1
|
Acevedo-Román A, Pagán-Zayas N, Velázquez-Rivera LI, Torres-Ventura AC, Godoy-Vitorino F. Insights into Gut Dysbiosis: Inflammatory Diseases, Obesity, and Restoration Approaches. Int J Mol Sci 2024; 25:9715. [PMID: 39273662 PMCID: PMC11396321 DOI: 10.3390/ijms25179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota is one of the most critical factors in human health. It involves numerous physiological processes impacting host health, mainly via immune system modulation. A balanced microbiome contributes to the gut's barrier function, preventing the invasion of pathogens and maintaining the integrity of the gut lining. Dysbiosis, or an imbalance in the gut microbiome's composition and function, disrupts essential processes and contributes to various diseases. This narrative review summarizes key findings related to the gut microbiota in modern multifactorial inflammatory conditions such as ulcerative colitis or Crohn's disease. It addresses the challenges posed by antibiotic-driven dysbiosis, particularly in the context of C. difficile infections, and the development of novel therapies like fecal microbiota transplantation and biotherapeutic drugs to combat these infections. An emphasis is given to restoration of the healthy gut microbiome through dietary interventions, probiotics, prebiotics, and novel approaches for managing gut-related diseases.
Collapse
Affiliation(s)
- Andy Acevedo-Román
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Natalia Pagán-Zayas
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Liz I Velázquez-Rivera
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Aryanne C Torres-Ventura
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Filipa Godoy-Vitorino
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| |
Collapse
|
2
|
Finnegan PM, Garber PA, McKenney AC, Bicca-Marques JC, De la Fuente MF, Abreu F, Souto A, Schiel N, Amato KR, Mallott EK. Group membership, not diet, structures the composition and functional potential of the gut microbiome in a wild primate. mSphere 2024; 9:e0023324. [PMID: 38940510 PMCID: PMC11288025 DOI: 10.1128/msphere.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
The gut microbiome has the potential to buffer temporal variations in resource availability and consumption, which may play a key role in the ability of animals to adapt to a broad range of habitats. We investigated the temporal composition and function of the gut microbiomes of wild common marmosets (Callithrix jacchus) exploiting a hot, dry environment-Caatinga-in northeastern Brazil. We collected fecal samples during two time periods (July-August and February-March) for 2 years from marmosets belonging to eight social groups. We used 16S rRNA gene amplicon sequencing, metagenomic sequencing, and butyrate RT-qPCR to assess changes in the composition and potential function of their gut microbiomes. Additionally, we identified the plant, invertebrate, and vertebrate components of the marmosets' diet via DNA metabarcoding. Invertebrate, but not plant or vertebrate, consumption varied across the year. However, gut microbiome composition and potential function did not markedly vary across study periods or as a function of diet composition. Instead, the gut microbiome differed markedly in both composition and potential function across marmosets residing in different social groups. We highlight the likely role of factors, such as behavior, residence, and environmental heterogeneity, in modulating the structure of the gut microbiome. IMPORTANCE In a highly socially cohesive and cooperative primate, group membership more strongly predicts gut microbiome composition and function than diet.
Collapse
Affiliation(s)
- Peter M. Finnegan
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Paul A. Garber
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Anna C. McKenney
- Department of Natural Sciences, Parkland College, Champaign, Illinois, USA
| | - Júlio César Bicca-Marques
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católicado Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Filipa Abreu
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nicola Schiel
- Laboratório de Etologia Teórica e Aplicada, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Jose L, Lee W, Hanya G, Tuuga A, Goossens B, Tangah J, Matsuda I, Kumar VS. Gut microbial community in proboscis monkeys ( Nasalis larvatus): implications for effects of geographical and social factors. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231756. [PMID: 39050721 PMCID: PMC11265907 DOI: 10.1098/rsos.231756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Recent technological advances have enabled comprehensive analyses of the previously uncharacterized microbial community in the gastrointestinal tracts of numerous animal species; however, the gut microbiota of several species, such as the endangered proboscis monkey (Nasalis larvatus) examined in this study, remains poorly understood. Our study sought to establish the first comprehensive data on the gut microbiota of free-ranging foregut-fermenting proboscis monkeys and to determine how their microbiota are affected locally by environmental factors, i.e. geographical distance, and social factors, i.e. the number of adult females within harem groups and the number of adults and subadults within non-harem groups, in a riverine forest in Sabah, Malaysian Borneo. Using 16S rRNA gene sequencing of 264 faecal samples collected from free-ranging proboscis monkeys, we demonstrated the trend that their microbial community composition is not particularly distinctive compared with other foregut- and hindgut-fermenting primates. The microbial alpha diversity was higher in larger groups and individuals inhabiting diverse vegetation (i.e. presumed to have a diverse diet). For microbial beta diversity, some measures were significant, showing higher values with larger geographical distances between samples. These results suggest that social factors such as increased inter-individual interactions, which can occur with larger groups, as well as physical distances between individuals or differences in dietary patterns, may affect the gut microbial communities.
Collapse
Affiliation(s)
- Lilian Jose
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Wanyi Lee
- National Taiwan University, Taipei10617, Taiwan
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
| | - Benoit Goossens
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Danau Girang Field Centre, Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Joseph Tangah
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto606-8203, Japan
- Chubu Institute for Advanced Studies, Chubu University, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Chubu University Academy of Emerging Sciences, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| |
Collapse
|
4
|
Mafra D, Borges NA, Baptista BG, Martins LF, Borland G, Shiels PG, Stenvinkel P. What Can the Gut Microbiota of Animals Teach Us about the Relationship between Nutrition and Burden of Lifestyle Diseases? Nutrients 2024; 16:1789. [PMID: 38892721 PMCID: PMC11174762 DOI: 10.3390/nu16111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota performs several crucial roles in a holobiont with its host, including immune regulation, nutrient absorption, synthesis, and defense against external pathogens, significantly influencing host physiology. Disruption of the gut microbiota has been linked to various chronic conditions, including cardiovascular, kidney, liver, respiratory, and intestinal diseases. Studying how animals adapt their gut microbiota across their life course at different life stages and under the dynamics of extreme environmental conditions can provide valuable insights from the natural world into how the microbiota modulates host biology, with a view to translating these into treatments or preventative measures for human diseases. By modulating the gut microbiota, opportunities to address many complications associated with chronic diseases appear. Such a biomimetic approach holds promise for exploring new strategies in healthcare and disease management.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Natália A. Borges
- Graduate Program in Food, Nutrition, and Health, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro 21941-909, Brazil;
| | - Beatriz G. Baptista
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
| | - Layla F. Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Gillian Borland
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Paul G. Shiels
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden;
| |
Collapse
|
5
|
Raulo A, Bürkner PC, Finerty GE, Dale J, Hanski E, English HM, Lamberth C, Firth JA, Coulson T, Knowles SCL. Social and environmental transmission spread different sets of gut microbes in wild mice. Nat Ecol Evol 2024; 8:972-985. [PMID: 38689017 PMCID: PMC11090834 DOI: 10.1038/s41559-024-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
Gut microbes shape many aspects of organismal biology, yet how these key bacteria transmit among hosts in natural populations remains poorly understood. Recent work in mammals has emphasized either transmission through social contacts or indirect transmission through environmental contact, but the relative importance of different routes has not been directly assessed. Here we used a novel radio-frequency identification-based tracking system to collect long-term high-resolution data on social relationships, space use and microhabitat in a wild population of mice (Apodemus sylvaticus), while regularly characterizing their gut microbiota with 16S ribosomal RNA profiling. Through probabilistic modelling of the resulting data, we identify positive and statistically distinct signals of social and environmental transmission, captured by social networks and overlap in home ranges, respectively. Strikingly, microorganisms with distinct biological attributes drove these different transmission signals. While the social network effect on microbiota was driven by anaerobic bacteria, the effect of shared space was most influenced by aerotolerant spore-forming bacteria. These findings support the prediction that social contact is important for the transfer of microorganisms with low oxygen tolerance, while those that can tolerate oxygen or form spores may be able to transmit indirectly through the environment. Overall, these results suggest social and environmental transmission routes can spread biologically distinct members of the mammalian gut microbiota.
Collapse
Affiliation(s)
- Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Computing, University of Turku, Turku, Finland.
| | | | - Genevieve E Finerty
- Department of Biology, University of Oxford, Oxford, UK
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Jarrah Dale
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Holly M English
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Curt Lamberth
- Department of Biology, University of Oxford, Oxford, UK
| | - Josh A Firth
- Department of Biology, University of Oxford, Oxford, UK
- School of Biology, University of Leeds, Leeds, UK
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Lee W, Hayakawa T, Kiyono M, Yamabata N, Enari H, Enari HS, Fujita S, Kawazoe T, Asai T, Oi T, Kondo T, Uno T, Seki K, Shimada M, Tsuji Y, Langgeng A, MacIntosh A, Suzuki K, Yamada K, Onishi K, Ueno M, Kubo K, Hanya G. Diet-related factors strongly shaped the gut microbiota of Japanese macaques. Am J Primatol 2023; 85:e23555. [PMID: 37766673 DOI: 10.1002/ajp.23555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/08/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Although knowledge of the functions of the gut microbiome has increased greatly over the past few decades, our understanding of the mechanisms governing its ecology and evolution remains obscure. While host genetic distance is a strong predictor of the gut microbiome in large-scale studies and captive settings, its influence has not always been evident at finer taxonomic scales, especially when considering among the recently diverged animals in natural settings. Comparing the gut microbiome of 19 populations of Japanese macaques Macaca fuscata across the Japanese archipelago, we assessed the relative roles of host genetic distance, geographic distance and dietary factors in influencing the macaque gut microbiome. Our results suggested that the macaques may maintain a core gut microbiome, while each population may have acquired some microbes from its specific habitat/diet. Diet-related factors such as season, forest, and reliance on anthropogenic foods played a stronger role in shaping the macaque gut microbiome. Among closely related mammalian hosts, host genetics may have limited effects on the gut microbiome since the hosts generally have smaller physiological differences. This study contributes to our understanding of the relative roles of host phylogeography and dietary factors in shaping the gut microbiome of closely related mammalian hosts.
Collapse
Affiliation(s)
- Wanyi Lee
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mieko Kiyono
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo, Japan
| | - Naoto Yamabata
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, Japan
| | - Hiroto Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Haruka S Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Shiho Fujita
- Department of Behavioral Physiology and Ecology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Kawazoe
- Research Institute for Languages and Cultures of Asia and Africa, Tokyo University of Foreign Studies, Tokyo, Japan
| | - Takayuki Asai
- South Kyushu Wildlife Management Center, Kagoshima, Japan
| | - Toru Oi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | | | - Takeharu Uno
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Kentaro Seki
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Masaki Shimada
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Yamanashi, Japan
| | - Yamato Tsuji
- Department of Science and Engineering, Ishinomaki Senshu University, Ishinomaki, Miyagi, Japan
| | - Abdullah Langgeng
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | - Andrew MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | | | - Kazunori Yamada
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Kenji Onishi
- Department of Early Childhood Education, Nara University of Education, Nara, Japan
| | - Masataka Ueno
- Faculty of Applied Sociology, Kindai University, Higashiosaka, Osaka, Japan
| | - Kentaro Kubo
- Cultural Asset Management Division, Board of Education, Oita-City, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
7
|
Huang G, Shi W, Wang L, Qu Q, Zuo Z, Wang J, Zhao F, Wei F. PandaGUT provides new insights into bacterial diversity, function, and resistome landscapes with implications for conservation. MICROBIOME 2023; 11:221. [PMID: 37805557 PMCID: PMC10559513 DOI: 10.1186/s40168-023-01657-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/23/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The gut microbiota play important roles in host adaptation and evolution, but are understudied in natural population of wild mammals. To address host adaptive evolution and improve conservation efforts of threatened mammals from a metagenomic perspective, we established a high-quality gut microbiome catalog of the giant panda (pandaGUT) to resolve the microbiome diversity, functional, and resistome landscapes using approximately 7 Tbp of long- and short-read sequencing data from 439 stool samples. RESULTS The pandaGUT catalog comprises 820 metagenome-assembled genomes, including 40 complete closed genomes, and 64.5% of which belong to species that have not been previously reported, greatly expanding the coverage of most prokaryotic lineages. The catalog contains 2.37 million unique genes, with 74.8% possessing complete open read frames, facilitating future mining of microbial functional potential. We identified three microbial enterotypes across wild and captive panda populations characterized by Clostridium, Pseudomonas, and Escherichia, respectively. We found that wild pandas exhibited host genetic-specific microbial structures and functions, suggesting host-gut microbiota phylosymbiosis, while the captive cohorts encoded more multi-drug resistance genes. CONCLUSIONS Our study provides largely untapped resources for biochemical and biotechnological applications as well as potential intervention avenues via the rational manipulation of microbial diversity and reducing antibiotic usage for future conservation management of wildlife. Video Abstract.
Collapse
Affiliation(s)
- Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingyue Qu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenqiang Zuo
- Laboratory for Computational Genomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Wang
- Laboratory for Computational Genomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangqing Zhao
- Laboratory for Computational Genomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhang T, Li M, Shi T, Yan Y, Niyazbekova Z, Wang X, Li Z, Jiang Y. Transmission of the gut microbiome in cohousing goats and pigs. Front Microbiol 2022; 13:948617. [PMID: 36160207 PMCID: PMC9490217 DOI: 10.3389/fmicb.2022.948617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Social interaction facilitates the horizontal transmission of the microbiota between different individuals. However, little is known about the level of microbiota transmission in different livestock animals and different digestive tracts. The Hainan black goat and Wuzhishan pig are typical tropical local breeds on Hainan Island in China. Thus, we sampled and analyzed the gut microbiome in Hainan black goats (cecum and rumen) and Wuzhishan pigs (cecum) to study horizontal transmission by rearing them in the same pen (six goats and six pigs) or separate pens (nine goats and nine pigs). De novo assembly and binning recovered 3,262 strain-level and 2,488 species-level metagenome-assembled genomes (MAGs) using ∼1.3 Tb sequencing data. Of these MAGs, 1,856 MAGs were identified as novel strain. Compared with goats living in separate pens, social interaction in the same pen promotes community homogeneity in the rumen microbiome (P < 0.05) and the cecum microbiome (P < 0.05), respectively. Notably, approximately 7.08% (231/3262) of the gut microbial population could transmit during cohousing, 12 strains only in inter-species transmission, versus 190 strains only in intra-species transmission, and 10 strains only in foregut and hindgut transmission. In addition, the social contact group has high transmitted strain abundance, which is correlated with community composition. This study provided a new insight into the influence of social interaction on the animal gut microbiota.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mao Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Tao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yueyang Yan
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhannur Niyazbekova
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Zongjun Li,
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- *Correspondence: Yu Jiang,
| |
Collapse
|
9
|
Asangba AE, Mugisha L, Rukundo J, Lewis RJ, Halajian A, Cortés-Ortiz L, Junge RE, Irwin MT, Karlson J, Perkin A, Watsa M, Erkenswick G, Bales KL, Patton DL, Jasinska AJ, Fernandez-Duque E, Leigh SR, Stumpf RM. Large Comparative Analyses of Primate Body Site Microbiomes Indicate that the Oral Microbiome Is Unique among All Body Sites and Conserved among Nonhuman Primates. Microbiol Spectr 2022; 10:e0164321. [PMID: 35587638 PMCID: PMC9241786 DOI: 10.1128/spectrum.01643-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution.
Collapse
Affiliation(s)
- Abigail E. Asangba
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lawrence Mugisha
- Ecohealth Research Group, Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
- Department of Wildlife & Aquatic Animal Resources, College of Veterinary Medicine, Animal Resources & Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Joshua Rukundo
- Chimpanzee Sanctuary and Wildlife Conservation (Chimpanzee Trust), Ngamba Island, Uganda
| | - Rebecca J. Lewis
- Department of Anthropology, University of Texas at Austin, Austin, Texas, USA
| | - Ali Halajian
- Research Administration and Development, University of Limpopo, Sovenga, South Africa
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Mitchell T. Irwin
- Department of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
| | - Johan Karlson
- Tanzania Forest Conservation Group and Nocturnal Primate Research Group, Dar es Salaam, Tanzania
| | - Andrew Perkin
- Tanzania Forest Conservation Group and Nocturnal Primate Research Group, Dar es Salaam, Tanzania
| | - Mrinalini Watsa
- San Diego Zoo Wildlife Alliance, San Diego, California, USA
- Field Projects International, Escondido, California, USA
| | - Gideon Erkenswick
- Field Projects International, Escondido, California, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Karen L. Bales
- Department of Psychology, University of California Davis, Davis, California, USA
| | - Dorothy L. Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Steven R. Leigh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Anthropology, University of Colorado—Boulder, Boulder, Colorado, USA
| | - Rebecca M. Stumpf
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Kanyanchu River Chimpanzee Project and Research Collaborative, Bigodi, Uganda
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Notre Dame Institute for Advanced Study, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
10
|
Donohue ME, Rowe AK, Kowalewski E, Hert ZL, Karrick CE, Randriamanandaza LJ, Zakamanana F, Nomenjanahary S, Andriamalala RY, Everson KM, Law AD, Moe L, Wright PC, Weisrock DW. Significant effects of host dietary guild and phylogeny in wild lemur gut microbiomes. ISME COMMUNICATIONS 2022; 2:33. [PMID: 37938265 PMCID: PMC9723590 DOI: 10.1038/s43705-022-00115-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 04/27/2023]
Abstract
Mammals harbor diverse gut microbiomes (GMs) that perform critical functions for host health and fitness. Identifying factors associated with GM variation can help illuminate the role of microbial symbionts in mediating host ecological interactions and evolutionary processes, including diversification and adaptation. Many mammals demonstrate phylosymbiosis-a pattern in which more closely-related species harbor more similar GMs-while others show overwhelming influences of diet and habitat. Here, we generated 16S rRNA sequence data from fecal samples of 15 species of wild lemurs across southern Madagascar to (1) test a hypothesis of phylosymbiosis, and (2) test trait correlations between dietary guild, habitat, and GM diversity. Our results provide strong evidence of phylosymbiosis, though some closely-related species with substantial ecological niche overlap exhibited greater GM similarity than expected under Brownian motion. Phylogenetic regressions also showed a significant correlation between dietary guild and UniFrac diversity, but not Bray-Curtis or Jaccard. This discrepancy between beta diversity metrics suggests that older microbial clades have stronger associations with diet than younger clades, as UniFrac weights older clades more heavily. We conclude that GM diversity is predominantly shaped by host phylogeny, and that microbes associated with diet were likely acquired before evolutionary radiations within the lemur families examined.
Collapse
Affiliation(s)
- Mariah E Donohue
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| | - Amanda K Rowe
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, NY, USA
| | - Eric Kowalewski
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Zoe L Hert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Carly E Karrick
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | | | | - Stela Nomenjanahary
- Anthropobiologie et Développement Durable, Université Antananarivo, Antananarivo, Madagascar
| | - Rostant Y Andriamalala
- Anthropobiologie et Développement Durable, Université Antananarivo, Antananarivo, Madagascar
| | | | - Audrey D Law
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Luke Moe
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Patricia C Wright
- Centre ValBio Research Station, Ranomafana, Madagascar
- Department of Anthropology, Stony Brook University, Stony Brook, New York, NY, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
11
|
Gogarten JF. Roles for non-human primate-associated phage diversity in improving medicine and public health. Evol Med Public Health 2022; 10:123-129. [PMID: 35273804 PMCID: PMC8903135 DOI: 10.1093/emph/eoac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mammals harbor trillions of microorganisms and understanding the ecological and evolutionary processes structuring these ecosystems may provide insights relevant to public health and medicine. Comparative studies with our closest living relatives, non-human primates, have provided first insights into their rich bacteriophage communities. Here, I discuss how this phage diversity can be useful for combatting antibiotic-resistant infections and understanding disease emergence risk. For example, some primate-associated phages show a pattern suggesting a long-term co-divergence with their primate superhosts-co-diverging phages may be more likely to exhibit a narrow host range and thus less useful for phage therapy. Captive primates lose their natural phageome, which is replaced by human-associated phages making phages an exciting tool for studying rates of microorganism transmission at human-wildlife interfaces. This commentary tackles avenues for selecting phages for therapeutic interventions based on their ecological and evolutionary history, while discussing frameworks to allow primate-associated phages to be incorporated into the arsenal of clinicians.
Collapse
Affiliation(s)
- Jan F Gogarten
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Str. 26 17489 Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Viral Evolution, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
12
|
Rudolph K, Schneider D, Fichtel C, Daniel R, Heistermann M, Kappeler PM. Drivers of gut microbiome variation within and between groups of a wild Malagasy primate. MICROBIOME 2022; 10:28. [PMID: 35139921 PMCID: PMC8827170 DOI: 10.1186/s40168-021-01223-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Various aspects of sociality can benefit individuals' health. The host social environment and its relative contributions to the host-microbiome relationship have emerged as key topics in microbial research. Yet, understanding the mechanisms that lead to structural variation in the social microbiome, the collective microbial metacommunity of an animal's social network, remains difficult since multiple processes operate simultaneously within and among animal social networks. Here, we examined the potential drivers of the convergence of the gut microbiome on multiple scales among and within seven neighbouring groups of wild Verreaux's sifakas (Propithecus verreauxi) - a folivorous primate of Madagascar. RESULTS Over four field seasons, we collected 519 faecal samples of 41 animals and determined gut communities via 16S and 18S rRNA gene amplicon analyses. First, we examined whether group members share more similar gut microbiota and if diet, home range overlap, or habitat similarity drive between-group variation in gut communities, accounting for seasonality. Next, we examined within-group variation in gut microbiota by examining the potential effects of social contact rates, male rank, and maternal relatedness. To explore the host intrinsic effects on the gut community structure, we investigated age, sex, faecal glucocorticoid metabolites, and female reproductive state. We found that group members share more similar gut microbiota and differ in alpha diversity, while none of the environmental predictors explained the patterns of between-group variation. Maternal relatedness played an important role in within-group microbial homogeneity and may also explain why adult group members shared the least similar gut microbiota. Also, dominant males differed in their bacterial composition from their group mates, which might be driven by rank-related differences in physiology and scent-marking behaviours. Links to sex, female reproductive state, or faecal glucocorticoid metabolites were not detected. CONCLUSIONS Environmental factors define the general set-up of population-specific gut microbiota, but intrinsic and social factors have a stronger impact on gut microbiome variation in this primate species. Video abstract.
Collapse
Affiliation(s)
- Katja Rudolph
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| |
Collapse
|
13
|
Oliveira-Filho EFD, Carneiro IO, Fischer C, Kühne A, Postigo-Hidalgo I, Ribas JRL, Schumann P, Nowak K, Gogarten JF, de Lamballerie X, Dantas-Torres F, Netto EM, Franke CR, Couacy-Hymann E, Leendertz FH, Drexler JF. Evidence against Zika virus infection of pets and peri-domestic animals in Latin America and Africa. J Gen Virol 2022; 103. [PMID: 35077341 PMCID: PMC8895617 DOI: 10.1099/jgv.0.001709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decades after its discovery in East Africa, Zika virus (ZIKV) emerged in Brazil in 2013 and infected millions of people during intense urban transmission. Whether vertebrates other than humans are involved in ZIKV transmission cycles remained unclear. Here, we investigate the role of different animals as ZIKV reservoirs by testing 1723 sera of pets, peri-domestic animals and African non-human primates (NHP) sampled during 2013–2018 in Brazil and 2006–2016 in Côte d'Ivoire. Exhaustive neutralization testing substantiated co-circulation of multiple flaviviruses and failed to confirm ZIKV infection in pets or peri-domestic animals in Côte d'Ivoire (n=259) and Brazil (n=1416). In contrast, ZIKV seroprevalence was 22.2% (2/9, 95% CI, 2.8–60.1) in West African chimpanzees (Pan troglodytes verus) and 11.1% (1/9, 95% CI, 0.3–48.3) in king colobus (Colobus polycomos). Our results indicate that while NHP may represent ZIKV reservoirs in Africa, pets or peri-domestic animals likely do not play a role in ZIKV transmission cycles.
Collapse
Affiliation(s)
- Edmilson F. de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ignacio Postigo-Hidalgo
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Peggy Schumann
- Labor Berlin, Charité Vivantes Services GmbH, Berlin, Germany
| | - Kathrin Nowak
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Jan F. Gogarten
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Viral Evolution, Robert Koch Institute, Berlin, Germany
- Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| | - Xavier de Lamballerie
- Unité des Virus Émergents (Aix-Marseille University, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | | | | | - Emmanuel Couacy-Hymann
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville, Côte d'Ivoire
| | - Fabian H. Leendertz
- Helmholtz Institute for One Health, Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- German Centre for Infection Research (DZIF), associated partner site Charité, Berlin, Germany
| |
Collapse
|
14
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
15
|
Grassotti TT, Kothe CI, Prichula J, Mohellibi N, Mann MB, Wagner PGC, Campos FS, Campos AAS, Frazzon J, Frazzon APG. Fecal bacterial communities of wild black capuchin monkeys ( Sapajus nigritus) from the Atlantic Forest biome in Southern Brazil are divergent from those of other non-human primates. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100048. [PMID: 34841339 PMCID: PMC8610302 DOI: 10.1016/j.crmicr.2021.100048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota are influenced by factors such as diet, habitat, and social contact, which directly affect the host's health. Studies related to gut microbiota in non-human primates are increasing worldwide. However, little remains known about the gut bacterial composition in wild Brazilian monkeys. Therefore, we studied the fecal microbiota composition of wild black capuchin monkey (Sapajus nigritus) (n=10) populations from two different Atlantic Forest biome fragments (five individuals per fragment) in south Brazil. The bacterial community was identified via the high-throughput sequencing and partial amplification of the 16S rRNA gene (V4 region) using an Ion Personal Genome Machine (PGMTM) System. In contrast to other studies involving monkey microbiota, which have generally reported the phyla Firmicutes and Bacteroidetes as predominant, black capuchin monkeys showed a high relative abundance of Proteobacteria ( χ ¯ = 80.54%), followed by Firmicutes ( χ ¯ = 12.14%), Actinobacteria ( χ ¯ = 4.60%), and Bacteriodetes ( χ ¯ = 1.31%). This observed particularity may have been influenced by anthropogenic actions related to the wild habitat and/or diet specific to the Brazilian biome's characteristics and/or monkey foraging behavior. Comparisons of species richness (Chao1) and diversity indices (Simpson and InvSimpson) showed no significant differences between the two groups of monkeys. Interestingly, PICRUSt2 analysis revealed that metabolic pathways present in the bacterial communities were associated with xenobiotic biodegradation and the biosynthesis of secondary metabolites, which may suggest positive effects on monkey health and conservation in this anthropogenic habitat. Infectious disease-associated microorganisms were also observed in the samples. The present study provides information about the bacterial population and metabolic functions present in fecal microbiota, which may contribute to a better understanding of the ecology and biology of black capuchin monkeys living in forest fragments within the Atlantic Forest biome in southern Brazil. Additionally, the present study demonstrates that the fecal bacterial communities of wild black capuchin monkeys in this area are divergent from those of other wild non-human primates.
Collapse
Key Words
- FROGS, Find Rapidly OTUs with Galaxy Solution
- FastQC, Fast Quality Control
- Fecal microbiota
- HTS, high-throughput sequencing
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MultiQC, Multi Quality Control
- OTUs, Operational Taxonomic Units
- PGMTM, Personal Genome Machine
- PICRUSt2, Phylogenetic Investigation of Communities by Reconstruction of Unobserved State
- Primate conservation
- Proteobacteria
- Robust capuchins
- SCS, Santa Cruz do Sul
- SSC, São Sebastião do Caí
- SSU, Small Subunit rRNA gene
- Wild south Brazilian primates
Collapse
Affiliation(s)
- Tiela Trapp Grassotti
- Post-Graduation Program in Agricultural and Environmental Microbiology, Microbiology, Immunology, and Parasitology Department, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Isabel Kothe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Janira Prichula
- Department of Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Nacer Mohellibi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Michele Bertoni Mann
- Post-Graduation Program in Agricultural and Environmental Microbiology, Microbiology, Immunology, and Parasitology Department, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Fabricio Souza Campos
- Laboratory of Bioinformatics and Biotechnology, Campus de Gurupi, Federal University of Tocantins, Gurupi, TO, Brazil; Federal University of Tocantins, Federal University of Tocantins, Palmas, TO, Brazil
| | | | - Jeverson Frazzon
- Biochemistry and Molecular Biology of Microorganisms Laboratory, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Guedes Frazzon
- Post-Graduation Program in Agricultural and Environmental Microbiology, Microbiology, Immunology, and Parasitology Department, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Abstract
Understanding variation in host-associated microbial communities is important given the relevance of microbiomes to host physiology and health. Using 560 fecal samples collected from wild chimpanzees (Pan troglodytes) across their range, we assessed how geography, genetics, climate, vegetation, and diet relate to gut microbial community structure (prokaryotes, eukaryotic parasites) at multiple spatial scales. We observed a high degree of regional specificity in the microbiome composition, which was associated with host genetics, available plant foods, and potentially with cultural differences in tool use, which affect diet. Genetic differences drove community composition at large scales, while vegetation and potentially tool use drove within-region differences, likely due to their influence on diet. Unlike industrialized human populations in the United States, where regional differences in the gut microbiome are undetectable, chimpanzee gut microbiomes are far more variable across space, suggesting that technological developments have decoupled humans from their local environments, obscuring regional differences that could have been important during human evolution. IMPORTANCE Gut microbial communities are drivers of primate physiology and health, but the factors that influence the gut microbiome in wild primate populations remain largely undetermined. We report data from a continent-wide survey of wild chimpanzee gut microbiota and highlight the effects of genetics, vegetation, and potentially even tool use at different spatial scales on the chimpanzee gut microbiome, including bacteria, archaea, and eukaryotic parasites. Microbial community dissimilarity was strongly correlated with chimpanzee population genetic dissimilarity, and vegetation composition and consumption of algae, honey, nuts, and termites were potentially associated with additional divergence in microbial communities between sampling sites. Our results suggest that host genetics, geography, and climate play a far stronger role in structuring the gut microbiome in chimpanzees than in humans.
Collapse
|
17
|
Rojas CA, Ramírez-Barahona S, Holekamp KE, Theis KR. Host phylogeny and host ecology structure the mammalian gut microbiota at different taxonomic scales. Anim Microbiome 2021; 3:33. [PMID: 33892813 PMCID: PMC8063394 DOI: 10.1186/s42523-021-00094-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is critical for host function. Among mammals, host phylogenetic relatedness and diet are strong drivers of gut microbiota structure, but one factor may be more influential than the other. Here, we used 16S rRNA gene sequencing to determine the relative contributions of host phylogeny and host diet in structuring the gut microbiotas of 11 herbivore species from 5 families living sympatrically in southwest Kenya. Herbivore species were classified as grazers, browsers, or mixed-feeders and dietary data (% C4 grasses in diet) were compiled from previously published sources. We found that herbivore gut microbiotas were highly species-specific, and that host taxonomy accounted for more variation in the gut microbiota (30%) than did host dietary guild (10%) or sample month (8%). Overall, similarity in the gut microbiota increased with host phylogenetic relatedness (r = 0.74) across the 11 species of herbivores, but among 7 closely related Bovid species, dietary %C4 grass values more strongly predicted gut microbiota structure (r = 0.64). Additionally, within bovids, host dietary guild explained more of the variation in the gut microbiota (17%) than did host species (12%). Lastly, while we found that the gut microbiotas of herbivores residing in southwest Kenya converge with those of distinct populations of conspecifics from central Kenya, fine-scale differences in the abundances of bacterial amplicon sequence variants (ASVs) between individuals from the two regions were also observed. Overall, our findings suggest that host phylogeny and taxonomy strongly structure the gut microbiota across broad host taxonomic scales, but these gut microbiotas can be further modified by host ecology (i.e., diet, geography), especially among closely related host species.
Collapse
Affiliation(s)
- Connie A. Rojas
- Department of Integrative Biology, Michigan State University, East Lansing, MI USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI USA
| | - Santiago Ramírez-Barahona
- Departament of Botany, Institute of Biology, Universidad Nacional Autónoma de México, Mexico City, MX Mexico
| | - Kay E. Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI USA
| | - Kevin R. Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
18
|
Gogarten JF, Rühlemann M, Archie E, Tung J, Akoua-Koffi C, Bang C, Deschner T, Muyembe-Tamfun JJ, Robbins MM, Schubert G, Surbeck M, Wittig RM, Zuberbühler K, Baines JF, Franke A, Leendertz FH, Calvignac-Spencer S. Primate phageomes are structured by superhost phylogeny and environment. Proc Natl Acad Sci U S A 2021; 118:e2013535118. [PMID: 33876746 PMCID: PMC8053973 DOI: 10.1073/pnas.2013535118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage-superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape-associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity.
Collapse
Affiliation(s)
- Jan F Gogarten
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany;
- Viral Evolution, Robert Koch Institute, 13353 Berlin, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, 24105 Kiel, Germany
| | - Elizabeth Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708
- Duke University Population Research Institute, Duke University, Durham, NC 27708
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Chantal Akoua-Koffi
- Unité de Formation et Recherche des Sciences Médicales, Université Alassane Ouattara de Bouake, BP V1801 Bouaké, Côte d'Ivoire
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, 24105 Kiel, Germany
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Jean-Jacques Muyembe-Tamfun
- National Institute for Biomedical Research, National Laboratory of Public Health, BP 1197 Kinshasa, Democratic Republic of the Congo
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Grit Schubert
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany
| | - Martin Surbeck
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Tai Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, Cote d'Ivoire
| | - Klaus Zuberbühler
- Institute of Biology, University of Neuchatel, CH-2000 Neuchatel, Switzerland
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, 24105 Kiel, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany;
- Viral Evolution, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
19
|
Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol 2020; 4:1020-1035. [DOI: 10.1038/s41559-020-1220-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
|
20
|
Wu Y, Yao Y, Dong M, Xia T, Li D, Xie M, Wu J, Wen A, Wang Q, Zhu G, Ni Q, Zhang M, Xu H. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol 2020; 20:68. [PMID: 32216756 PMCID: PMC7098161 DOI: 10.1186/s12866-020-01747-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/05/2020] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The mammal intestinal microbiota is involved in various physiological processes and plays a key role in host environment adaption. However, for non-human primates (NHPs), little is known about their gut microbial community in high-altitude environments and even less about their adaption to such habitats. We characterised the gut microbial community of rhesus macaques from multiple high-altitude environments and compared it to those of low-altitude populations. RESULTS We collected faecal samples of rhesus macaques from four high-altitude populations (above 3000 m) and three low-altitude populations (below 500 m). By calculating the alpha diversity index, we found that high-altitude populations exhibited a higher diversity. Statistical analysis of beta diversity indicated significant differences between high- and low-altitude populations. Significant differences were also detected at the phylum and family levels. At the phylum level, the high-altitude gut microbial community was dominated by Firmicutes (63.42%), while at low altitudes, it was dominated by Bacteroidetes (47.4%). At the family level, the high-altitude population was dominated by Ruminococcaceae (36.2%), while the low-altitude one was dominated by Prevotellaceae (39.6%). Some families, such as Christensenellaceae and Rikenellaceae, were consistently higher abundant in all high-altitude populations. We analysed the overlap of operational taxonomic units (OTUs) in high-altitude populations and determined their core OTUs (shared by all four high-altitude populations). However, when compared with the low-altitude core OTUs, only 65% were shared, suggesting a divergence in core OTUs. Function prediction indicated a significant difference in gene copy number of 35 level-2 pathways between high- and low-altitude populations; 29 of them were higher in high altitudes, especially in membrane transport and carbohydrate metabolism. CONCLUSIONS The gut microbial community of high-altitude rhesus macaques was significantly distinct from that of low-altitude populations in terms of diversity, composition and function. High-altitude populations were dominated by Firmicutes and Ruminococcace, while in low-altitude populations, Bacteroidetes and Prevotellaceae were dominant. The difference in gut microbiota between these two populations may be caused by differences in host diet, environmental temperature and oxygen pressure. These differentiated gut microbial microorganisms may play a critical role in the adaptive evolution of rhesus macaques to high-altitude environments.
Collapse
Affiliation(s)
- Yuhan Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Mengmeng Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Tianrui Xia
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Anxiang Wen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Guangxiang Zhu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
21
|
Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME JOURNAL 2019; 14:609-622. [PMID: 31719654 PMCID: PMC6976604 DOI: 10.1038/s41396-019-0551-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/09/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
Abstract
Documenting the natural diversity of eukaryotic organisms in the nonhuman primate (NHP) gut is important for understanding the evolution of the mammalian gut microbiome, its role in digestion, health and disease, and the consequences of anthropogenic change on primate biology and conservation. Despite the ecological significance of gut-associated eukaryotes, little is known about the factors that influence their assembly and diversity in mammals. In this study, we used an 18S rRNA gene fragment metabarcoding approach to assess the eukaryotic assemblage of 62 individuals representing 16 NHP species. We find that cercopithecoids, and especially the cercopithecines, have substantially higher alpha diversity than other NHP groups. Gut-associated protists and nematodes are widespread among NHPs, consistent with their ancient association with NHP hosts. However, we do not find a consistent signal of phylosymbiosis or host-species specificity. Rather, gut eukaryotes are only weakly structured by primate phylogeny with minimal signal from diet, in contrast to previous reports of NHP gut bacteria. The results of this study indicate that gut-associated eukaryotes offer different information than gut-associated bacteria and add to our understanding of the structure of the gut microbiome.
Collapse
|
22
|
Devaux CA, Mediannikov O, Medkour H, Raoult D. Infectious Disease Risk Across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front Public Health 2019; 7:305. [PMID: 31828053 PMCID: PMC6849485 DOI: 10.3389/fpubh.2019.00305] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Most of the human pandemics reported to date can be classified as zoonoses. Among these, there is a long history of infectious diseases that have spread from non-human primates (NHP) to humans. For millennia, indigenous groups that depend on wildlife for their survival were exposed to the risk of NHP pathogens' transmission through animal hunting and wild meat consumption. Usually, exposure is of no consequence or is limited to mild infections. In rare situations, it can be more severe or even become a real public health concern. Since the emergence of acquired immune deficiency syndrome (AIDS), nobody can ignore that an emerging infectious diseases (EID) might spread from NHP into the human population. In large parts of Central Africa and Asia, wildlife remains the primary source of meat and income for millions of people living in rural areas. However, in the past few decades the risk of exposure to an NHP pathogen has taken on a new dimension. Unprecedented breaking down of natural barriers between NHP and humans has increased exposure to health risks for a much larger population, including people living in urban areas. There are several reasons for this: (i) due to road development and massive destruction of ecosystems for agricultural needs, wildlife and humans come into contact more frequently; (ii) due to ecological awareness, many long distance travelers are in search of wildlife discovery, with a particular fascination for African great apes; (iii) due to the attraction for ancient temples and mystical practices, others travelers visit Asian places colonized by NHP. In each case, there is a risk of pathogen transmission through a bite or another route of infection. Beside the individual risk of contracting a pathogen, there is also the possibility of starting a new pandemic. This article reviews the known cases of NHP pathogens' transmission to humans whether they are hunters, travelers, ecotourists, veterinarians, or scientists working on NHP. Although pathogen transmission is supposed to be a rare outcome, Rabies virus, Herpes B virus, Monkeypox virus, Ebola virus, or Yellow fever virus infections are of greater concern and require quick countermeasures from public health professionals.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Hacene Medkour
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Gogarten JF, Calvignac-Spencer S, Nunn CL, Ulrich M, Saiepour N, Nielsen HV, Deschner T, Fichtel C, Kappeler PM, Knauf S, Müller-Klein N, Ostner J, Robbins MM, Sangmaneedet S, Schülke O, Surbeck M, Wittig RM, Sliwa A, Strube C, Leendertz FH, Roos C, Noll A. Metabarcoding of eukaryotic parasite communities describes diverse parasite assemblages spanning the primate phylogeny. Mol Ecol Resour 2019; 20:204-215. [PMID: 31600853 DOI: 10.1111/1755-0998.13101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
Abstract
Despite their ubiquity, in most cases little is known about the impact of eukaryotic parasites on their mammalian hosts. Comparative approaches provide a powerful method to investigate the impact of parasites on host ecology and evolution, though two issues are critical for such efforts: controlling for variation in methods of identifying parasites and incorporating heterogeneity in sampling effort across host species. To address these issues, there is a need for standardized methods to catalogue eukaryotic parasite diversity across broad phylogenetic host ranges. We demonstrate the feasibility of a metabarcoding approach for describing parasite communities by analysing faecal samples from 11 nonhuman primate species representing divergent lineages of the primate phylogeny and the full range of sampling effort (i.e. from no parasites reported in the literature to the best-studied primates). We detected a number of parasite families and regardless of prior sampling effort, metabarcoding of only ten faecal samples identified parasite families previously undescribed in each host (x̅ = 8.5 new families per species). We found more overlap between parasite families detected with metabarcoding and published literature when more research effort-measured as the number of publications-had been conducted on the host species' parasites. More closely related primates and those from the same continent had more similar parasite communities, highlighting the biological relevance of sampling even a small number of hosts. Collectively, results demonstrate that metabarcoding methods are sensitive and powerful enough to standardize studies of eukaryotic parasite communities across host species, providing essential new tools for macroecological studies of parasitism.
Collapse
Affiliation(s)
- Jan F Gogarten
- Project Group 3: Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute Berlin, Berlin, Germany.,Viral Evolution, Robert Koch-Institute Berlin, Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Project Group 3: Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute Berlin, Berlin, Germany.,Viral Evolution, Robert Koch-Institute Berlin, Berlin, Germany
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Markus Ulrich
- Project Group 3: Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute Berlin, Berlin, Germany
| | - Nasrin Saiepour
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Henrik Vedel Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Goettingen, Germany.,Leibniz Science Campus Primate Cognition, Goettingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Goettingen, Germany.,Leibniz Science Campus Primate Cognition, Goettingen, Germany.,Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology, Georg-August University, Goettingen, Germany
| | - Sascha Knauf
- Neglected Tropical Diseases Work Group, Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Nadine Müller-Klein
- Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany
| | - Julia Ostner
- Leibniz Science Campus Primate Cognition, Goettingen, Germany.,Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
| | - Martha M Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Somboon Sangmaneedet
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Oliver Schülke
- Leibniz Science Campus Primate Cognition, Goettingen, Germany.,Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
| | - Martin Surbeck
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fabian H Leendertz
- Project Group 3: Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute Berlin, Berlin, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
24
|
Kuthyar S, Manus MB, Amato KR. Leveraging non-human primates for exploring the social transmission of microbes. Curr Opin Microbiol 2019; 50:8-14. [PMID: 31585390 DOI: 10.1016/j.mib.2019.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Host social interactions can provide multiple complex pathways for microbial transmission. Here, we suggest non-human primates as models to study the social transmission of commensal or mutualistic microbes due to their high sociality, wide range of group compositions and dominance structures, and diverse group interactions. Microbial sharing from social interactions can positively impact host health by promoting microbial diversity and influencing immunity. Microbes may also drive their own transmission by shaping host behavior, which could lead to fitness benefits for both microbes and hosts. Variation in patterns of social interactions at both the individual and group scale make non-human primates an ideal system to explore the relationship between social behavior, microbial sharing, and their impact on host health and evolution.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States
| | - Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
25
|
Renelies-Hamilton J, Noguera-Julian M, Parera M, Paredes R, Pacheco L, Dacal E, Saugar JM, Rubio JM, Poulsen M, Köster PC, Carmena D. Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal. INFECTION GENETICS AND EVOLUTION 2019; 74:104010. [PMID: 31442596 DOI: 10.1016/j.meegid.2019.104010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/02/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gut parasites exert an important influence on the gut microbiome, with many studies focusing on the human gut microbiome. It has, however, undergone severe richness depletion. Hygienic lifestyle, antimicrobial treatments and altered gut homeostasis (e.g., chronic inflammation) reduce gut microbiome richness and also parasite prevalence; which may confound results. Studying species closely related to humans could help overcome this problem by providing insights into the ancestral relationship between humans, their gut microbiome and their gut parasites. Chimpanzees are a particularly promising model as they have similar gut microbiomes to humans and many parasites infect both species. AIMS We study the interaction between gut microbiome and enteric parasites in chimpanzees. Investigating what novel insights a closely related species can reveal when compared to studies on humans. METHODS Using eighty-seven faecal samples from wild western chimpanzees (Pan troglodytes verus) in Senegal, we combine 16S rRNA gene amplicon sequencing for gut microbiome characterization with PCR detection of parasite taxa (Blastocystis sp., Strongyloides spp., Giardia duodenalis, Cryptosporidium spp., Plasmodium spp., Filariae and Trypanosomatidae). We test for differences in gut microbiota ecosystem traits and taxonomical composition between Blastocystis and Strongyloides bearing and non-bearing samples. RESULTS For Blastocystis, twelve differentially abundant taxa (e.g., Methanobrevibacter), including Prevotella and Ruminococcus-Methanobrevibacter enterotype markers, replicate findings in humans. However, several richness indices are lower in Blastocystis carriers, contradicting human studies. This indicates Blastocystis, unlike Strongyloides, is associated to a "poor health" gut microbiome, as does the fact that Faecalibacterium, a bacterium with gut protective traits, is absent in Blastocystis-positive samples. Strongyloides was associated to Alloprevotella and five other taxonomic groups. Each parasite had its unique impact on the gut microbiota indicating parasite-specific niches. Our results suggest that studying the gut microbiomes of wild chimpanzees could help disentangle biological from artefactual associations between gut microbiomes and parasites.
Collapse
Affiliation(s)
- Justinn Renelies-Hamilton
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Jane Goodall Institute Spain, Station Biologique Fouta Djallon, Dindéfélo, Kédougou, Senegal.
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain; Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Spain
| | - Mariona Parera
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain; Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Spain
| | - Liliana Pacheco
- Jane Goodall Institute Spain, Station Biologique Fouta Djallon, Dindéfélo, Kédougou, Senegal
| | - Elena Dacal
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
| | - José M Saugar
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
| | - José M Rubio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
| |
Collapse
|
26
|
Robinson CD, Bohannan BJ, Britton RA. Scales of persistence: transmission and the microbiome. Curr Opin Microbiol 2019; 50:42-49. [PMID: 31629296 PMCID: PMC6899178 DOI: 10.1016/j.mib.2019.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/13/2023]
Abstract
Historically microbiomes have been studied on the scale of the individual host, giving little consideration for the role of extra-host microbial populations in microbiome assembly. However, work in recent years has brought to light the importance of inter-host transmission and its influence on microbiome composition and dynamics. We now appreciate that microbiomes do not exist in isolation, but exchange constituents with the microbial communities of other hosts and the environment. Moving forward, fully understanding the role of transmission in microbiome assembly and dynamics will require a high-resolution view of the colonization and persistence patterns of particular microbial lineages (i.e. strains) across individuals and the environment. Yet, accomplishing this level of resolution will be an immense challenge, requiring improved sampling and bioinformatics approaches as well as employment of tractable experimental models. Insight gained from these investigations will contribute to our understanding of microbiome composition and variation, and lead to improved strategies for modulating microbiomes to improve human health.
Collapse
Affiliation(s)
| | | | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
27
|
Gogarten JF, Düx A, Mubemba B, Pléh K, Hoffmann C, Mielke A, Müller-Tiburtius J, Sachse A, Wittig RM, Calvignac-Spencer S, Leendertz FH. Tropical rainforest flies carrying pathogens form stable associations with social nonhuman primates. Mol Ecol 2019; 28:4242-4258. [PMID: 31177585 DOI: 10.1111/mec.15145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/28/2019] [Indexed: 11/27/2022]
Abstract
Living in groups provides benefits but also incurs costs such as attracting disease vectors. For example, synanthropic flies associate with human settlements, and higher fly densities increase pathogen transmission. We investigated whether such associations also exist in highly mobile nonhuman primate (NHP) Groups. We studied flies in a group of wild sooty mangabeys (Cercocebus atys atys) and three communities of wild chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d'Ivoire. We observed markedly higher fly densities within both mangabey and chimpanzee groups. Using a mark-recapture experiment, we showed that flies stayed with the sooty mangabey group for up to 12 days and for up to 1.3 km. We also tested mangabey-associated flies for pathogens infecting mangabeys in this ecosystem, Bacillus cereus biovar anthracis (Bcbva), causing sylvatic anthrax, and Treponema pallidum pertenue, causing yaws. Flies contained treponemal (6/103) and Bcbva (7/103) DNA. We cultured Bcbva from all PCR-positive flies, confirming bacterial viability and suggesting that this bacterium might be transmitted and disseminated by flies. Whole genome sequences of Bcbva isolates revealed a diversity of Bcbva, probably derived from several sources. We conclude that flies actively track mangabeys and carry infectious bacterial pathogens; these associations represent an understudied cost of sociality and potentially expose many social animals to a diversity of pathogens.
Collapse
Affiliation(s)
- Jan F Gogarten
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.,Primatology Department, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Biology, McGill University, Montreal, QC, Canada.,Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.,Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.,Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.,Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - Benjamin Mubemba
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.,Department of Wildlife Sciences, Copperbelt University, Kitwe, Zambia
| | - Kamilla Pléh
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Constanze Hoffmann
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Alexander Mielke
- Primatology Department, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Andreas Sachse
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Roman M Wittig
- Primatology Department, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.,Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| |
Collapse
|