted in September 2022 in southeast China (Anhui Province). The KAP scores and demographic data were assessed by questionnaire and analyzed by multivariable logistic regression and structural equation modeling. Results A total of 760 valid questionnaires were collected, including 117 (15.39%) answered by family members of patients with leukemia. The mean knowledge (8.30 ± 2.79 vs. 8.72 ± 2.56, P = 0.103), attitude (52.17 ± 5.52 vs. 52.27 ± 5.53, P = 0.862), and practice (8.06 ± 2.00 vs. 8.18 ± 2.05, P = 0.547) scores were comparable among family members and the general population. Higher knowledge scores [OR = 1.18 (1.10, 1.27), P < 0.001] and higher attitude scores [OR = 1.05 (1.02, 1.09), P = 0.002] were independently associated with better practice scores. Being a family member of a patient with leukemia had no significant effect on the KAP scores. Conclusion The participants demonstrated satisfactory knowledge, positive attitude, and appropriate practices toward leukemia, suggesting that access to information about leukemia to the general public might be sufficient in China. Health education might effectively improve knowledge, which could translate into improved attitude and practice.
Collapse
Affiliation(s)
- Fengbo Jin
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Hematology, Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Wanlu Tian
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Hematology, Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Leiming Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Hematology, Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Mingzhen Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Hematology, Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Yingying Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Hematology, Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Jianjun Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Hematology, Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Lixia Liu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Hematology, Anhui Public Health Clinical Center, Hefei, 230011, China
| |
Collapse
|