1
|
Corsale AM, Di Simone M, Meraviglia S, Caruso C. γδ T-Cell Immunophenotype for the Study of Human Aging. Methods Mol Biol 2025; 2857:45-59. [PMID: 39348054 DOI: 10.1007/978-1-0716-4128-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Flow cytometry serves as a crucial tool in immunology, allowing for the detailed analysis of immune cell populations. γδ T cells, a subset of T cells, play pivotal roles in immune surveillance and immune aging. Assessing the phenotype and functional capabilities of γδ T cells isolated from whole blood or tissue within the context of human aging yields invaluable insights into the dynamic changes affecting immune function, tissue homeostasis, susceptibility to infections, and inflammatory responses.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital "P. Giaccone", Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital "P. Giaccone", Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital "P. Giaccone", Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| |
Collapse
|
2
|
Parveen A, Bhat SA, Elnaggar M, Meade KG. Comparative analysis of WC1.1+ and WC1.2+ γδ T cell subset responses from cattle naturally infected with Mycobacterium bovis to repeat stimulation with mycobacterial antigens. PLoS One 2024; 19:e0311854. [PMID: 39666627 PMCID: PMC11637235 DOI: 10.1371/journal.pone.0311854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
Mycobacterium bovis (M. bovis) causes bovine tuberculosis (bTB). The challenges in controlling and eradicating this zoonotic disease are compounded by our incomplete understanding of the host immune response. In this study, we used high-throughput bulk RNA sequencing (RNA-seq) to characterise the response profiles of γδ T cells to antigenic stimulation using purified protein derivate from M. bovis (PPDb). γδ T cells are a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms. These cells are usually classified based on the expression of a pathogen-recognition receptor, Workshop Cluster 1 (WC1), into two main subsets: WC1.1+ and WC1.2+. Previous studies have identified a preferential transcriptomic response in WC1.1+ cells during natural bTB infection, suggesting a subset-specific response to mycobacterial antigens. This follow on study tested the hypothesis that a subset specific response would also be apparent from γδ T cells from infected cattle after repeat stimulation. Peripheral blood was collected from Holstein-Friesian cattle naturally infected with M. bovis, confirmed by a single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA and stimulated with 10 μg/ml PPDb for 6 hours. After whole blood stimulation, WC1.1+ and WC1.2+ γδ T cell subsets were isolated using magnetic cell sorting (n = 5 per group). High-quality RNA was extracted from each purified lymphocyte subset (WC1.1+ and WC1.2+) to generate transcriptomes using bulk RNA sequencing, resulting in 20 RNA-seq libraries. Transcriptomic analysis revealed 111 differentially expressed genes (DEGs) common to both WC1.1+ and WC1.2+ γδ T cell compartments, including upregulation of IL1A, IL1B, IL6, IL17A, IL17F, and IFNG genes (FDR-Padj. < 0.1). Interestingly, the WC1.2+ cells showed upregulation of IL10, CCL22, and GZMA (log2FC ≥ 1.5, and FDR-Padj. < 0.1). In conclusion, while WC1.1+ and WC1.2+ γδ T cells exhibit a conserved inflammatory response to PPDb, differences in anti-inflammatory and antimicrobial gene expression between these cell subsets provide new insights into their effector functions in response to mycobacterial antigens.
Collapse
Affiliation(s)
- Alia Parveen
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Sajad A. Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Meath, Ireland
| | - Mahmoud Elnaggar
- Department of Veterinary Medicine, College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Oman
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Kieran G. Meade
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
4
|
Liu G, Ma L, Sakamoto A, Fujimura L, Xu D, Zhao M, Wan X, Murayama R, Anzai N, Hashimoto K. Splenic γδ T cells mediate antidepressant and prophylactic actions of arketamine in lipopolysaccharide-induced depression in mice. Pharmacol Biochem Behav 2024; 245:173906. [PMID: 39549733 DOI: 10.1016/j.pbb.2024.173906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits both therapeutic and sustained prophylactic effects in an inflammation-driven model of depression, although the precise mechanisms remain elusive. Given the involvement of γδ T cells in inflammatory processes, this study explored their role in the effects of arketamine. To assess therapeutic outcomes, mice received lipopolysaccharide (LPS:1.0 mg/kg), followed by either arketamine (10 mg/kg) or saline. For prophylactic assessment, arketamine or saline was administered six days prior to LPS exposure. A single dose of LPS (1.0 mg/kg) reduced the proportion of γδ T cells in the spleen but did not affect their levels in the blood, prefrontal cortex, or small intestine. Arketamine mitigated LPS-induced splenomegaly, counteracted the elevation of plasma interleukin-6 levels and the reduction in the proportion of splenic γδ T cells, and alleviated depression-like behavior as assessed by the forced swimming test. Notably, negative correlations were observed between the proportion of splenic γδ T cells and indicators of inflammation and depression. Furthermore, pretreatment with a γδ TCR antibody significantly countered the therapeutic and prophylactic effects of arketamine on LPS-induced changes. These findings highlight a novel role for splenic γδ T cells in inflammation-associated depression and suggest the potential of arketamine as a treatment option. Consequently, γδ T cells may represent a novel therapeutic target for inflammation-related depression. Further studies on the role of γδ T cells in depressed patients with inflammation are warranted.
Collapse
Affiliation(s)
- Guilin Liu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Akemi Sakamoto
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan
| | - Dan Xu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingming Zhao
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiayun Wan
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Rumi Murayama
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
5
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
6
|
Bulgur D, Moura RM, Ribot JC. Key actors in neuropathophysiology: The role of γδ T cells. Eur J Immunol 2024; 54:e2451055. [PMID: 39240039 PMCID: PMC11628923 DOI: 10.1002/eji.202451055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The neuroimmune axis has been the focus of many studies, with special emphasis on the interactions between the central nervous system and the different immune cell subsets. T cells are namely recognized to play a critical role due to their interaction with nerves, by secreting cytokines and neurotrophins, which regulate the development, function, and survival of neurons. In this context, γδ T cells are particularly relevant, as they colonize specific tissues, namely the meninges, and have a wide variety of complex functions that balance physiological systems. Notably, γδ T cells are not only key components for maintaining brain homeostasis but are also responsible for triggering or preventing inflammatory responses in various pathologies, including neurodegenerative diseases as well as neuropsychiatric and developmental disorders. Here, we provide an overview of the current state of the art on the contribution of γδ T cells in neuropathophysiology and delve into the molecular mechanisms behind it. We aim to shed light on γδ T cell functions in the central nervous system while highlighting upcoming challenges in the field and providing new clues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Deniz Bulgur
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Raquel Macedo Moura
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Julie C. Ribot
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| |
Collapse
|
7
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
8
|
Zhang X, Yang Y, Xu Y, Chen L, Niu M, Zhu J, Zhang S, Wu Y, Li B, Zhang L, Song J, Xu F, Bi D, Zhao X, Zhu C, Wang X. Impact of perinatal factors on T cells and transcriptomic changes in preterm infant brain injury. J Neuroinflammation 2024; 21:310. [PMID: 39614291 DOI: 10.1186/s12974-024-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND T cells have been implicated in various neurological conditions, yet their role in neonatal brain injuries remains unclear. This study aimed to investigate the impact of perinatal factors on frequencies of T cell subsets in preterm infants and to explore the differences in blood genome expression profiles between preterm infants with and without brain injury. MATERIALS AND METHODS Three cohorts of preterm infants were used. Blood samples were collected soon after birth for the first cohort and late timepoint for the second and third cohorts. In the first cohort (88 infants), flow cytometry measured the proportions of αβT and γδT cell subsets in peripheral blood, analyzing associations with gestational age, birth weight, sex, delivery type, and maternal conditions. The second cohort focused on the relationship between T cell subsets and brain injury. In the third cohort, transcriptome sequencing identified differentially expressed genes and pathways in infants with brain injury, highlighting immune-related changes. RESULTS Infants born at 29-30 weeks or with a birth weight of 1000-1500 g had significantly higher proportions of Vδ2+ T cells compared to those born at 30-32 weeks or with a birth weight > 1500 g, while no significant difference was found between infants born at < 29 weeks or with a birth weight < 1000 g. A negative correlation was observed between gestational age and Vδ2+ T cell frequency. No significant associations were found between Vδ2+ T cell proportions and perinatal factors other than gestational age or brain injury. Blood transcriptome analysis revealed 173 differentially expressed genes, characterized by downregulated interferon signaling and upregulated antimicrobial and neutrophil pathways in infants with brain injury. CONCLUSIONS Gestational age and birth weight influence Vδ2+ T cell proportions in preterm infants, likely reflecting immune maturation. While no direct link to brain injury was found, altered immune pathways suggest potential biomarkers for prognosis, warranting further research into their roles and therapeutic implications in neonatal brain injuries.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Yang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Liuji Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Niu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinjin Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanan Wu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Zhao
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Box 436, Gothenburg, 405 30, Sweden.
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.
- Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Box 432, Gothenburg, SE-405 30, Sweden.
| |
Collapse
|
9
|
Choi SM, Jung KC, Lee JI. Developmental trajectory of unconventional T cells of the cynomolgus macaque thymus. Heliyon 2024; 10:e39736. [PMID: 39524802 PMCID: PMC11543906 DOI: 10.1016/j.heliyon.2024.e39736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
As nonhuman primates are immunologically the closest model to humans, a comprehensive understanding of T-cell development in these species is crucial. However, the differentiation pathways in which thymocytes participate, along with their heterogeneity, remain poorly characterized. Using single-cell RNA sequencing, we thoroughly profiled the development of various T-cell lineages in the juvenile cynomolgus monkey thymus, identifying and characterizing 12 distinct thymic cell states or types. Interestingly, we identified two unexpected cell types, an agonist-selected and a memory-like cell population. The agonist-selected cell population expressed genes associated with strong TCR signaling, such as PDCD1, CD5, NFKBID, NFATC1, BCL2L11, and NR4A1 but exhibiting significantly higher PDCD1 expression compared with cells following the conventional developmental pathway. Additionally, we identified a substantial number of memory-like cell populations characterized by high CXCR3 and EOMES expression. Notably, this population also highly expressed the effector-associated markers, GZMK, NKG7, and GNLY, as well as the innate cell-associated markers, ZBTB16, TYROBP, KLRB1, KLRC1, and NCR3. The EOMES + memory-like cell population expressed highly PDCD1, indicating the presence of an agonist-selection footprint. Our findings provide insights into the agonist-selection pathway that allows self-reactive thymocytes to survive thymic selections and differentiate into various unconventional T-cell lineages.
Collapse
Affiliation(s)
- Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
10
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
11
|
Liu K, Hoover AR, Wang L, Sun Y, Valerio TI, Furrer C, Adams J, Yang J, Li M, Chen WR. Localized ablative immunotherapy enhances antitumor immunity by modulating the transcriptome of tumor-infiltrating Gamma delta T cells. Cancer Lett 2024; 604:217267. [PMID: 39307410 PMCID: PMC11471373 DOI: 10.1016/j.canlet.2024.217267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Gamma delta T cells (γδT cells) play crucial roles in the immune response against tumors, yet their functional dynamics under different cancer therapies remain poorly understood. Laser Ablative Immunotherapy (LAIT) is a novel cancer treatment modality combining local photothermal therapy (PTT) and intratumoral injection of an immunostimulant, N-dihydrogalactochitosan (glycated chitosan, GC). LAIT has been shown to induce systemic antitumor immune responses in pre-clinical studies and clinical trials, eradicating both treated local tumors and untreated distant metastases. In this study, we used LAIT to treat breast tumors in a mouse model and investigated the effects of LAIT on tumor-infiltrating γδT cells using single-cell RNA sequencing (scRNAseq). We characterized the γδT cells from tumors in control, PTT, GC, and LAIT (PTT + GC) groups, by identifying six distinct subtypes: activated, cytotoxic, cycling cytotoxic, IFN-enriched, antigen-presenting, and IL17-producing γδT cells. Differential gene expression analysis revealed that LAIT significantly upregulated genes associated with T cell activation, leukocyte adhesion, and interferon signaling in treated tumor tissues while downregulating genes involved in protein folding and stress responses. LAIT also uniquely increased the proportion of IL17-producing γδT cells, which correlated with prolonged survival in breast cancer patients, as analyzed using TCGA data. Furthermore, the transcriptomic profiles of γδT cells in LAIT-treated tumors closely resembled those in immune checkpoint inhibitor (ICI)-treated patients, suggesting potential synergistic effects. Our findings indicate that LAIT modulates the γδT cell transcriptome, enhancing their antitumor capabilities and providing a basis for combining LAIT with ICI therapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Ashley R Hoover
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yuanhong Sun
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Trisha I Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Coline Furrer
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Jacob Adams
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Min Li
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
12
|
Li Y, Liu Y, Bu X, Qin Y, Zhang Y. Research progress on V delta 1 + T cells and their effect on pathogen infection. PeerJ 2024; 12:e18313. [PMID: 39494290 PMCID: PMC11531252 DOI: 10.7717/peerj.18313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
The ongoing high occurrence of harmful infectious diseases significantly threatens human health. Existing methods used to control such diseases primarily involve targeting the pathogens, usually neglecting the vital role of host factors in disease advancement. Gamma delta (γδ) T cells act as a bridge between innate and adaptive immunity, playing a crucial role in combating pathogen invasion. Among these γδT cell subsets, which are categorized based on T cell receptor delta variable expression patterns, V delta (δ) 1+ T cells possess unique recognition abilities and regulatory characteristics and actively engage in various immune responses. The differentiation, development, and immune reactivity of Vδ1+ T cells are closely associated with the initial and progressive stages of infectious diseases. This article provides an overview of the classification, distribution, differentiation, and development of Vδ1+ T cells and their mechanisms in combating pathogenic infections, offering new insights for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yuxia Li
- School of Basic Medical Sciences, Shandong Second Medical University, Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, Weifang, Shandong, China
| | - Yanfei Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaoxiao Bu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuanyuan Qin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanyan Zhang
- Department of Rheumatology and Immunology, Weifang Second People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
13
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
14
|
Clayton SW, Walk RE, Mpofu L, Easson GWD, Tang SY. Sex-specific divergences in the types and timing of infiltrating immune cells during the intervertebral disc acute injury response and their associations with degeneration. Osteoarthritis Cartilage 2024:S1063-4584(24)01426-2. [PMID: 39426787 DOI: 10.1016/j.joca.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Inadequate repair of the intervertebral disc (IVD) contributes to low back pain. Infiltrating immune cells into damaged tissues are critical mediators of repair, yet little is known about the identities, roles, and temporal regulation following IVD injury. By analyzing transcripts of immune cell markers, histopathologic analysis, immunofluorescence, and flow cytometry, we aimed to define the temporal cascade of infiltrating immune cells and their associations with IVD degeneration. METHODS Caudal IVDs from 12-week-old C57BL6/J mice were injured and monitored for 42 days post-injury. Transcriptional markers identifying myeloid, B, and T immune cells, and angiogenic factors were measured from the IVDs every 2-3 days. Histopathologic degeneration of the IVD was measured throughout. Flow cytometry and immunofluorescence were used to identify and localize cells including B, T, natural killer T (NKT) cells, monocytes, neutrophils, macrophages, eosinophils, and dendritic cells. RESULTS The injured IVD revealed distinct phases of inflammation and proliferation. Robust temporal oscillation in the myeloid and T cell transcripts was observed in females. Cd3+ T cells were more abundant in females than in males. The Cd3+Cd4-Cd8- T cells that dominate the female cascade contain rare γδ T cells. Injury-mediated degeneration was prevalent in both sexes but more severe in males. CONCLUSIONS This study defines the coordinated infiltration of immune cells in the IVD following injury. We report the discovery of γδ T cells in the female IVD, and this was associated with less severe degeneration. γδ T cells have potent anti-inflammatory roles and may suppress degeneration following IVD injury.
Collapse
Affiliation(s)
| | - Remy E Walk
- Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Mpofu
- Washington University in St. Louis, St. Louis, MO, USA
| | | | - Simon Y Tang
- Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
15
|
Mori T, Yoshio S, Kakazu E, Kanto T. Active role of the immune system in metabolic dysfunction-associated steatotic liver disease. Gastroenterol Rep (Oxf) 2024; 12:goae089. [PMID: 39411101 PMCID: PMC11479709 DOI: 10.1093/gastro/goae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a complex multifactorial disease that progresses from steatohepatitis (MASH) to liver cirrhosis and liver cancer. Recent research has revealed that crosstalk between innate immune cells and hepatic parenchymal and non-parenchymal cells is involved in the pathogenesis of liver disease in MASLD/MASH. Of particular importance, novel inflammatory mechanisms, including macrophage diversity, neutrophil NETosis, B-cell biology, auto-reactive T cells, unconventional T cells, and dendritic cell-T cell interactions, are considered key drivers for disease progression. These mechanisms and factors are potential targets for the therapeutic intervention of MASLD/MASH. In this review, we focus on recent discoveries related to liver inflammation and discuss the role of innate immune cell subsets in MASLD/MASH.
Collapse
Affiliation(s)
- Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
16
|
Setayesh T, Hu Y, Vaziri F, Wei D, Wan YJY. The spatial impact of a Western diet in enriching Galectin-1-regulated Rho, ECM, and SASP signaling in a novel MASH-HCC mouse model. Biomark Res 2024; 12:122. [PMID: 39402682 PMCID: PMC11476289 DOI: 10.1186/s40364-024-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) arising from metabolic dysfunction-associated steatohepatitis (MASH) presents a significant clinical challenge, particularly given the prevalence of the Western diet (WD). The influence of diet on the tumor microenvironment remains poorly understood. Galectin-1 (Gal-1) is a biomarker for HCC and has a crucial role in liver carcinogenesis. Our previous studies demonstrated that silencing Gal-1 effectively treats mouse HCC. However, the impacts of a WD on Gal-1 signaling on MASH to HCC progression are unknown, and this study addresses these knowledge gaps. METHODS We developed a novel MASH-HCC mouse model. Using spatial transcriptomics and multiplex immunohistochemistry (IHC), we studied the effects of a WD on the liver and tumor microenvironment. By modulating Gal-1 expression through silencing and overexpression, we explored the location-specific impacts of WD on Gal-1 signaling. RESULTS Pathways such as Rho signaling, extracellular matrix (ECM) remodeling, and senescence-associated secretory phenotypes (SASP) were prominently activated in WD-induced metabolic dysfunction-associated fatty liver disease (MAFLD) and MASH-HCC, compared to healthy livers controls. Furthermore, Rho GTPase effectors, ECM remodeling, neutrophil degranulation, cellular stress, and cell cycle pathways were consistently enriched in human and mouse MASH-HCC. Spatially, these pathways were enriched in the tumor and tumor margins of mouse MASH-HCC. Additionally, there was a notable increase in CD11c and PD-L1-positive cells from non-tumor tissues to the tumor margin and inside the tumor of MASH-HCC, suggesting compromised immune surveillance due to WD intake. Moreover, MASH-HCC exhibited significant Gal-1 induction in N-Cadherin-positive cells, indicating enhanced epithelial-to-mesenchymal transition (EMT). Modulating Gal-1 expression in MASH-HCC further established its specific roles in regulating Rho signaling and SASP in the tumor margin and non-tumor tissues in MASH-HCC. CONCLUSION WD intake significantly influences vital cellular processes involved in Gal-1-mediated signaling, including Rho signaling and ECM remodeling, in the tumor microenvironment, thereby contributing to the development of MASH-HCC.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Dongguang Wei
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
17
|
Gibson A, Ram R, Gangula R, Li Y, Mukherjee E, Palubinsky AM, Campbell CN, Thorne M, Konvinse KC, Choshi P, Deshpande P, Pedretti S, Fear MW, Wood FM, O'Neil RT, Wanjalla CN, Kalams SA, Gaudieri S, Lehloenya RJ, Bailin SS, Chopra A, Trubiano JA, Peter JG, Mallal SA, Phillips EJ. Multiomic single-cell sequencing defines tissue-specific responses in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Commun 2024; 15:8722. [PMID: 39379371 PMCID: PMC11461852 DOI: 10.1038/s41467-024-52990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is a rare but life-threatening cutaneous drug reaction mediated by human leukocyte antigen (HLA) class I-restricted CD8+ T cells. For unbiased assessment of cellular immunopathogenesis, here we perform single-cell (sc) transcriptome, surface proteome, and T cell receptor (TCR) sequencing on unaffected skin, affected skin, and blister fluid from 15 SJS/TEN patients. From 109,888 cells, we identify 15 scRNA-defined subsets. Keratinocytes express markers indicating HLA class I-restricted antigen presentation and appear to trigger the proliferation of and killing by cytotoxic CD8+ tissue-resident T cells that express granulysin, granzyme B, perforin, LAG3, CD27, and LINC01871, and signal through the PKM, MIF, TGFβ, and JAK-STAT pathways. In affected tissue, cytotoxic CD8+ T cells express private expanded and unexpanded TCRαβ that are absent or unexpanded in unaffected skin, and mixed populations of macrophages and fibroblasts express pro-inflammatory markers or those favoring repair. This data identifies putative cytotoxic TCRs and therapeutic targets.
Collapse
MESH Headings
- Humans
- Stevens-Johnson Syndrome/immunology
- Stevens-Johnson Syndrome/genetics
- Single-Cell Analysis/methods
- Keratinocytes/immunology
- Keratinocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Skin/immunology
- Skin/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Granzymes/metabolism
- Granzymes/genetics
- Transcriptome
- Male
- Perforin/metabolism
- Perforin/genetics
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Macrophages/immunology
- Macrophages/metabolism
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Rama Gangula
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Eric Mukherjee
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Chelsea N Campbell
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Michael Thorne
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | | | - Phuti Choshi
- Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Mark W Fear
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Fiona M Wood
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Richard T O'Neil
- Ralph H Johnson VA Medical Center, Medical University of South Carolina, Charleston, USA
| | | | - Spyros A Kalams
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- School of Human Sciences, The University of Western Australia, Perth, Australia
| | | | - Samuel S Bailin
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Jason A Trubiano
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Centre for Antibiotic Allergy and Research, Austin Health, Melbourne, Australia
| | - Jonny G Peter
- Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia.
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA.
| |
Collapse
|
18
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
19
|
Holmes CM, Wagner B. Characterization of Nasal Mucosal T Cells in Horses and Their Response to Equine Herpesvirus Type 1. Viruses 2024; 16:1514. [PMID: 39459849 PMCID: PMC11512333 DOI: 10.3390/v16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) enters through the upper respiratory tract (URT). Mucosal immunity at the URT is crucial in limiting viral infection and morbidity. Here, intranasal immune cells were collected from horses (n = 15) during an experimental EHV-1 infection. CD4+ and CD8+ T cells were the major intranasal cell populations before infection and increased significantly by day six and fourteen post-infection, respectively. Nasal mucosal T cells were further characterized in healthy horses. Compared to peripheral blood mononuclear cells (PBMC), mucosal CD8+ T-cell percentages were elevated, while CD4+ T-cell percentages were similar. A small population of CD4+CD8+ T cells was also recovered from mucosal samples. Within the URT tissue, CD4+ cells predominantly accumulated in the epithelial layer, while most CD8+ cells resided deeper in the mucosa or the submucosa below the basement membrane. In vitro stimulation of mucosal cells from healthy horses with (n = 5) or without (n = 5) peripheral T-cell immunity against EHV-1 induced IFN-γ production in nasal T cells upon polyclonal stimulation. However, after EHV-1 re-stimulation, mucosal T cells failed to respond with IFN-γ. This work provided the first characterization of mucosal T-cell phenotypes and functions in the URT of healthy horses and during EHV-1 infection.
Collapse
Affiliation(s)
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
20
|
Shekarkar Azgomi M, Badami GD, Di Caro M, Tamburini B, Fallo M, Dieli C, Ebrahimi K, Dieli F, La Manna MP, Caccamo N. Deep Immunoprofiling of Large-Scale Tuberculosis Dataset at Single Cell Resolution Reveals a CD81 bright γδ T Cell Population Associated with Latency. Cells 2024; 13:1529. [PMID: 39329713 PMCID: PMC11430301 DOI: 10.3390/cells13181529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death among infectious diseases, with 10.6 million new cases and 1.3 million deaths reported in 2022, according to the most recent WHO report. Early studies have shown an expansion of γδ T cells following TB infection in both experimental models and humans, indicating their abundance among lung lymphocytes and suggesting a role in protective immune responses against Mycobacterium tuberculosis (M. tuberculosis) infection. In this study, we hypothesized that distinct subsets of γδ T cells are associated with either protection against or disease progression in TB. To explore this, we applied large-scale scRNA-seq and bulk RNA-seq data integration to define the phenotypic and molecular characteristics of peripheral blood γδ T cells. Our analysis identified five unique γδ T subclusters, each with distinct functional profiles. Notably, we identified a unique cluster significantly enriched in the TCR signaling pathway, with high CD81 expression as a conserved marker. This distinct molecular signature suggests a specialized role for this cluster in immune signaling and regulation of immune response against M. tuberculosis. Flow cytometry confirmed our in silico results, showing that the mean fluorescence intensity (MFI) values of CD81 expression on γδ T cells were significantly increased in individuals with latent TB infection (TBI) compared to those with active TB (ATB). This finding underscores the importance of CD81 and its associated signaling mechanisms in modulating the activity and function of γδ T cells under TBI conditions, providing insights into potential therapeutic targets for TB management.
Collapse
Affiliation(s)
- Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Miriam Di Caro
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Miriana Fallo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Kiana Ebrahimi
- Faculté d'Ingénierie et Management de la Santé (ILIS), Université de Lille, 59120 Loos, France
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
21
|
Li Y, Li H, Peng C, Meng G, Lu Y, Liu H, Cui L, Zhou H, Xu Z, Sun L, Liu L, Xiong Q, Sun B, Jiao S. Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling. Nat Commun 2024; 15:7784. [PMID: 39237503 PMCID: PMC11377774 DOI: 10.1038/s41467-024-51767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
The structural components of the thymus are essential for guiding T cell development, but a thorough spatial view is still absent. Here we develop the TSO-his tool, designed to integrate multimodal data from single-cell and spatial transcriptomics to decipher the intricate structure of human thymus. Specifically, we characterize dynamic changes in cell types and critical markers, identifying ELOVL4 as a mediator of CD4+ T cell positive selection in the cortex. Utilizing the mapping function of TSO-his, we reconstruct thymic spatial architecture at single-cell resolution and recapitulates classical cell types and their essential co-localization for T cell development; additionally, previously unknown co-localization relationships such as that of CD8αα with memory B cells and monocytes are identified. Incorporating VDJ sequencing data, we also delineate distinct intermediate thymocyte states during αβ T cell development. Overall, these insights enhance our understanding of thymic biology and may inform therapeutic interventions targeting T cell-mediated immune responses.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Huamei Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Peng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ge Meng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
- TCRX (KeShiHua) Therapeutics Co, Ltd. Beijing & Yunnan Pilot Free Trade Zone (Dehong Area), Beijing, China
- Department of Oncology, Department of Rheumatology and Immunology, Ruili JingCheng Hospital, Ruili, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honglin Liu
- Department of Pharmacy, Organoid and Regenerative Medicine Center, China-Japan Friendship Hospital, Beijing, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Huan Zhou
- National Institute of Drug Clinical Trial, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lihong Liu
- Department of Pharmacy, Organoid and Regenerative Medicine Center, China-Japan Friendship Hospital, Beijing, China.
| | - Qing Xiong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Shiping Jiao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- TCRX (KeShiHua) Therapeutics Co, Ltd. Beijing & Yunnan Pilot Free Trade Zone (Dehong Area), Beijing, China.
- Department of Oncology, Department of Rheumatology and Immunology, Ruili JingCheng Hospital, Ruili, China.
| |
Collapse
|
22
|
Mei J, Chu J, Yang K, Luo Z, Yang J, Xu J, Li Q, Zhang Y, Zhang Q, Wan M, Xue N, Ding J, Zhu Y, Cai Y, Yin Y. Angiotensin receptor blocker attacks armored and cold tumors and boosts immune checkpoint blockade. J Immunother Cancer 2024; 12:e009327. [PMID: 39244215 PMCID: PMC11418576 DOI: 10.1136/jitc-2024-009327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has made remarkable achievements, but newly identified armored and cold tumors cannot respond to ICB therapy. The high prevalence of concomitant medications has huge impact on immunotherapeutic responses, but the clinical effects on the therapeutic outcome of armored and cold tumors are still unclear. METHODS In this research, using large-scale transcriptomics datasets, the expression and potential biological functions of angiotensin II receptor 1 (AGTR1), the target of angiotensin receptor blocker (ARB), were investigated. Next, the roles of ARB in tumor cells and tumor microenvironment cells were defined by a series of in vitro and in vivo assays. In addition, the clinical impacts of ARB on ICB therapy were assessed by multicenter cohorts and meta-analysis. RESULTS AGTR1 was overexpressed in armored and cold tumors and associated with poor response to ICB therapy. ARB, the inhibitor for AGTR1, only suppressed the aggressiveness of tumor cells with high AGTR1 expression, which accounted for a very small proportion. Further analysis revealed that AGTR1 was always highly expressed in cancer-associated fibroblasts (CAFs) and ARB inhibited type I collagen expression in CAFs by suppressing the RhoA-YAP axis. Moreover, ARB could also drastically reverse the phenotype of armored and cold to soft and hot in vivo, leading to a higher response to ICB therapy. In addition, both our in-house cohorts and meta-analysis further supported the idea that ARB can significantly enhance ICB efficacy. CONCLUSION Overall, we identify AGTR1 as a novel target in armored and cold tumors and demonstrate the improved therapeutic efficacy of ICB in combination with ARB. These findings could provide novel clinical insight into how to treat patients with refractory armored and cold tumors.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiayue Yang
- Departments of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qing Li
- Departments of Oncology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Yan Zhang
- Departments of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
- Departments of Gynecology, Wuxi Maternal and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qinglin Zhang
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Mengyun Wan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningyi Xue
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yichao Zhu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Cai
- Department of Central Laboratory, The First People's Hospital of Jintan, Jintan Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Cornillet M, Geanon D, Bergquist A, Björkström NK. Immunobiology of primary sclerosing cholangitis. Hepatology 2024:01515467-990000000-01014. [PMID: 39226402 DOI: 10.1097/hep.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory progressive cholestatic liver disease. Genetic risk factors, the presence of autoantibodies, the strong clinical link with inflammatory bowel disease, and associations with other autoimmune disorders all suggest a pivotal role for the immune system in PSC pathogenesis. In this review, we provide a comprehensive overview of recent immunobiology insights in PSC. A particular emphasis is given to immunological concepts such as tissue residency and knowledge gained from novel technologies, including single-cell RNA sequencing and spatial transcriptomics. This review of the immunobiological landscape of PSC covers major immune cell types known to be enriched in PSC-diseased livers as well as recently described cell types whose biliary localization and contribution to PSC immunopathogenesis remain incompletely described. Finally, we emphasize the importance of time and space in relation to PSC heterogeneity as a key consideration for future studies interrogating the role of the immune system in PSC.
Collapse
Affiliation(s)
- Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Bergquist
- Unit of Gastroenterology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Sok CL, Rossjohn J, Gully BS. The Evolving Portrait of γδ TCR Recognition Determinants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:543-552. [PMID: 39159405 PMCID: PMC11335310 DOI: 10.4049/jimmunol.2400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
In αβ T cells, immunosurveillance is enabled by the αβ TCR, which corecognizes peptide, lipid, or small-molecule Ags presented by MHC- and MHC class I-like Ag-presenting molecules, respectively. Although αβ TCRs vary in their Ag recognition modes, in general they corecognize the presented Ag and the Ag-presenting molecule and do so in an invariable "end-to-end" manner. Quite distinctly, γδ T cells, by way of their γδ TCR, can recognize ligands that extend beyond the confines of MHC- and MHC class I-like restrictions. From structural studies, it is now becoming apparent that γδ TCR recognition modes can break the corecognition paradigm and deviate markedly from the end-to-end docking mechanisms of αβ TCR counterparts. This brief review highlights the emerging portrait of how γδ TCRs can recognize diverse epitopes of their Ags in a manner reminiscent to how Abs recognize Ags.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Humans
- Animals
- Antigen Presentation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Epitopes, T-Lymphocyte/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Chhon Ling Sok
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Benjamin S. Gully
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
26
|
Kulma I, Na-Bangchang K, Carvallo Herrera A, Ndubuisi IT, Iwasaki M, Tomono H, Morita CT, Okamura H, Mukae H, Tanaka Y. Analysis of the Effector Functions of Vδ2 γδ T Cells and NK Cells against Cholangiocarcinoma Cells. Cells 2024; 13:1322. [PMID: 39195212 PMCID: PMC11352430 DOI: 10.3390/cells13161322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare disease characterized by malignant cells derived from the epithelial cells of the biliary duct system. Despite extensive treatments, the prognosis for CCA remains poor, emphasizing the critical need for the development of novel treatments. Considerable attention has been directed towards innate immune effector cells, which can recognize tumor cells independently of the major histocompatibility complex, laying the foundation for the development of off-the-shelf drugs. In this study, we cultured innate immune cells obtained from the peripheral blood of healthy adults and conducted a comparative analysis of the effector functions against CCA cell lines by Vδ2 γδ T cells and NK cells. This analysis was performed using standard short- and long-term cytotoxicity assays, as well as ELISA for IFN-γ. Vδ2 γδ T cells demonstrated cytotoxicity and IFN-γ production in response to CCA cells in a TCR-dependent manner, particularly in the presence of tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate, a bisphosphonate prodrug. In contrast, direct killing and antibody-dependent cellular cytotoxicity were relatively slow and weak. Conversely, NK cells displayed potent, direct cytotoxicity against CCA cells. In summary, both Vδ2 γδ T cells and NK cells show promise as innate immune effector cells for adoptive transfer therapy in the context of CCA.
Collapse
Affiliation(s)
- Inthuon Kulma
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand;
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand;
| | - Andrea Carvallo Herrera
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
| | - Ifeanyi Theodora Ndubuisi
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
| | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| | - Hiromi Tomono
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (H.T.); (H.M.)
| | - Craig T. Morita
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA;
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (H.T.); (H.M.)
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
27
|
Cebi M, Yilmaz Y. Immune system dysregulation in the pathogenesis of non-alcoholic steatohepatitis: unveiling the critical role of T and B lymphocytes. Front Immunol 2024; 15:1445634. [PMID: 39148730 PMCID: PMC11324455 DOI: 10.3389/fimmu.2024.1445634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of fat within the cytoplasm of hepatocytes (exceeding 5% of liver weight) in individuals without significant alcohol consumption, has rapidly evolved into a pressing global health issue, affecting approximately 25% of the world population. This condition, closely associated with obesity, type 2 diabetes, and the metabolic syndrome, encompasses a spectrum of liver disorders ranging from simple steatosis without inflammation to non-alcoholic steatohepatitis (NASH) and cirrhotic liver disease. Recent research has illuminated the complex interplay between metabolic and immune responses in the pathogenesis of NASH, underscoring the critical role played by T and B lymphocytes. These immune cells not only contribute to necroinflammatory changes in hepatic lobules but may also drive the onset and progression of liver fibrosis. This narrative review aims to provide a comprehensive exploration of the effector mechanisms employed by T cells, B cells, and their respective subpopulations in the pathogenesis of NASH. Understanding the immunological complexity of NASH holds profound implications for the development of targeted immunotherapeutic strategies to combat this increasingly prevalent and burdensome metabolic liver disease.
Collapse
Affiliation(s)
- Merve Cebi
- Department of Medical Biology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, United States
| |
Collapse
|
28
|
Arias-Badia M, Chang R, Fong L. γδ T cells as critical anti-tumor immune effectors. NATURE CANCER 2024; 5:1145-1157. [PMID: 39060435 DOI: 10.1038/s43018-024-00798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
While the effector cells that mediate anti-tumor immunity have historically been attributed to αβ T cells and natural killer cells, γδ T cells are now being recognized as a complementary mechanism mediating tumor rejection. γδ T cells possess a host of functions ranging from antigen presentation to regulatory function and, importantly, have critical roles in eliciting anti-tumor responses where other immune effectors may be rendered ineffective. Recent discoveries have elucidated how these differing functions are mediated by γδ T cells with specific T cell receptors and spatial distribution. Their relative resistance to mechanisms of dysfunction like T cell exhaustion has spurred the development of therapeutic approaches exploiting γδ T cells, and an improved understanding of these cells should enable more effective immunotherapies.
Collapse
Affiliation(s)
- Marcel Arias-Badia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Chang
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
29
|
Zhang S, Li L, Liu C, Pu M, Ma Y, Zhang T, Chai J, Li H, Yang J, Chen M, Kong L, Xia T. The use of peripheral CD3 +γδ +Vδ2 + T lymphocyte cells in combination with the ALBI score to predict immunotherapy response in patients with advanced hepatocellular carcinoma: a retrospective study. J Cancer Res Clin Oncol 2024; 150:365. [PMID: 39052085 PMCID: PMC11272815 DOI: 10.1007/s00432-024-05896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Currently, there is a lack of effective indicators for predicting the efficacy of immunotherapy in patients with advanced hepatocellular carcinoma (HCC). This study aimed to investigate the expression and prognostic value of peripheral T lymphocyte subsets in advanced HCC. METHODS Patients with advanced HCC who were treated with immune checkpoint inhibitors (ICIs) from December 2021 to December 2023 were included in the study. Flow cytometry was used to detect lymphocyte subsets before treatment. The patients were divided into disease control (DC) and nondisease control (nDC) groups based on treatment efficacy. Relationships between the clinical characteristics/peripheral T lymphocytes and immunotherapy efficacy were analyzed. The effectiveness of peripheral T lymphocyte subsets in predicting immunotherapy efficacy for patients with advanced HCC was analyzed using receiver operating characteristic (ROC) curves. RESULTS A total of 40 eligible patients were included in this study. Non-DC was significantly associated with higher albumin-bilirubin (ALBI) scores. The percentages of γδ+Vδ2+PD1+ T cells and γδ+Vδ2+Tim3+ T cells were greater in the nDC group than in the DC group. Multivariable regression analysis revealed that the ALBI score and T lymphocytes expressing γδ+Vδ2+PD1+ and γδ+Vδ2+Tim3+ were founded to be independent influencing factors. The area under the ROC curve (AUC) values for these combinations was 0.944 (95% CI, 0.882 ~ 1.000). CONCLUSIONS The calculation of the ALBI score and determination of the percentages CD3+γδ+Vδ2+PD1+ T lymphocytes and CD3+γδ+Vδ2+Tim3+ T lymphocytes in the peripheral blood of patients with advanced HCC are helpful for predicting the patients' responses to ICIs, helping to screen patients who may clinically benefit from immunotherapy. RETROSPECTIVELY REGISTERED: number: ChiCTR2400080409, date of registration: 2024-01-29.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/therapy
- Male
- Female
- Retrospective Studies
- Middle Aged
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Aged
- Prognosis
- CD3 Complex/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Luyang Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Chengli Liu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China.
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China.
- Graduate School of Hebei North University, Zhangjiakou, China.
| | - Meng Pu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yingbo Ma
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Jiaqi Chai
- Department of Colorectal Surgery, 731 Hospital of China Aerospace Science and Industry group, Beijing, China
| | - Haoming Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Jun Yang
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Meishan Chen
- Department of Ultrasound, Strategic Support Force Xingcheng Specialized Sanatorium, Huludao, China
| | - Linghong Kong
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tian Xia
- Graduate School of Hebei North University, Zhangjiakou, China
| |
Collapse
|
30
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
31
|
Chojnacka-Purpurowicz J, Owczarczyk-Saczonek A, Nedoszytko B. The Role of Gamma Delta T Lymphocytes in Physiological and Pathological Condition-Focus on Psoriasis, Atopic Dermatitis, Autoimmune Disorders, Cancer and Lymphomas. Int J Mol Sci 2024; 25:7960. [PMID: 39063202 PMCID: PMC11277122 DOI: 10.3390/ijms25147960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gamma delta (γδ) T cells are a heterogeneous population of cells that play roles in inflammation, host tissue repair, clearance of viral and bacterial pathogens, regulation of immune processes, and tumor surveillance. Recent research suggests that these are the main skin cells that produce interleukin-17 (I-17). Furthermore, γδ T cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. γδ T cells are found in epithelial tissues, where many cancers develop. There, they participate in antitumor immunity as cytotoxic cells or as immune coordinators. γδ T cells also participate in host defense, immune surveillance, and immune homeostasis. The aim of this review is to present the importance of γδ T cells in physiological and pathological diseases, such as psoriasis, atopic dermatitis, autoimmune diseases, cancer, and lymphoma.
Collapse
Affiliation(s)
- Joanna Chojnacka-Purpurowicz
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Bogusław Nedoszytko
- Department of Medical Laboratory Diagnostics–Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 3A M. Skłodowskiej-Curie Street, 80-210 Gdansk, Poland;
- Molecular Laboratory, Invicta Fertility and Reproductive Center, 81-740 Sopot, Poland
| |
Collapse
|
32
|
Wei CH, Chen YC, Huang SY. Dynamic changes in γδT cells and bone resorption markers after zoledronic acid in multiple myeloma: A prospective study. J Formos Med Assoc 2024:S0929-6646(24)00314-0. [PMID: 39004539 DOI: 10.1016/j.jfma.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
We conducted a prospective evaluation for the dynamic change of γδT cells in peripheral blood (PB) and N-telopeptide of type I collagen in urine (uNTX) of patients diagnosed with multiple myeloma (MM) who underwent their initial treatment with zoledronic acid (ZOA; Zobonic®, TTY, Taiwan). Between March 2012 and November 2015, a total of 35 patients were enrolled, including 25 newly diagnosed MM (NDMM) patients. The percentage of γδT cells in PB was assessed at 20 days prior to the first ZOA infusion, then at day 8, day 64, and day 85 after the infusion. Simultaneously, uNTX levels were measured as well. Thirty-three patients who had received at least one dose of ZOA were included in subsequent analysis. We identified three dynamic change patterns for γδT cells: fluctuated pattern, continuously increasing pattern, and continuously decreasing pattern. Among NDMM patients, those exhibiting a continuously increasing pattern showed a significantly shorter overall survival compared to those with the other two patterns combined (4.7 months vs. 92.9 months, p = 0.037). For uNTX, which levels significantly decreased following ZOA treatment. In conclusion, our findings reveal three distinct dynamic change patterns for γδT cells after ZOA initiation, with continuously increasing pattern being associated with a poor prognosis. These findings prompt further inquiry into the role of γδT cells in MM patients and support the suppressive nature of γδT cells and their associated tumor microenvironment.
Collapse
Affiliation(s)
- Chao-Hung Wei
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yeu-Chin Chen
- Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Shang-Yi Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
33
|
Zhang M, Li D, Zhu J, Xia X, Zhang H, Wu J, Wang S, Deng A, Wen Q, Tan J, Hao J, Jiang J, Bao X, Sun G, Lu J, Yang Q, Yang H, Cao G, Yin Z, Wang Q. IL-27 disturbs lipid metabolism and restrains mitochondrial activity to inhibit γδ T17 cell-mediated skin inflammation. Cell Death Dis 2024; 15:491. [PMID: 38982043 PMCID: PMC11233514 DOI: 10.1038/s41419-024-06887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
IL-17+ γδ T cells (γδ T17) are kick-starters of inflammation due to their strict immunosurveillance of xenobiotics or cellular damages and rapid response to pro-inflammatory stimulators. IL-27 is a well-recognized pleiotropic immune regulator with potent inhibitory effects on type 17 immune responses. However, its actions on γδ T17 mediated inflammation and the underlying mechanisms are less well understood. Here we find that IL-27 inhibits the production of IL-17 from γδ T cells. Mechanistically, IL-27 promotes lipolysis while inhibits lipogenesis, thus reduces the accumulation of lipids and subsequent membrane phospholipids, which leads to mitochondrial deactivation and ensuing reduction of IL-17. More importantly, Il27ra deficient γδ T cells are more pathogenic in an imiquimod-induced murine psoriasis model, while intracutaneous injection of rmIL-27 ameliorates psoriatic inflammation. In summary, this work uncovered the metabolic basis for the immune regulatory activity of IL-27 in restraining γδ T17 mediated inflammation, which provides novel insights into IL-27/IL-27Ra signaling, γδ T17 biology and the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Dehai Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
| | - Xue Xia
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Hua Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Jie Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
| | - Shengli Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Anyi Deng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Qiong Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Jingyi Tan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
| | - Hengwen Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Qian Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
35
|
Huang B, Bopp T, Li G. 8th Sino-German symposium on immunology: fostering mutual trust and collaborative endeavors for advancing immunological science. Cell Mol Immunol 2024; 21:798-799. [PMID: 38822078 PMCID: PMC11214616 DOI: 10.1038/s41423-024-01173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/02/2024] Open
Affiliation(s)
- Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| |
Collapse
|
36
|
Kabelitz D, Cierna L, Juraske C, Zarobkiewicz M, Schamel WW, Peters C. Empowering γδ T-cell functionality with vitamin C. Eur J Immunol 2024; 54:e2451028. [PMID: 38616772 DOI: 10.1002/eji.202451028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Vitamin C (ascorbic acid) is a potent antioxidant and a cofactor for various enzymes including histone demethylases and methylcytosine dioxygenases. Vitamin C also exerts direct cytotoxicity toward selected tumor cells including colorectal carcinoma. Moreover, vitamin C has been shown to impact immune cell differentiation at various levels including maturation and/or functionality of T cells and their progenitors, dendritic cells, B cells, and NK cells. γδ T cells have recently attracted great interest as effector cells for cell-based cancer immunotherapy, due to their HLA-independent recognition of a large variety of tumor cells. While γδ T cells can thus be also applied as an allogeneic off-the-shelf product, it is obvious that the effector function of γδ T cells needs to be optimized to ensure the best possible clinical efficacy. Here we review the immunomodulatory mechanisms of vitamin C with a special focus on how vitamin C enhances the effector function of γδ T cells. We also discuss future directions of how vitamin C can be used in the clinical setting to boost the efficacy of adoptive cell therapies.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, UKSH Campus Kiel, Kiel, Germany
| | - Lea Cierna
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Claudia Juraske
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
37
|
Kabelitz D, Yin Z. Immunotherapy with γδ T-cells: the future is there. Immunotherapy 2024; 16:705-708. [PMID: 38940301 PMCID: PMC11421294 DOI: 10.1080/1750743x.2024.2365622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University & University Hospital Schleswig-Holstein Campus Kiel, Kiel, 24105, Germany
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis & Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules & Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention & Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
38
|
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X, Wang H. γδ T cells and the PD-1/PD-L1 axis: a love-hate relationship in the tumor microenvironment. J Transl Med 2024; 22:553. [PMID: 38858763 PMCID: PMC11163710 DOI: 10.1186/s12967-024-05327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Gamma delta (γδ) T cells demonstrate strong cytotoxicity against diverse cancer cell types in an MHC-independent manner, rendering them promising contenders for cancer therapy. Although amplification and adoptive transfer of γδ T cells are being evaluated in the clinic, their therapeutic efficacy remains unsatisfactory, primarily due to the influence of the immunosuppressive tumor microenvironment (TME). Currently, the utilization of targeted therapeutic antibodies against inhibitory immune checkpoint (ICP) molecules is a viable approach to counteract the immunosuppressive consequences of the TME. Notably, PD-1/PD-L1 checkpoint inhibitors are considered primary treatment options for diverse malignancies, with the objective of preserving the response of αβ T cells. However, γδ T cells also infiltrate various human cancers and are important participants in cancer immunity, thereby influencing patient prognosis. Hence, it is imperative to comprehend the reciprocal impact of the PD-1/PD-L1 axis on γδ T cells. This understanding can serve as a therapeutic foundation for improving γδ T cells adoptive transfer therapy and may offer a novel avenue for future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Shi Y, Yao F, Yin Y, Wu C, Xia D, Zhang K, Jin Z, Liu X, He J, Zhang Z. Extracellular vesicles derived from immune cells: Role in tumor therapy. Int Immunopharmacol 2024; 133:112150. [PMID: 38669949 DOI: 10.1016/j.intimp.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Extracellular vesicles (EVs), which have a lipid nano-sized structure, are known to contain the active components of parental cells and play a crucial role in intercellular communication. The progression and metastasis of tumors are influenced by EVs derived from immune cells, which can simultaneously stimulate and suppress immune responses. In the past few decades, there has been a considerable focus on EVs due to their potential in various areas such as the development of vaccines, delivering drugs, making engineered modifications, and serving as biomarkers for diagnosis and prognosis. This review focuses on the substance information present in EVs derived from innate and adaptive immune cells, their effects on the immune system, and their applications in cancer treatment. While there are still challenges to overcome, it is important to explore the composition of immune cells released vesicles and their potential therapeutic role in tumor therapy. The review also highlights the current limitations and future prospects in utilizing EVs for treatment purposes.
Collapse
Affiliation(s)
- Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Fei Yao
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Yao Yin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Chen Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Desong Xia
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; The Second Affiliated Hospital of Guangxi Medical University, Nanning 530023, China.
| |
Collapse
|
40
|
Montenegro C, Perdomo-Celis F, Franco MA. Update on Early-Life T Cells: Impact on Oral Rotavirus Vaccines. Viruses 2024; 16:818. [PMID: 38932111 PMCID: PMC11209100 DOI: 10.3390/v16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rotavirus infection continues to be a significant public health problem in developing countries, despite the availability of several vaccines. The efficacy of oral rotavirus vaccines in young children may be affected by significant immunological differences between individuals in early life and adults. Therefore, understanding the dynamics of early-life systemic and mucosal immune responses and the factors that affect them is essential to improve the current rotavirus vaccines and develop the next generation of mucosal vaccines. This review focuses on the advances in T-cell development during early life in mice and humans, discussing how immune homeostasis and response to pathogens is established in this period compared to adults. Finally, the review explores how this knowledge of early-life T-cell immunity could be utilized to enhance current and novel rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Manuel A. Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110221, Colombia; (C.M.); (F.P.-C.)
| |
Collapse
|
41
|
Wei XY, Tan YQ, Zhou G. γδ T cells in oral diseases. Inflamm Res 2024; 73:867-876. [PMID: 38563967 DOI: 10.1007/s00011-024-01870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE γδ T cells are a distinct subset of unconventional T cells, which link innate and adaptive immunity by secreting cytokines and interacting with other immune cells, thereby modulating immune responses. As the first line of host defense, γδ T cells are essential for mucosal homeostasis and immune surveillance. When abnormally activated or impaired, γδ T cells can contribute to pathogenic processes. Accumulating evidence has revealed substantial impacts of γδ T cells on the pathogenesis of cancers, infections, and immune-inflammatory diseases. γδ T cells exhibit dual roles in cancers, promoting or inhibiting tumor growth, depending on their phenotypes and the clinical stage of cancers. During infections, γδ T cells exert high cytotoxic activity in infectious diseases, which is essential for combating bacterial and viral infections by recognizing foreign antigens and activating other immune cells. γδ T cells are also implicated in the onset and progression of immune-inflammatory diseases. However, the specific involvement and underlying mechanisms of γδ T cells in oral diseases have not been systematically discussed. METHODS We conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases. RESULTS The literature review revealed that γδ T cells play a pivotal role in maintaining oral mucosal homeostasis and are involved in the pathogenesis of oral cancers, periodontal diseases, graft-versus-host disease (GVHD), oral lichen planus (OLP), and oral candidiasis. γδ T cells mainly influence various pathophysiological processes, such as anti-tumor activity, eradication of infection, and immune response regulation. CONCLUSION This review focuses on the involvement of γδ T cells in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which γδ T cells influence the pathogenesis and progression of these conditions. This review underscores the potential of γδ T cells as therapeutic targets in managing oral health issues.
Collapse
Affiliation(s)
- Xin-Yi Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
42
|
Zhang J, Yao Z. Immune cell trafficking: a novel perspective on the gut-skin axis. Inflamm Regen 2024; 44:21. [PMID: 38654394 DOI: 10.1186/s41232-024-00334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Immune cell trafficking, an essential mechanism for maintaining immunological homeostasis and mounting effective responses to infections, operates under a stringent regulatory framework. Recent advances have shed light on the perturbation of cell migration patterns, highlighting how such disturbances can propagate inflammatory diseases from their origin to distal organs. This review collates and discusses current evidence that demonstrates atypical communication between the gut and skin, which are conventionally viewed as distinct immunological spheres, in the milieu of inflammation. We focus on the aberrant, reciprocal translocation of immune cells along the gut-skin axis as a pivotal factor linking intestinal and dermatological inflammatory conditions. Recognizing that the translation of these findings into clinical practices is nascent, we suggest that therapeutic strategies aimed at modulating the axis may offer substantial benefits in mitigating the widespread impact of inflammatory diseases.
Collapse
Affiliation(s)
- Jiayan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Kabelitz D. Delta One T cells recognize AML via DNAM-1. Blood 2024; 143:1434-1436. [PMID: 38602695 DOI: 10.1182/blood.2024024120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Affiliation(s)
- Dieter Kabelitz
- Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein Campus
| |
Collapse
|
44
|
Cheng C, Liang S, Yue K, Wu N, Li Z, Dong T, Dong X, Ling M, Jiang Q, Liu J, Huang XJ. STAT5 is essential for inducing the suppressive subset and attenuate cytotoxicity of Vδ2 + T cells in acute myeloid leukemia. Cancer Lett 2024; 587:216730. [PMID: 38360140 DOI: 10.1016/j.canlet.2024.216730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Under the sustained exposure to tumor microenvironment, effector lymphocytes may transform into the suppressive populations. γδ T cells are recognized as a crucial mediator and effector of immune surveillance and thereby a promising candidate for anti-tumor immunotherapy. Emerging clinical studies implicate that some γδ T subsets play an important role in promoting tumor progression. Our previous study identified an abnormal Vδ2+ T cells subset with regulatory features (Reg-Vδ2) in the patients with newly diagnosed acute myeloid leukemia (AML), and demonstrated that Reg-Vδ2 cells significantly suppressed the anti-AML effects of effector Vδ2 cells (Eff-Vδ2). The molecular mechanism underlying the subset transformation of Vδ2 cells remains unclear. Here, we found that the expression and activity of STAT5 were significantly induced in Reg-Vδ2 cells compared with Eff-Vδ2 cells, which was consistent with the differences found in primary Vδ2 cells between AML patients and healthy donors. In-vitro experiments further indicated that STAT5 was required for the induction of Reg-Vδ2 cells. The combined immunophenotypical and functional assays showed that blockage of STAT5 alleviated the immunosuppressive effect of Reg-Vδ2 cells on Eff-Vδ2 cells and enhanced the anti-AML capacity of Vδ2 cells from health donors and AML patients. Collectively, these results suggest that STAT5 acts as a critical regulator in the transformation of effector Vδ2 cells into a subset with immunosuppressive characteristics, providing a potential target for the improvement the efficacy of γδ T cells-based immunotherapy to treat AML and other hematologic malignancies.
Collapse
Affiliation(s)
- Cong Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (2019RU029), Beijing, China
| | - Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Keli Yue
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ning Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zongru Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tianhui Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xinyu Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Min Ling
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (2019RU029), Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
45
|
Kabelitz D. Novel insights into regulation of butyrophilin molecules: critical components of cancer immunosurveillance by γδ T cells. Cell Mol Immunol 2024; 21:409-411. [PMID: 38532044 PMCID: PMC10978863 DOI: 10.1038/s41423-024-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 03/28/2024] Open
|
46
|
Yuan M, Wang W, Hawes I, Han J, Yao Z, Bertaina A. Advancements in γδT cell engineering: paving the way for enhanced cancer immunotherapy. Front Immunol 2024; 15:1360237. [PMID: 38576617 PMCID: PMC10991697 DOI: 10.3389/fimmu.2024.1360237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αβT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.
Collapse
Affiliation(s)
| | - Wenjun Wang
- *Correspondence: Wenjun Wang, ; Alice Bertaina,
| | | | | | | | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
47
|
Clayton SW, Walk RE, Mpofu L, Easson GW, Tang SY. Analysis of Infiltrating Immune Cells Following Intervertebral Disc Injury Reveals Recruitment of Gamma-Delta ( γδ) T cells in Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582950. [PMID: 38464124 PMCID: PMC10925253 DOI: 10.1101/2024.03.01.582950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Inadequate repair of injured intervertebral discs (IVD) leads to degeneration and contributes to low back pain. Infiltrating immune cells into damaged musculoskeletal tissues are critical mediators of repair, yet little is known about their identities, roles, and temporal regulation following IVD injury. By analyzing longitudinal changes in gene expression, tissue morphology, and the dynamics of infiltrating immune cells following injury, we characterize sex-specific differences in immune cell populations and identify the involvement of previously unreported immune cell types, γδ and NKT cells. Cd3+Cd4-Cd8- T cells are the largest infiltrating lymphocyte population with injury, and we identified the presence of γδ T cells in this population in female mice specifically, and NKT cells in males. Injury-mediated IVD degeneration was prevalent in both sexes, but more severe in males. Sex-specific degeneration may be associated with the differential immune response since γδ T cells have potent anti-inflammatory roles and may mediate IVD repair.
Collapse
Affiliation(s)
| | - Remy E. Walk
- Washington University in St. Louis, St. Louis, MO
| | - Laura Mpofu
- Washington University in St. Louis, St. Louis, MO
| | | | | |
Collapse
|
48
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
49
|
Yang J, Zhu X, Feng J. The Changes in the Quantity of Lymphocyte Subpopulations during the Process of Sepsis. Int J Mol Sci 2024; 25:1902. [PMID: 38339179 PMCID: PMC10855580 DOI: 10.3390/ijms25031902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis remains a global challenge, especially in low- and middle-income countries, where there is an urgent need for easily accessible and cost-effective biomarkers to predict the occurrence and prognosis of sepsis. Lymphocyte counts are easy to measure clinically, and a large body of animal and clinical research has shown that lymphocyte counts are closely related to the incidence and prognosis of sepsis. This review extensively collected experimental articles related to lymphocyte counts since the unification of the definition of sepsis. The article categorizes and discusses the relationship between absolute lymphocyte counts, intrinsic lymphocyte subsets, effector T-lymphocytes, B-lymphocytes, dendritic cells, and the incidence and prognosis of sepsis. The results indicate that comparisons of absolute lymphocyte counts alone are meaningless. However, in addition to absolute lymphocyte counts, innate lymphocyte subsets, effector T-cells, B-lymphocytes, and dendritic cells have shown certain research value in related studies.
Collapse
Affiliation(s)
- Jiale Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
50
|
Lee H, Park SH, Shin EC. IL-15 in T-Cell Responses and Immunopathogenesis. Immune Netw 2024; 24:e11. [PMID: 38455459 PMCID: PMC10917573 DOI: 10.4110/in.2024.24.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.
Collapse
Affiliation(s)
- Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|