1
|
Qiu J, Le Y, Liu N, Chen L, Jiang Y, Wang Y, Fan X, Rong X, Yu Z, Li S, Dou X. Nuciferine Alleviates High-Fat Diet- and ApoE -/--Induced Hepatic Steatosis and Ferroptosis in NAFLD Mice via the PPARα Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39445611 DOI: 10.1021/acs.jafc.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) causes significant global mortality and healthcare costs with no recommended pharmacological intervention for clinical management. Nuciferine (Nuc) is an alkaloid with aromatic rings, abundantly found in Nelumbo nucifera Gaertn. In this study, we explored the protective mechanisms of Nuc against hepatic steatosis and ferroptosis in NAFLD. High-fat diet (HFD) and healthy male ApoE-/- mice were used to induce NAFLD and a hypercholesterolemia model. Nuc was administered to the mice for four consecutive weeks from the ninth week. Various assessments, including histopathology, RNA sequencing, lipid metabolism, and ferroptosis-related protein expression, showed that Nuc alleviated hepatic steatosis and ferroptosis. We further showed that Nuc improves fatty acid accumulation and ferroptosis through the PPARα signaling pathway in mice and RSL3-treated AML-12 cells. The PPARα inhibitor GW6471 blocked Nuc's protective effects, leading to excess accumulation of iron ions. Thus, Nuc may be a potential therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
- School of Public Health, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Nian Liu
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Lin Chen
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Shangcheng District, Hangzhou, Zhejiang 310020, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Xianglu Rong
- Chinese Medicine Institute, Guangdong Pharmaceutical University, No. 280 Outer Ring East Road, University Town, Guangzhou, Guangdong 510006, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
2
|
Zhou P, Yao W, Liu L, Yan Q, Chen X, Wei X, Ding S, Lv Z, Zhu F. SPG21, a potential oncogene targeted by miR-128-3p, amplifies HBx-induced carcinogenesis and chemoresistance via activation of TRPM7-mediated JNK pathway in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:1757-1778. [PMID: 38753154 DOI: 10.1007/s13402-024-00955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 07/31/2024] Open
Abstract
PURPOSE Chronic hepatitis B virus (HBV) infection is the primary risk factor for the malignant progression of hepatocellular carcinoma (HCC). It has been reported that HBV X protein (HBx) possesses oncogenic properties, promoting hepatocarcinogenesis and chemoresistance. However, the detailed molecular mechanisms are not fully understood. Here, we aim to investigate the effects of miR-128-3p/SPG21 axis on HBx-induced hepatocarcinogenesis and chemoresistance. METHODS The expression of SPG21 in HCC was determined using bioinformatics analysis, quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry (IHC). The roles of SPG21 in HCC were elucidated through a series of in vitro and in vivo experiments, including real-time cellular analysis (RTCA), matrigel invasion assay, and xenograft mouse model. Pharmacologic treatment and flow cytometry were performed to demonstrate the potential mechanism of SPG21 in HCC. RESULTS SPG21 expression was elevated in HCC tissues compared to adjacent non-tumor tissues (NTs). Moreover, higher SPG21 expression correlated with poor overall survival. Functional assays revealed that SPG21 fostered HCC tumorigenesis and invasion. MiR-128-3p, which targeted SPG21, was downregulated in HCC tissues. Subsequent analyses showed that HBx amplified TRPM7-mediated calcium influx via miR-128-3p/SPG21, thereby activating the c-Jun N-terminal kinase (JNK) pathway. Furthermore, HBx inhibited doxorubicin-induced apoptosis by engaging the JNK pathway through miR-128-3p/SPG21. CONCLUSION The study suggested that SPG21, targeted by miR-128-3p, might be involved in enhancing HBx-induced carcinogenesis and doxorubicin resistance in HCC via the TRPM7/Ca2+/JNK signaling pathway. This insight suggested that SPG21 could be recognized as a potential oncogene, offering a novel perspective on its role as a prognostic factor and a therapeutic target in the context of HCC.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China
| | - Xiaobei Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Xiaocui Wei
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China
| | - Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China
| | - Zhao Lv
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, 430071, Wuhan, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
3
|
Xu T, Fu H, Zhao W, Shan S. Far-infrared radiation alleviates steatohepatitis and fibrosis in metabolic dysfunction-associated fatty liver disease. Sci Rep 2024; 14:19292. [PMID: 39164313 PMCID: PMC11336198 DOI: 10.1038/s41598-024-69053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a disease that causes an abnormal accumulation of fat in the liver, triggering inflammation and fibrosis, the mechanism of which is not fully understood and for which there is a lack of specific drug therapy. Far-infrared radiation (FIR) has demonstrated evident therapeutic efficacy across various diseases, and novel nanomaterial graphene patches can emit it through electric heating. This study aimed to investigate the potential protective effects of FIR against MAFLD. Mice were fed with a MCD diet to mimic MAFLD progression, and histopathology analysis, biochemical analysis, RT-qPCR, and Western blotting analysis were performed to assess the effect of FIR on MAFLD in vivo. The effect of FIR treatment on MAFLD in vitro was investigated by biochemical analysis and gene expression profiling of hepatocytes. Mice subjected to the MCD diet and treated with FIR exhibited reduced hepatic lipid deposition, inflammation, fibrosis and liver damage. The therapeutic effect exerted by FIR in mice may be caused by the enhancement of AMPK phosphorylation and inhibition of the TGFβ1-SMAD2/3 pathway. Besides, FIR intervention alleviated MAFLD in hepatocytes in vitro and the results were verified by gene expression profiling. Our results revealed a promising potential of FIR as a novel therapeutic approach for MAFLD.
Collapse
Affiliation(s)
- Tianyi Xu
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Haijing Fu
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Wumei Zhao
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Shijun Shan
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
- Chen Hongduo Academician Workstation, Shaoxing Central Hospital, Shaoxing, China.
- Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Xue J, Liu Y, Liu B, Jia X, Fang X, Qin S, Zhang Y. Celastrus orbiculatus Thunb. extracts and celastrol alleviate NAFLD by preserving mitochondrial function through activating the FGF21/AMPK/PGC-1α pathway. Front Pharmacol 2024; 15:1444117. [PMID: 39161898 PMCID: PMC11330833 DOI: 10.3389/fphar.2024.1444117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms. Methods COT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot. Results The findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1α, PPARγ, and SIRT3. Conclusion These findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1α signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD.
Collapse
Affiliation(s)
- Junli Xue
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yunchao Liu
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Boyan Liu
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xiubin Jia
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xinsheng Fang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| |
Collapse
|
5
|
Li Z, Liu R, Gao X, Hou D, Leng M, Zhang Y, Du M, Zhang S, Li C. The correlation between hepatic controlled attenuation parameter (CAP) value and insulin resistance (IR) was stronger than that between body mass index, visceral fat area and IR. Diabetol Metab Syndr 2024; 16:153. [PMID: 38982535 PMCID: PMC11232147 DOI: 10.1186/s13098-024-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Hepatic controlled attenuation parameter (CAP) is a novel marker for quantifying hepatic fat accumulation. Insulin resistance (IR) plays a major role in the pathogenesis and natural history of hepatic steatosis. This study aimed to investigate the possible relationship between CAP value and IR. METHODS This study included a total of 420 patients with overweight or obesity who came to the obesity clinic at Tianjin Union Medical Center. Vibration-controlled transient elastography examination was conducted to detect CAP and liver stiffness measurement (LSM) values. Body composition, including visceral fat area (VFA), and body fat mass (BFM), was evaluated by the direct segmental multi-frequency bioelectrical impedance analysis (BIA). The associations between CAP value, body mass index (BMI), VFA, BFM and homeostasis model assessment of insulin resistance (HOMA-IR) were analyzed. RESULTS CAP value was positively associated with HOMA-IR (r = 0.568, P < 0.001), the strength of which was much stronger than BMI, VFA, and BFM. In multivariate linear regression, CAP value and HOMA-IR showed a significant positive association (adjusted β = 0.015, 95% CI 0.007-0.022, P < 0.001). Subgroup analysis suggested no significant interaction between CAP value and HOMA-IR across age, BMI, LSM, hypertension, and sex groups (all P for interaction > 0.05). CONCLUSIONS Hepatic CAP value is more remarkably than other obesity markers associated with HOMA-IR in individuals with overweight or obesity, regardless of age, BMI, LSM, hypertension, and sex.
Collapse
Affiliation(s)
- Zhouhuiling Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xinying Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dangmin Hou
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Yanju Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyang Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shi Zhang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Chunjun Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China.
| |
Collapse
|
6
|
Zhang Z, Yang Q, Jin M, Wang J, Chai Y, Zhang L, Jiang Z, Yu Q. Tamoxifen upregulates the peroxisomal β-oxidation enzyme Enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase ameliorating hepatic lipid accumulation in mice. Int J Biochem Cell Biol 2024; 172:106585. [PMID: 38734232 DOI: 10.1016/j.biocel.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid β-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid β-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid β-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid β-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids β-oxidation.
Collapse
Affiliation(s)
- Ziling Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinqin Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jie Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuanyuan Chai
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
López-Pascual E, Rienda I, Perez-Rojas J, Rapisarda A, Garcia-Llorens G, Jover R, Castell JV. Drug-Induced Fatty Liver Disease (DIFLD): A Comprehensive Analysis of Clinical, Biochemical, and Histopathological Data for Mechanisms Identification and Consistency with Current Adverse Outcome Pathways. Int J Mol Sci 2024; 25:5203. [PMID: 38791241 PMCID: PMC11121209 DOI: 10.3390/ijms25105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid β-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.
Collapse
Affiliation(s)
- Ernesto López-Pascual
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Judith Perez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Anna Rapisarda
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Guillem Garcia-Llorens
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramiro Jover
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Castell
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Li L, Yao Y, Wang Y, Cao J, Jiang Z, Yang Y, Wang H, Ma H. G protein-coupled estrogen receptor 1 ameliorates nonalcoholic steatohepatitis through targeting AMPK-dependent signaling. J Biol Chem 2024; 300:105661. [PMID: 38246352 PMCID: PMC10876613 DOI: 10.1016/j.jbc.2024.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), has emerged as a prevalent cause of liver cirrhosis and hepatocellular carcinoma, posing severe public health challenges worldwide. The incidence of NASH is highly correlated with an increased prevalence of obesity, insulin resistance, diabetes, and other metabolic diseases. Currently, no approved drugs specifically targeted for the therapies of NASH partially due to the unclear pathophysiological mechanisms. G protein-coupled estrogen receptor 1 (GPER1) is a membrane estrogen receptor involved in the development of metabolic diseases such as obesity and diabetes. However, the function of GPER1 in NAFLD/NASH progression remains unknown. Here, we show that GPER1 exerts a beneficial role in insulin resistance, hepatic lipid accumulation, oxidative stress, or inflammation in vivo and in vitro. In particular, we observed that the lipid accumulation, inflammatory response, fibrosis, or insulin resistance in mouse NAFLD/NASH models were exacerbated by hepatocyte-specific GPER1 knockout but obviously mitigated by hepatic GPER1 activation in female and male mice. Mechanistically, hepatic GPER1 activates AMP-activated protein kinase signaling by inducing cyclic AMP release, thereby exerting its protective effect. These data suggest that GPER1 may be a promising therapeutic target for NASH.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yulei Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Mass-Sanchez PB, Krizanac M, Štancl P, Leopold M, Engel KM, Buhl EM, van Helden J, Gassler N, Schiller J, Karlić R, Möckel D, Lammers T, Meurer SK, Weiskirchen R, Asimakopoulos A. Perilipin 5 deletion protects against nonalcoholic fatty liver disease and hepatocellular carcinoma by modulating lipid metabolism and inflammatory responses. Cell Death Discov 2024; 10:94. [PMID: 38388533 PMCID: PMC10884415 DOI: 10.1038/s41420-024-01860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The molecular mechanisms underlying the transition from nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) are incompletely understood. During the development of NAFLD, Perilipin 5 (PLIN5) can regulate lipid metabolism by suppressing lipolysis and preventing lipotoxicity. Other reports suggest that the lack of PLIN5 decreases hepatic injury, indicating a protective role in NAFLD pathology. To better understand the role of PLIN5 in liver disease, we established mouse models of NAFLD and NAFLD-induced HCC, in which wild-type and Plin5 null mice were exposed to a single dose of acetone or 7,12-dimethylbenz[a]anthracene (DMBA) in acetone, followed by a 30-week high-fat diet supplemented with glucose/fructose. In the NAFLD model, RNA-seq revealed significant changes in genes related to lipid metabolism and immune response. At the intermediate level, pathways such as AMP-activated protein kinase (AMPK), signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK), and protein kinase B (AKT) were blunted in Plin5-deficient mice (Plin5-/-) compared to wild-type mice (WT). In the NAFLD-HCC model, only WT mice developed liver tumors, while Plin5-/- mice were resistant to tumorigenesis. Furthermore, only 32 differentially expressed genes associated with NALFD progession were identified in Plin5 null mice. The markers of mitochondrial function and immune response, such as the peroxisome proliferator-activated receptor-γ, coactivator 1-α (PGC-1α) and phosphorylated STAT3, were decreased. Lipidomic analysis revealed differential levels of some sphingomyelins between WT and Plin5-/- mice. Interestingly, these changes were not detected in the HCC model, indicating a possible shift in the metabolism of sphingomelins during carcinogenesis.
Collapse
Affiliation(s)
- Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, HR-10000, Zagreb, Croatia
| | - Marvin Leopold
- Institute for Medical Physics and Biophysics, Leipzig University, Facutly of Medicine, D-04107, Leipzig, Germany
| | - Kathrin M Engel
- Institute for Medical Physics and Biophysics, Leipzig University, Facutly of Medicine, D-04107, Leipzig, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, D-52074, Aachen, Germany
| | | | - Nikolaus Gassler
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, D-07747, Jena, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Leipzig University, Facutly of Medicine, D-04107, Leipzig, Germany
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, HR-10000, Zagreb, Croatia
| | - Diana Möckel
- Institute for Experimental Molecular Imaging, RWTH Aachen, D-52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen, D-52074, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany.
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany.
| |
Collapse
|
11
|
Lee J, Xue X, Au E, McIntyre WB, Asgariroozbehani R, Panganiban K, Tseng GC, Papoulias M, Smith E, Monteiro J, Shah D, Maksyutynska K, Cavalier S, Radoncic E, Prasad F, Agarwal SM, Mccullumsmith R, Freyberg Z, Logan RW, Hahn MK. Glucose dysregulation in antipsychotic-naive first-episode psychosis: in silico exploration of gene expression signatures. Transl Psychiatry 2024; 14:19. [PMID: 38199991 PMCID: PMC10781725 DOI: 10.1038/s41398-023-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.
Collapse
Grants
- R01 DK124219 NIDDK NIH HHS
- R01 HL150432 NHLBI NIH HHS
- R01 MH107487 NIMH NIH HHS
- R01 MH121102 NIMH NIH HHS
- Holds the Meighen Family Chair in Psychosis Prevention, the Cardy Schizophrenia Research Chair, a Danish Diabetes Academy Professorship, a Steno Diabetes Center Fellowship, and a U of T Academic Scholar Award, and is funded by operating grants from the Canadian Institutes of Health Research (CIHR), the Banting and Best Diabetes Center, the Miners Lamp U of T award, CIHR and Canadian Psychiatric Association Glenda MacQueen Memorial Award, and the PSI Foundation.
- Hilda and William Courtney Clayton Paediatric Research Fund and Dr. LG Rao/Industrial Partners Graduate Student Award from the University of Toronto, and Meighen Family Chair in Psychosis Prevention
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UofT | Banting and Best Diabetes Centre, University of Toronto (BBDC)
- Canadian Institutes of Health Research (CIHR) Canada Graduate Scholarship-Master’s program
- Cleghorn Award
- University of Toronto (UofT)
- Centre for Addiction and Mental Health (Centre de Toxicomanie et de Santé Mentale)
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Defense (United States Department of Defense)
- Commonwealth of Pennsylvania Formula Fund, The Pittsburgh Foundation
Collapse
Affiliation(s)
- Jiwon Lee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Au
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - William B McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Roshanak Asgariroozbehani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kristoffer Panganiban
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emily Smith
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Divia Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kateryna Maksyutynska
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Cavalier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emril Radoncic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Femin Prasad
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- ProMedica, Toledo, OH, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Margaret K Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Zhu T, Huang X, Zhu H, Chen J, Yao H, Zhang Y, Hua H, Zhang J, Qi J. Analysis of bioactive components and synergistic action mechanism of ShuGan-QieZhi Capsule for treating non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155173. [PMID: 37976695 DOI: 10.1016/j.phymed.2023.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND ShuGan-QieZhi capsule (SGQZC) is a traditional Chinese preparation used to treat hyperlipidemia and obesity, even non-alcoholic fatty liver disease (NAFLD). However, its therapeutic effects, main bioactive ingredients, as well as potential mechanisms for NAFLD are still unclear. PURPOSE To investigate the pharmacological effect, main active ingredients, and mechanisms of SGQZC against high-fat diet (HFD)-induced NAFLD in mice. METHODS NAFLD models were established by feeding C57BL/6 J mice an HFD for 24 weeks. From the 12th week, HFD-fed mice received daily gavage of either SGQZC or silibinin for 12 weeks. Hepatic hypertrophy parameters, along with hepatic and systemic lipid metabolism changes in NAFLD mice, were assessed. Oil red O and histopathological staining techniques determined lipid accumulation and liver injury severity. qRT-PCR analysis measured the expression of genes tied to liver lipid metabolism and inflammation. HPLC-MS/MS identified the primary components of SGQZC in the serum. Human normal hepatocytes (LO2) and hepatic stellate cells (LX-2) were used to screen SGQZC's bioactive ingredients. Network pharmacological analysis, transcriptomics, and western blotting delved into SGQZC's synergistic mechanisms against NAFLD. RESULTS SGQZC ameliorated abnormal lipid metabolism and liver hypertrophy in mice with HFD-induced NAFLD, consequently reducing hepatic lipid accumulation, inflammatory cell infiltration, and liver impairment. Eight crucial components of SGQZC were detected in serum using HPLC-MS/MS and were found to effectively attenuate lipid accumulation and inflammation in liver cells. Further investigation indicated that SGQZC modulates MAPK pathway and AKT/NF-κB pathway, subsequently improving lipid metabolism and inflammation. CONCLUSION SGQZC alleviates NAFLD by synergistically modulating the MAPK-mediated lipid metabolism and inhibiting AKT/NF-κB pathways-mediated inflammation. Our findings reveal the enormous potential of SGQZC for the treatment of NAFLD, providing a possible new clinical therapeutic strategy.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Clinical Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd.,Yangpu District, Shanghai, 200092, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd.,Yangpu District, Shanghai, 200092, China
| | - Hongyan Zhu
- Department of Clinical Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd.,Yangpu District, Shanghai, 200092, China
| | - Jihui Chen
- Department of Clinical Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd.,Yangpu District, Shanghai, 200092, China
| | - Huijuan Yao
- Department of Clinical Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd.,Yangpu District, Shanghai, 200092, China
| | - Yufeng Zhang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd.,Yangpu District, Shanghai, 200092, China.
| | - Jia Qi
- Department of Clinical Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd.,Yangpu District, Shanghai, 200092, China.
| |
Collapse
|