1
|
Dai SZ, Wu RH, Chen H, Chen MH, Xie W, Zheng WP, Tan GH, Huang FY. Progesterone suppresses rhinovirus-induced airway inflammation by inhibiting neutrophil infiltration and extracellular traps formation. Int Immunopharmacol 2025; 144:113714. [PMID: 39626540 DOI: 10.1016/j.intimp.2024.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND The process of NETosis is observed in a range of inflammatory conditions. Progesterone (P4) has been shown to alleviate inflammation caused by viral infections such as influenza and SARS-CoV-2. However, the precise molecular mechanisms responsible for this effect are not yet fully understood. Therefore, the present investigation aims to explore whether P4 can exert its anti-inflammatory properties by inhibiting NETosis and the related molecular pathways. METHODS Airway inflammation caused by rhinovirus serotype-1b (RV-1b) was induced in male BALB/c mice. The inflammation was assessed through histological examination and calculation of inflammatory cells present in the bronchoalveolar lavage fluid. Flow cytometry was used to analyze the inflammatory cells and NETotic neutrophils. Western blotting analysis was conducted to detect proteins associated with NETosis, inflammasome activation, and signaling. Furthermore, confocal microscopy was utilized to observe neutrophil extracellular trap (NET) structures in vivo tissues and in vitro neutrophils, neutrophil infiltration, and inflammasome formation. RESULTS The administration of P4 proved to be an effective treatment for reducing airway inflammation and the production of NETs caused by RV-1b infection. The infection triggered the activation of NLRP3 inflammasomes in neutrophils, which led to the maturation of IL-1β and subsequent activation of both the NF-κB and p38 signaling pathways. The activation of NF-κB signaling resulted in the secretion of downstream chemokines CCL3 and IL-6, which led to an increase in neutrophil infiltration into the lung airways. Moreover, the activation of p38 signaling led to the generation of reactive oxygen species, resulting in NETosis. However, the administration of P4 inhibited the activation of the NLRP3 inflammasome, which subsequently led to the deactivation of both the IL-1β-NF-κB and IL-1β-p38 axes. As a result, there was a reduction in neutrophil infiltration and NETosis. Furthermore, TGF-β-activated kinase 1 (TAK1) was identified as an intermediary enzyme. P4 inhibits both the NF-κB and IL-1β-p38 pathways by suppressing the activity of TAK1. CONCLUSION The capacity of P4 to mitigate rhinovirus-induced airway inflammation is attributed to its ability to impede the infiltration of neutrophils and NETosis. As inflammation mediated by NETosis is widespread in diverse disorders, our findings propose that P4 could potentially function as a universal therapeutic agent in the management of such ailments.
Collapse
Affiliation(s)
- Shu-Zhen Dai
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China; Hainan Academy of Medical Sciences, Hainan Medical University, Hainan 571199, China
| | - Ri-Hong Wu
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Hengyu Chen
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ming-Hui Chen
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Weijing Xie
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Wu-Ping Zheng
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Feng-Ying Huang
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
2
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Liu L, Zhang L, Hao X, Wang Y, Zhang X, Ge L, Wang P, Tian B, Zhang M. Coronavirus envelope protein activates TMED10-mediated unconventional secretion of inflammatory factors. Nat Commun 2024; 15:8708. [PMID: 39379362 PMCID: PMC11461611 DOI: 10.1038/s41467-024-52818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect. The E protein of severe coronaviruses contains an SS/DS motif, which is not present in milder strains and facilitates interaction with TMED10. This interaction enhances TMED10-oligomerization, facilitating UcPS cargo translocation into the ER-Golgi intermediate compartment (ERGIC)-a pivotal step in interleukin-1 UcPS. Progesterone analogues were identified as compounds inhibiting E-enhanced release of proinflammatory factors and lung inflammation in a Mouse Hepatitis Virus (MHV) infection model. These findings elucidate a molecular mechanism driving coronavirus-induced hyperinflammation, proposing the E-TMED10 interaction as a potential therapeutic target to counteract the adverse effects of coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lijingyao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyan Hao
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Wang L, Huang FY, Dai SZ, Fu Y, Zhou X, Wang CC, Tan GH, Li Q. Progesterone modulates the immune microenvironment to suppress ovalbumin-induced airway inflammation by inhibiting NETosis. Sci Rep 2024; 14:17241. [PMID: 39060348 PMCID: PMC11282239 DOI: 10.1038/s41598-024-66439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic asthma induced by OVA. Female BALB/c mice with or without ovariectomy to remove the influence of sex hormones were used for the investigations. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for analysis. The results indicated that P4 treatment was effective in decreasing inflammation and mucus secretion in the lungs of OVA-induced allergic asthma mice. P4 treatment also reduced the influx of inflammatory cells into the BALF and increased the levels of Th1 and Th17 cytokines while decreasing the levels of Th2 and Treg cytokines in both BALF and lung microenvironment CD45+ T cells. Furthermore, P4 inhibited the infiltration of inflammatory cells into the lungs, suppressed NETosis, and reduced the number of pulmonary CD4+ T cells while increasing the number of regulatory T cells. The neutrophil elastase inhibitor GW311616A also suppressed airway inflammation and mucus production and modified the secretion of immune Th1, Th2, Th17, and Treg cytokines in lung CD45+ immune cells. These changes led to an alteration of the immunological milieu with increased Th1 and Th17 cells, accompanied by decreased Th2, Treg, and CD44+ T cells, similar to the effects of P4 treatment. Treatment with P4 inhibited NETosis by suppressing the p38 pathway activation, leading to reduced reactive oxygen species production. Moreover, P4 treatment hindered the release of double-stranded DNA during NETosis, thereby influencing the immune microenvironment in the lungs. These findings suggest that P4 treatment may be beneficial in reducing inflammation associated with allergic asthma by modulating the immune microenvironment. In conclusion, this research indicates the potential of P4 as a therapeutic agent for ameliorating inflammation in OVA-induced allergic asthma mice.
Collapse
Affiliation(s)
- Lin Wang
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yongshu Fu
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Qi Li
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| |
Collapse
|
5
|
Xiao H, Wei J, Yuan L, Li J, Zhang C, Liu G, Liu X. Sex hormones in COVID-19 severity: The quest for evidence and influence mechanisms. J Cell Mol Med 2024; 28:e18490. [PMID: 38923119 PMCID: PMC11194454 DOI: 10.1111/jcmm.18490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Studies have reported variable effects of sex hormones on serious diseases. Severe disease and mortality rates in COVID-19 show marked gender differences that may be related to sex hormones. Sex hormones regulate the expression of the viral receptors ACE2 and TMPRSS2, which affect the extent of viral infection and consequently cause variable outcomes. In addition, sex hormones have complex regulatory mechanisms that affect the immune response to viruses. These hormones also affect metabolism, leading to visceral obesity and severe disease can result from complications such as thrombosis. This review presents the latest researches on the regulatory functions of hormones in viral receptors, immune responses, complications as well as their role in COVID-19 progression. It also discusses the therapeutic possibilities of these hormones by reviewing the recent findings of clinical and assay studies.
Collapse
Affiliation(s)
- Haiqing Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Jiayi Wei
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Jiayuan Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Chang Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Xuan Liu
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| |
Collapse
|
6
|
Yang C, Shu J, Yang X, Miao Y, Liu J, Li J, Xiao J, Kong W, Xu Z, Feng H. USP14 negatively regulates IFN signaling by dampening K63-linked ubiquitination of TBK1 in black carp. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109559. [PMID: 38636737 DOI: 10.1016/j.fsi.2024.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.
Collapse
Affiliation(s)
- Can Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Juanjuan Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yujia Miao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
7
|
Cruz-Holguín VJ, González-García LD, Velázquez-Cervantes MA, Arévalo-Romero H, De Jesús-González LA, Helguera-Repetto AC, León-Reyes G, Salazar MI, Cedillo-Barrón L, León-Juárez M. Collateral Damage in the Placenta during Viral Infection in Pregnancy: A Possible Mechanism for Vertical Transmission and an Adverse Pregnancy Outcome. Diseases 2024; 12:59. [PMID: 38534983 PMCID: PMC10969698 DOI: 10.3390/diseases12030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
In mammals, the placenta is a connection between a mother and a new developing organism. This tissue has a protective function against some microorganisms, transports nutrients, and exchanges gases and excretory substances between the mother and the fetus. Placental tissue is mainly composed of chorionic villi functional units called trophoblasts (cytotrophoblasts, the syncytiotrophoblast, and extravillous trophoblasts). However, some viruses have developed mechanisms that help them invade the placenta, causing various conditions such as necrosis, poor perfusion, and membrane rupture which, in turn, can impact the development of the fetus and put the mother's health at risk. In this study, we collected the most relevant information about viral infection during pregnancy which can affect both the mother and the fetus, leading to an increase in the probability of vertical transmission. Knowing these mechanisms could be relevant for new research in the maternal-fetal context and may provide options for new therapeutic targets and biomarkers in fetal prognosis.
Collapse
Affiliation(s)
- Victor Javier Cruz-Holguín
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
| | - Luis Didier González-García
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
- Posgrado de Inmunología, Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico;
| | - Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
| | - Haruki Arévalo-Romero
- Laboratorio de Inmunologia y Microbiologia Molecular, Division Academica Multidisciplinaria de Jalpa de Méndez, Jalpa de Mendez 86205, Mexico;
| | | | | | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Ma. Isabel Salazar
- Posgrado de Inmunología, Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico;
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
| |
Collapse
|
8
|
Xu Q, Jiang S, Kang R, Wang Y, Zhang B, Tian J. Deciphering the molecular pathways underlying dopaminergic neuronal damage in Parkinson's disease associated with SARS-CoV-2 infection. Comput Biol Med 2024; 171:108200. [PMID: 38428099 DOI: 10.1016/j.compbiomed.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.
Collapse
Affiliation(s)
- Qiuhan Xu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Sisi Jiang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Ruiqing Kang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Yiling Wang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
9
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Su BQ, Yang GY, Wang J, Ming SL, Chu BB. Pseudorabies virus inhibits progesterone-induced inactivation of TRPML1 to facilitate viral entry. PLoS Pathog 2024; 20:e1011956. [PMID: 38295116 PMCID: PMC10829982 DOI: 10.1371/journal.ppat.1011956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Viral infection is a significant risk factor for fertility issues. Here, we demonstrated that infection by neurotropic alphaherpesviruses, such as pseudorabies virus (PRV), could impair female fertility by disrupting the hypothalamus-pituitary-ovary axis (HPOA), reducing progesterone (P4) levels, and consequently lowering pregnancy rates. Our study revealed that PRV exploited the transient receptor potential mucolipin 1 (TRPML1) and its lipid activator, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), to facilitate viral entry through lysosomal cholesterol and Ca2+. P4 antagonized this process by inducing lysosomal storage disorders and promoting the proteasomal degradation of TRPML1 via murine double minute 2 (MDM2)-mediated polyubiquitination. Overall, the study identifies a novel mechanism by which PRV hijacks the lysosomal pathway to evade P4-mediated antiviral defense and impair female fertility. This mechanism may be common among alphaherpesviruses and could contribute significantly to their impact on female reproductive health, providing new insights for the development of antiviral therapies.
Collapse
Affiliation(s)
- Bing-Qian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan Province, China
| |
Collapse
|
11
|
Al‐Kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GE. New insights on the potential effect of progesterone in Covid-19: Anti-inflammatory and immunosuppressive effects. Immun Inflamm Dis 2023; 11:e1100. [PMID: 38018575 PMCID: PMC10683562 DOI: 10.1002/iid3.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a pandemic disease caused by severe acute respiratory syndrome CoV type 2 (SARS-CoV-2). COVID-19 is higher in men than women and sex hormones have immune-modulator effects during different viral infections, including SARS-CoV-2 infection. One of the essential sex hormones is progesterone (P4). AIMS This review aimed to reveal the association between P4 and Covid-19. RESULTS AND DISCUSSION The possible role of P4 in COVID-19 could be beneficial through the modulation of inflammatory signaling pathways, induction of the release of anti-inflammatory cytokines, and inhibition release of pro-inflammatory cytokines. P4 stimulates skew of naïve T cells from inflammatory Th1 toward anti-inflammatory Th2 with activation release of anti-inflammatory cytokines, and activation of regulatory T cells (Treg) with decreased interferon-gamma production that increased during SARS-CoV-2 infection. In addition, P4 is regarded as a potent antagonist of mineralocorticoid receptor (MR), it could reduce MRs that were activated by stimulated aldosterone from high AngII during SARS-CoV-2. P4 active metabolite allopregnanolone is regarded as a neurosteroid that acts as a positive modulator of γ-aminobutyric acid (GABAA ) so it may reduce neuropsychiatric manifestations and dysautonomia in COVID-19 patients. CONCLUSION Taken together, the anti-inflammatory and immunomodulatory properties of P4 may improve central and peripheral complications in COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and Obstetrics, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐Herdecke, Heusnerstrasse 40University of Witten‐HerdeckeWuppertalGermany
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour University, DamanhourAlBeheiraEgypt
| |
Collapse
|
12
|
Yang J, Yuan X, Hao Y, Shi X, Yang X, Yan W, Chen L, Zhang D, Shen C, Li D, Zhu Z, Liu X, Zheng H, Zhang K. Proteins in pregnant swine serum promote the African swine fever virus replication: an iTRAQ-based quantitative proteomic analysis. Virol J 2023; 20:54. [PMID: 36978180 PMCID: PMC10043535 DOI: 10.1186/s12985-023-02004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
African swine fever (ASF) is a severe infectious disease caused by the African swine fever virus (ASFV), seriously endangering the global pig industry. ASFV possesses a large genome, strong mutation ability, and complex immune escape mechanisms. Since the first case of ASF was reported in China in August 2018, it has had a significant impact on social economy and food safety. In the present study, pregnant swine serum (PSS) was found to promote viral replication; differentially expressed proteins (DEPs) in PSS were screened and identified using the isobaric tags for relative and absolute quantitation technology and compared with those in non-pregnant swine serum (NPSS). The DEPs were analyzed using Gene Ontology functional annotation, Kyoto Protocol Encyclopedia of Genes and Genome pathway enrichment, and protein-protein interaction networks. In addition, the DEPs were validated via western blot and RT-qPCR experiments. And the 342 of DEPs were identified in bone marrow-derived macrophages cultured with PSS compared with the NPSS. The 256 were upregulated and 86 of DEPs were downregulated. The primary biological functions of these DEPs involved signaling pathways that regulate cellular immune responses, growth cycles, and metabolism-related pathways. An overexpression experiment showed that the PCNA could promote ASFV replication whereas MASP1 and BST2 could inhibit it. These results further indicated that some protein molecules in PSS were involved in the regulation of ASFV replication. In the present study, the role of PSS in ASFV replication was analyzed using proteomics, and the study will be provided a basis for future detailed research on the pathogenic mechanism and host interactions of ASFV as well as new insights for the development of small-molecule compounds to inhibit ASFV.
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xingguo Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Zhu Z, Chen X, Wang C, Zhang S, Yu R, Xie Y, Yuan S, Cheng L, Shi L, Zhang X. An integrated strategy to identify COVID-19 causal genes and characteristics represented by LRRC37A2. J Med Virol 2023; 95:e28585. [PMID: 36794676 DOI: 10.1002/jmv.28585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Genome-wide association study (GWAS) could identify host genetic factors associated with coronavirus disease 2019 (COVID-19). The genes or functional DNA elements through which genetic factors affect COVID-19 remain uncharted. The expression quantitative trait locus (eQTL) provides a path to assess the correlation between genetic variations and gene expression. Here, we firstly annotated GWAS data to describe genetic effects, obtaining genome-wide mapped genes. Subsequently, the genetic mechanisms and characteristics of COVID-19 were investigated by an integrated strategy that included three GWAS-eQTL analysis approaches. It was found that 20 genes were significantly associated with immunity and neurological disorders, including prior and novel genes such as OAS3 and LRRC37A2. The findings were then replicated in single-cell datasets to explore the cell-specific expression of causal genes. Furthermore, associations between COVID-19 and neurological disorders were assessed as a causal relationship. Finally, the effects of causal protein-coding genes of COVID-19 were discussed using cell experiments. The results revealed some novel COVID-19-related genes to emphasize disease characteristics, offering a broader insight into the genetic architecture underlying the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yubin Xie
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Shi
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
- 3McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Usuda D, Tsuge S, Sakurai R, Kawai K, Matsubara S, Tanaka R, Suzuki M, Takano H, Shimozawa S, Hotchi Y, Tokunaga S, Osugi I, Katou R, Ito S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Oba J, Nomura T, Sugita M. Amebic liver abscess by Entamoeba histolytica. World J Clin Cases 2022; 10:13157-13166. [PMID: 36683647 PMCID: PMC9851013 DOI: 10.12998/wjcc.v10.i36.13157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
Amebic liver abscesses (ALAs) are the most commonly encountered extraintestinal manifestation of human invasive amebiasis, which results from Entamoeba histolytica (E. histolytica) spreading extraintestinally. Amebiasis can be complicated by liver abscess in 9% of cases, and ALAs led to almost 50000 fatalities worldwide in 2010. Although there have been fewer and fewer cases in the past several years, ALAs remain an important public health problem in endemic areas. E. histolytica causes both amebic colitis and liver abscess by breaching the host’s innate defenses and invading the intestinal mucosa. Trophozoites often enter the circulatory system, where they are filtered in the liver and produce abscesses, and develop into severe invasive diseases such as ALAs. The clinical presentation can appear to be colitis, including upper-right abdominal pain accompanied by a fever in ALA cases. Proper diagnosis requires nonspecific liver imaging as well as detecting anti-E. histolytica antibodies; however, these antibodies cannot be used to distinguish between a previous infection and an acute infection. Therefore, diagnostics primarily aim to use PCR or enzyme-linked immunosorbent assay to detect E. histolytica. ALAs can be treated medically, and percutaneous catheter drainage is only necessary in approximately 15% of cases. The indicated treatment is to administer an amebicidal drug (such as tinidazole or metronidazole) and paromomycin or other luminal cysticidal agent for clinical disease. Prognosis is good with almost universal recovery. Establishing which diagnostic methods are most efficacious will necessitate further analysis of similar clinical cases.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shiho Tsuge
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Riki Sakurai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kenji Kawai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shun Matsubara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Makoto Suzuki
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Hayabusa Takano
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shungo Tokunaga
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
- Department of Sports Medicine, Faculty of Medicine, Juntendo University, Bunkyo 113-8421, Tokyo, Japan
| | - Jiro Oba
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| |
Collapse
|
15
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
16
|
Liu J, Sun T, Liu S, Liu J, Fang S, Tan S, Zeng Y, Zhang B, Li W. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med 2022; 151:106298. [PMID: 36403355 PMCID: PMC9671524 DOI: 10.1016/j.compbiomed.2022.106298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Recently, it has been reported that cepharanthine (CEP) is highly likely to be an agent against Coronavirus disease 2019 (COVID-19). In the present study, a network pharmacology-based approach combined with RNA-sequencing (RNA-seq), molecular docking, and molecular dynamics (MD) simulation was performed to determine hub targets and potential pharmacological mechanism of CEP against COVID-19. METHODS Targets of CEP were retrieved from public databases. COVID-19-related targets were acquired from databases and RNA-seq datasets GSE157103 and GSE155249. The potential targets of CEP and COVID-19 were then validated by GSE158050. Hub targets and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI) network analysis and enrichment analysis. Subsequently, molecular docking was carried out to predict the combination of CEP with hub targets. Lastly, MD simulation was conducted to further verify the findings. RESULTS A total of 700 proteins were identified as CEP-COVID-19-related targets. After the validation by GSE158050, 97 validated targets were retained. Enrichment results indicated that CEP acts on COVID-19 through multiple pathways, multiple targets, and overall cooperation. Specifically, PI3K-Akt signaling pathway is the most important pathway. Based on PPI network analysis, 9 central hub genes were obtained (ACE2, STAT1, SRC, PIK3R1, HIF1A, ESR1, ERBB2, CDC42, and BCL2L1). Molecular docking suggested that the combination between CEP and 9 central hub genes is extremely strong. Noteworthy, ACE2, considered the most important gene in CEP against COVID-19, binds to CEP most stably, which was further validated by MD simulation. CONCLUSION Our study comprehensively illustrated the potential targets and underlying molecular mechanism of CEP against COVID-19, which further provided the theoretical basis for exploring the potential protective mechanism of CEP against COVID-19.
Collapse
Affiliation(s)
- Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Senbiao Fang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Shengyu Tan
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yucheng Zeng
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China.
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
17
|
Zhang Y, Yue Q, Zhu H, Song J, Li D, Liu W, Jiang S, Jiang N, Qiu C, Ai J, Zhang Y, Zhang W. Serum Metabolic Correlates of the Antibody Response in Subjects Receiving the Inactivated COVID-19 Vaccine. Vaccines (Basel) 2022; 10:1890. [PMID: 36366398 PMCID: PMC9699138 DOI: 10.3390/vaccines10111890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Metabolites are involved in biological process that govern the immune response to infection and vaccination. Knowledge of how metabolites interact with the immune system during immunization with the COVID-19 vaccine is limited. Here, we report that the serum metabolites are correlated with the magnitude of the antibody response in recipients receiving the inactivated COVID-19 vaccine, which provides critical information for studying metabolism regarding the human immune response to vaccination. METHODS 106 healthy volunteers without history of SARS-CoV-2 infection or vaccination were prospectively enrolled to receive the primary series of two doses of inactivated whole-virion SARS-CoV-2 vaccine. The serum samples were collected 2-4 weeks after the second dose. The magnitude of the anti-RBD antibody was quantified using surrogate virus neutralization tests. The profile of metabolites in serum was identified using untargeted metabolomics analysis. RESULTS The level of anti-RBD antibody 14-28 days after the second dose was significantly elevated and its interpersonal variability was diverse in a wide range. Thirty-two samples at extremes of the anti-RBD antibody titer were selected to discover the metabolic correlates. Two hundred and fifteen differential metabolites associated with antibody response independent of body mass index were identified. Pregnenolone and sphingolipid metabolism might be involved in the modulation of the human antibody response to the inactivated COVID-19 vaccine. CONCLUSION We discovered key metabolites as well as those with a related functional significance that might modulate the human immune response to vaccination.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiaoyan Yue
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
| | - Haojing Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
| | - Jieyu Song
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Dingding Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
| | - Wen Liu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210006, China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210006, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
- Shanghai Huashen Institute of Microbes and Infections, No. 6 Lane 1220 Huashan Rd., Shanghai 200031, China
| |
Collapse
|
18
|
Fang H, Sun Z, Chen Z, Chen A, Sun D, Kong Y, Fang H, Qian G. Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma. Front Immunol 2022; 13:988479. [PMID: 36211429 PMCID: PMC9537444 DOI: 10.3389/fimmu.2022.988479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein–protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor–gene interactions, DEG–microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.
Collapse
Affiliation(s)
- Hongwei Fang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Kong
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| |
Collapse
|
19
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|