1
|
Amran RH, Jamal MT, Bowrji S, Sayegh F, Santanumurti MB, Satheesh S. Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01209-5. [PMID: 39446239 DOI: 10.1007/s12223-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Collapse
Affiliation(s)
- Ramzi H Amran
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
| | - Saba Bowrji
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
| | - Fotoon Sayegh
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Qin Y, Cheng K, Jong MC, Zheng H, Cai Z, Xiao B, Zhou J. Symbiotic bacterial communities and carbon metabolic profiles of Acropora coral with varying health status under thermal stress. MARINE POLLUTION BULLETIN 2024; 209:117116. [PMID: 39418876 DOI: 10.1016/j.marpolbul.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Thermal-induced coral bleaching has received substantial research attention; however, the dynamics of symbiotic coral-associated bacterial communities are underexplored and the roles of coral with intermediate health status remain unclear. Using high-throughput sequencing and biochemical analyses, we found that the symbiotic zooxanthellae number gradually decreased with the increase of bleaching degree (non-bleached, semi-bleached, and fully-bleached) in the coral Acropora pruinosa. The semi-bleached host exhibited a relatively more complex microbial interaction network. For the carbon metabolic profiles, relatively higher carbon-fixing abilities observed in non-bleached coral symbiotic bacteria, followed by semi-bleached host, and lowest values appeared in fully-bleached coral. Partial least-squares pathway modeling revealed that bacterial community features and carbon metabolic function were directly related with health status, while temperature exerted a strong influence on the bleaching resilience. These findings can help us better understand the coral microecological feature and carbon metabolic potential under changing environment.
Collapse
Affiliation(s)
- Yuke Qin
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Huina Zheng
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Baohua Xiao
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China.
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
3
|
Eliason EJ, Hardison EA. The impacts of diet on cardiac performance under changing environments. J Exp Biol 2024; 227:jeb247749. [PMID: 39392076 PMCID: PMC11491816 DOI: 10.1242/jeb.247749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Natural and anthropogenic stressors are dramatically altering environments, impacting key animal physiological traits, including cardiac performance. Animals require energy and nutrients from their diet to support cardiac performance and plasticity; however, the nutritional landscape is changing in response to environmental perturbations. Diet quantity, quality and options vary in space and time across heterogeneous environments, over the lifetime of an organism and in response to environmental stressors. Variation in dietary energy and nutrients (e.g. lipids, amino acids, vitamins, minerals) impact the heart's structure and performance, and thus whole-animal resilience to environmental change. Notably, many animals can alter their diet in response to environmental cues, depending on the context. Yet, most studies feed animals ad libitum using a fixed diet, thus underestimating the role of food in impacting cardiac performance and resilience. By applying an ecological lens to the study of cardiac plasticity, this Commentary aims to further our understanding of cardiac function in the context of environmental change.
Collapse
Affiliation(s)
- Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Faculty of Science, Kwantlen Polytechnic University, Langley, BC, Canada, V3W 2M8
| | - Emily A. Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Bollati E, Hughes DJ, Suggett DJ, Raina JB, Kühl M. Microscale sampling of the coral gastrovascular cavity reveals a gut-like microbial community. Anim Microbiome 2024; 6:55. [PMID: 39380028 PMCID: PMC11460067 DOI: 10.1186/s42523-024-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Animal guts contain numerous microbes, which are critical for nutrient assimilation and pathogen defence. While corals and other Cnidaria lack a true differentiated gut, they possess semi-enclosed gastrovascular cavities (GVCs), where vital processes such as digestion, reproduction and symbiotic exchanges take place. The microbiome harboured in GVCs is therefore likely key to holobiont fitness, but remains severely understudied due to challenges of working in these small compartments. Here, we developed minimally invasive methodologies to sample the GVC of coral polyps and characterise the microbial communities harboured within. We used glass capillaries, low dead volume microneedles, or nylon microswabs to sample the gastrovascular microbiome of individual polyps from six species of corals, then applied low-input DNA extraction to characterise the microbial communities from these microliter volume samples. Microsensor measurements of GVCs revealed anoxic or hypoxic micro-niches, which persist even under prolonged illumination with saturating irradiance. These niches harboured microbial communities enriched in putatively microaerophilic or facultatively anaerobic taxa, such as Epsilonproteobacteria. Some core taxa found in the GVC of Lobophyllia hemprichii from the Great Barrier Reef were also detected in conspecific colonies held in aquaria, indicating that these associations are unlikely to be transient. Our findings suggest that the coral GVC is chemically and microbiologically similar to the gut of higher Metazoa. Given the importance of gut microbiomes in mediating animal health, harnessing the coral "gut microbiome" may foster novel active interventions aimed at increasing the resilience of coral reefs to the climate crisis.
Collapse
Affiliation(s)
- Elena Bollati
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark.
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - David J Suggett
- KAUST Coral Restoration Initiative (KCRI) and Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
| |
Collapse
|
5
|
Yang Q, Yang B, Yang B, Zhang W, Tang X, Sun H, Zhang Y, Li J, Ling J, Dong J. Alleviating Coral Thermal Stress via Inoculation with Quorum Quenching Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:951-963. [PMID: 39030411 DOI: 10.1007/s10126-024-10344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
In the background of global warming, coral bleaching induced by elevated seawater temperature is the primary cause of coral reef degradation. Coral microbiome engineering using the beneficial microorganisms for corals (BMCs) has become a hot spot in the field of coral reef conservation and restoration. Investigating the potential of alleviating thermal stress by quorum quenching (QQ) bacteria may provide more tools for coral microbial engineering remediation. In this study, QQ bacteria strain Pseudoalteromonas piscicida SCSIO 43740 was screened among 75 coral-derived bacterial strains, and its quorum sensing inhibitor (QSI) compound was isolated and identified as 2,4-di-tert-butylphenol (2,4-DTBP). Then, the thermal stress alleviating potential of QQ bacteria on coral Pocillopora damicornis was tested by a 30-day controlled experiment with three different treatments: control group (Con: 29 °C), high temperature group (HT: 31 °C), and the group of high temperature with QQ bacteria inoculation (HTQQ: 31 °C + QQ bacteria). The results showed that QQ bacteria SCSIO 43740 inoculation can significantly mitigate the loss of symbiotic algae and impairment of photosynthesis efficiency of coral P. damicornis under thermal stress. Significant difference in superoxide dismutase (SOD) and catalase (CAT) enzyme activities between HT and HTQQ was not observed. In addition, QQ bacteria inoculation suppressed the coral microbial community beta-dispersion and improved the stability of microbial co-occurrence network under thermal stress. It was suggested that QQ bacteria inoculation can alleviate coral thermal stress via reshaping microbial interaction and maintain community stability of coral microbiome. This study provided new evidence for the probiotic function of QQ bacteria in corals, which shedding light on the development of new microbiological tools for coral reef conservation.
Collapse
Affiliation(s)
- Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Bing Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Huiming Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Yanying Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Yantai University, Yantai, 264003, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| |
Collapse
|
6
|
Sun C, Huang Y, Bakhtiari AR, Yuan D, Zhou Y, Zhao H. Long-term exposure to climbazole may affect the health of stress-tolerant coral Galaxea fascicularis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106679. [PMID: 39153271 DOI: 10.1016/j.marenvres.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The persistence of coral reefs globally is threatened by various forms of chemical pollution. Climbazole, an azole antibacterial agent extensively utilized in pharmaceuticals and personal care products (PPCPs) in everyday life, has been detected in various environment media and proved to have significant adverse effects on aquatic organism. However, the effects of climbazole on coral remain largely unknown. Therefore, in this study, we conducted a 42-day investigation to examine the effects of varying concentrations of climbazole on Galaxea fascicularis (G. fascicularis), a stress-tolerant coral species. Our investigations included coral color observations, physiological experiments, and assessments of microbial diversity. The results showed that, after 42 days of exposure, the coral color in the treatment group exposed to 100 μg/L climbazole significantly decreased by one color category on the reference chart (D6 shifted to D5), while there was no change in the control group. This was accompanied by an increase in oxidative stress and a decrease in photosynthetic capacity in coral specimens. Additionally, there was a notable alteration in microbial diversity, resulting in reduced community stability. Elevated levels of climbazole (100 μg/L) stress led to an increased abundance of potentially pathogenic bacteria such as unclassified Erysipelotrichaceae. However, at an environmentally relevant concentration of 1 μg/L, climbazole decreased the photosynthetic efficiency and induced oxidative stress in the stress-tolerant coral G. fascicularis, while not significantly impacting the microbial community diversity of the coral. The findings of our study have important implications for the protection and management of nearshore coral reefs and offer essential data for ecological risk assessment of climbazole.
Collapse
Affiliation(s)
- Chuhan Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yuehua Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Dongdan Yuan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanyu Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
8
|
Jefferson T, Henley EM, Erwin PM, Lager C, Perry R, Chernikhova D, Powell-Palm MJ, Ushijima B, Hagedorn M. Evaluating the coral microbiome during cryopreservation. Cryobiology 2024; 117:104960. [PMID: 39187231 DOI: 10.1016/j.cryobiol.2024.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Coral reefs are threatened by various local and global stressors, including elevated ocean temperatures due to anthropogenic climate change. Coral cryopreservation could help secure the diversity of threatened corals. Recently, isochoric vitrification was used to demonstrate that coral fragments lived to 24 hr post-thaw; however, in this study, they were stressed post-thaw. The microbial portion of the coral holobiont has been shown to affect host fitness and the impact of cryopreservation treatment on coral microbiomes is unknown. Therefore, we examined the coral-associated bacterial communities pre- and post-cryopreservation treatments, with a view towards informing potential future stress reduction strategies. We characterized the microbiome of the Hawaiian finger coral, Porites compressa in the wild and at seven steps during the isochoric vitrification process. We observed significant changes in microbiome composition, including: 1) the natural wild microbiomes of P. compressa were dominated by Endozoicomonadaceae (76.5 % relative abundance) and consistent between samples, independent of collection location across Kāne'ohe Bay; 2) Endozoicomonadaceae were reduced to <6.9 % in captivity, and further reduced to <0.5 % relative abundance after isochoric vitrification; and 3) Vibrionaceae dominated communities post-thaw (58.5-74.7 % abundance). Thus, the capture and cryopreservation processes, are implicated as possible causal agents of dysbiosis characterized by the loss of putatively beneficial symbionts (Endozoicomonadaceae) and overgrowth of potential pathogens (Vibrionaceae). Offsetting these changes with probiotic restoration treatments may alleviate cryopreservation stress and improve post-thaw husbandry.
Collapse
Affiliation(s)
- Tori Jefferson
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
| | - E Michael Henley
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Patrick M Erwin
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA; Center for Marine Science, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Claire Lager
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Riley Perry
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Darya Chernikhova
- Environment and Natural Resources Program, Faculty of Life Sciences, University of Iceland, Reykjavík, Iceland
| | - Matthew J Powell-Palm
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Blake Ushijima
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
| | - Mary Hagedorn
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA.
| |
Collapse
|
9
|
Scharfenstein HJ, Peplow LM, Alvarez-Roa C, Nitschke MR, Chan WY, Buerger P, van Oppen MJH. Pushing the limits: expanding the temperature tolerance of a coral photosymbiont through differing selection regimes. THE NEW PHYTOLOGIST 2024; 243:2130-2145. [PMID: 39049585 DOI: 10.1111/nph.19996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.
Collapse
Affiliation(s)
- Hugo J Scharfenstein
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Carlos Alvarez-Roa
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Wing Yan Chan
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Patrick Buerger
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| |
Collapse
|
10
|
Ashraf N, Anas A, Sukumaran V, James J, Bilutheth MN, Chekkillam AR, Jasmin C, Raj K D, Babu I. Biofilm-forming bacteria associated with corals secrete melanin with UV-absorption properties. World J Microbiol Biotechnol 2024; 40:313. [PMID: 39210155 DOI: 10.1007/s11274-024-04120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corals are colonized by a plethora of microorganisms, and their diversity plays a significant role in the health and resilience of corals when they face oxidative stress leading to bleaching. In the current study, we examined 238 bacteria isolated from five different coral species (Acropora hyacinthus, Pocillopora damicornis, Podabacea crustacea, Porites lobata, and Pavona venosa) collected from the coral reef ecosystems of Kavaratti, Lakshadweep Islands, India. We found that bacteria such as Psychrobacter sp., Halomonas sp., Kushneria sp., Staphylococcus sp., Bacillus sp., Brachybacterium sp., Citrobacter sp., and Salinicola sp. were commonly present in the corals. On the other hand, Qipengyuania sp., Faucicola sp., Marihabitans sp., Azomonas sp., Atlantibacter sp., Cedecea sp., Krasalinikoviella sp., and Aidingimonas sp. were not previously reported from the corals. Among the bacterial isolates, a significant number showed high levels of biofilm formation (118), UV absorption (119), and melanin production (127). Considering these properties, we have identified a combination of seven bacteria from the genera Halomonas sp., Psychrobacter sp., Krasalinikoviella sp., and Micrococcus sp. as a potential probiotic consortium for protecting corals from oxidative stress. Overall, this study provides valuable insights into the coral microbiome and opens up possibilities for microbiome-based interventions to protect these crucial ecosystems in the face of global environmental challenges.
Collapse
Affiliation(s)
- Nizam Ashraf
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Abdulaziz Anas
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| | - Vrinda Sukumaran
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682022, India
| | - Jibin James
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | | | | | - C Jasmin
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- ENFYS Lifesciences, Kochi, 683578, India
| | - Devika Raj K
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | - Idrees Babu
- Department of Science and Technology, Kavaratti, 682555, India
| |
Collapse
|
11
|
He X, Zou J, Chen Q, Qin X, Liu Y, Zeng L, Su H. Microbial and transcriptional response of Acropora valida and Turbinaria peltata to Vibrio coralliilyticus challenge: insights into corals disease resistance. BMC Microbiol 2024; 24:288. [PMID: 39095694 PMCID: PMC11295391 DOI: 10.1186/s12866-024-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Coral diseases are significant drivers of global coral reef degradation, with pathogens dominated by Vibrio coralliilyticus playing a prominent role in the development of coral diseases. Coral phenotype, symbiotic microbial communities, and host transcriptional regulation have been well-established as factors involved in determining coral disease resistance, but the underlying mechanisms remain incompletely understood. METHODS This study employs high-throughput sequencing to analyse the symbiotic microbial and transcriptional response of the hosts in order to evaluate the disease resistance of Acropora valida and Turbinaria peltata exposed to Vibrio coralliilyticus. RESULTS A. valida exhibited pronounced bleaching and tissue loss within 7 h of pathogen infection, whereas T. peltata showed no signs of disease throughout the experiment. Microbial diversity analyses revealed that T. peltata had a more flexible microbial community and a higher relative abundance of potential beneficial bacteria compared to A. valida. Although Vibrio inoculation resulted in a more significant decrease in the Symbiodiniaceae density of A. valida compared to that of T. peltata, it did not lead to recombination of the coral host and Symbiodiniaceae in either coral species. RNA-seq analysis revealed that the interspecific differences in the transcriptional regulation of hosts after Vibrio inoculation. Differentially expressed genes in A. valida were mainly enriched in the pathways associated with energy supply and immune response, such as G protein-coupled receptor signaling, toll-like receptor signaling, regulation of TOR signaling, while these genes in T. peltata were mainly involved in the pathway related to immune homeostasis and ion transport, such as JAK-STAT signaling pathway and regulation of ion transport. CONCLUSIONS Pathogenic challenges elicit different microbial and transcriptional shifts across coral species. This study offers novel insights into molecular mechanisms of coral resistance to disease.
Collapse
Affiliation(s)
- Xucong He
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jie Zou
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qiqi Chen
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xiao Qin
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yuan Liu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Lujia Zeng
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
12
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
13
|
Ozbayram EG, Kleinsteuber S, Sträuber H, Schroeder BG, da Rocha UN, Corrêa FB, Harms H, Nikolausz M. Three-domain microbial communities in the gut of Pachnoda marginata larvae: A comparative study revealing opposing trends in gut compartments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13324. [PMID: 39143010 PMCID: PMC11324371 DOI: 10.1111/1758-2229.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
This study aimed to examine the bacterial, methanogenic archaeal, and eukaryotic community structure in both the midgut and hindgut of Pachnoda marginata larvae using an amplicon sequencing approach. The goal was to investigate how various diets and the soil affect the composition of these three-domain microbial communities within the gut of insect larvae. The results indicated a notable variation in the microbial community composition among the gut compartments. The majority of the bacterial community in the hindgut was composed of Ruminococcaceae and Christensenellaceae. Nocardiaceae, Microbacteriaceae, and Lachnospiraceae were detected in midgut samples from larvae feeding on the leaf diet, whereas Sphingomonadaceae, Rhodobacteraceae, and Promicromonasporaceae dominated the bacterial community of midgut of larvae feeding on the straw diet. The diet was a significant factor that influenced the methanogenic archaeal and eukaryotic community patterns. The methanogenic communities in the two gut compartments significantly differed from each other, with the midgut communities being more similar to those in the soil. A higher diversity of methanogens was observed in the midgut samples of both diets compared to the hindgut. Overall, the microbiota of the hindgut was more host-specific, while the assembly of the midgut was more influenced by the environmental microorganisms.
Collapse
Affiliation(s)
- Emine Gozde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic SciencesIstanbul UniversityFatih, IstanbulTurkey
| | - Sabine Kleinsteuber
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Heike Sträuber
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Bruna Grosch Schroeder
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Ulisses Nunes da Rocha
- Department of Applied Microbial EcologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Felipe Borim Corrêa
- Department of Applied Microbial EcologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Hauke Harms
- Department of Applied Microbial EcologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Marcell Nikolausz
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
14
|
Hardison EA, Eliason EJ. Diet effects on ectotherm thermal performance. Biol Rev Camb Philos Soc 2024; 99:1537-1555. [PMID: 38616524 DOI: 10.1111/brv.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The environment is changing rapidly, and considerable research is aimed at understanding the capacity of organisms to respond. Changes in environmental temperature are particularly concerning as most animals are ectothermic, with temperature considered a key factor governing their ecology, biogeography, behaviour and physiology. The ability of ectotherms to persist in an increasingly warm, variable, and unpredictable future will depend on their nutritional status. Nutritional resources (e.g. food availability, quality, options) vary across space and time and in response to environmental change, but animals also have the capacity to alter how much they eat and what they eat, which may help them improve their performance under climate change. In this review, we discuss the state of knowledge in the intersection between animal nutrition and temperature. We take a mechanistic approach to describe nutrients (i.e. broad macronutrients, specific lipids, and micronutrients) that may impact thermal performance and discuss what is currently known about their role in ectotherm thermal plasticity, thermoregulatory behaviour, diet preference, and thermal tolerance. We finish by describing how this topic can inform ectotherm biogeography, behaviour, and aquaculture research.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| |
Collapse
|
15
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
16
|
Liu T, Gao X, Chen R, Tang K, Liu Z, Wang P, Wang X. A nuclease domain fused to the Snf2 helicase confers antiphage defence in coral-associated Halomonas meridiana. Microb Biotechnol 2024; 17:e14524. [PMID: 38980956 PMCID: PMC11232893 DOI: 10.1111/1751-7915.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.
Collapse
Affiliation(s)
- Tianlang Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
17
|
Kudo R, Yamano R, Yu J, Hatakeyama S, Jiang C, Mino S, Yamaki S, Ando Y, Sakai Y, Sawabe T. The Description of Pseudoalteromonas apostichopi sp. nov., Vibrio apostichopi sp. nov., and Marinobacter apostichopi sp. nov. from the Fertilized Eggs and Larvae of Apostichopus japonicus. Curr Microbiol 2024; 81:246. [PMID: 38940874 DOI: 10.1007/s00284-024-03751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Three novel bacterial strains, FE4T, FE10T, and LA51T, which are phylogenetically affiliated to the genera Pseudoalteromonas, Vibrio, or Marinobacter, respectively, isolated from fertilized eggs and juveniles of sea cucumber Apostichopus japonicus were characterized by a genome-based taxonomical approach including multilocus sequence analysis (MLSA) combined with classical phenotypic and chemotaxonomic characterizations. A molecular network reconstructed on the basis of nucleotide sequences of four phylogenetic maker protein genes revealed that the strains FE4T, FE10T, and LA51T were closely related to Pseudoalteromonas shioyasakiensis, Vibrio lentus, and Marinobacter similis, respectively. Average nucleotide identity (ANI) comparisons against phylogenetically related species to FE4T, FE10T, and LA51T demonstrated that each newly described strain could not be identified as any previously described species within each genus showing < 95% ANI: 91.3% of FE4T against P. shioyasakiensis JCM 18891 T, 92.6% of FE10T against "V. bathopelagicus" Sal10, and 92.6% of LA51T against M. similis A3d10T, in maximum, respectively. Here, we show molecular phylogenetic, genomic, phenotypic, and chemotaxonomic features of the newly described species FE4T, FE10T, and LA51T. We also propose Pseudoalteromonas apostichopi sp. nov. with FE4T (JCM 36173 T = LMG 33143 T) as the type strain, Vibrio apostichopi sp. nov. with FE10T (JCM 36174 T = LMG 33144 T) as the type strain, and Marinobacter apostichopi sp. nov. with LA51T (JCM 36175 T = LMG 33145 T) as the type strain.
Collapse
Affiliation(s)
- Rika Kudo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shuya Hatakeyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Chunqi Jiang
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
18
|
Raimundo I, Rosado PM, Barno AR, Antony CP, Peixoto RS. Unlocking the genomic potential of Red Sea coral probiotics. Sci Rep 2024; 14:14514. [PMID: 38914624 PMCID: PMC11196684 DOI: 10.1038/s41598-024-65152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.
Collapse
Affiliation(s)
- Inês Raimundo
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Adam R Barno
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Chakkiath P Antony
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
19
|
Vohsen SA, Herrera S. Coral microbiomes are structured by environmental gradients in deep waters. ENVIRONMENTAL MICROBIOME 2024; 19:38. [PMID: 38858739 PMCID: PMC11165896 DOI: 10.1186/s40793-024-00579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing. RESULTS Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location. CONCLUSIONS Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
20
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
21
|
Gao B, Ruiz D, Case H, Jinkerson RE, Sun Q. Engineering bacterial warriors: harnessing microbes to modulate animal physiology. Curr Opin Biotechnol 2024; 87:103113. [PMID: 38564969 PMCID: PMC11444245 DOI: 10.1016/j.copbio.2024.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
A central goal of synthetic biology is the reprogramming of living systems for predetermined biological functions. While many engineering efforts have been made in living systems, these innovations have been mainly employed with microorganisms or cell lines. The engineering of multicellular organisms including animals remains challenging owing to the complexity of these systems. In this context, microbes, with their intricate impact on animals, have opened new opportunities. Through the utilization of the symbiotic relationships between microbes and animals, researchers have effectively manipulated animals in various ways using engineered microbes. This focused approach has demonstrated its significance in scientific exploration and engineering with model animals, coral preservation and restoration, and advancements in human health.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Daniela Ruiz
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States
| | - Hayden Case
- Department of Biology, Texas A&M University, College Station, TX 77840, United States
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States; Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
22
|
Lima LFO, Alker AT, Morris MM, Edwards RA, de Putron SJ, Dinsdale EA. Pre-Bleaching Coral Microbiome Is Enriched in Beneficial Taxa and Functions. Microorganisms 2024; 12:1005. [PMID: 38792833 PMCID: PMC11123844 DOI: 10.3390/microorganisms12051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral-algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral-algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance.
Collapse
Affiliation(s)
- Laís F. O. Lima
- Marine Biology, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- San Diego State University, San Diego, CA 92182, USA
| | - Amanda T. Alker
- Innovative Genomics Institute, University of California, Berkeley, SA 5045, USA;
| | - Megan M. Morris
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Robert A. Edwards
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| | | | - Elizabeth A. Dinsdale
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
23
|
Cardoso PM, Hill LJ, Villela HDM, Vilela CLS, Assis JM, Rosado PM, Rosado JG, Chacon MA, Majzoub ME, Duarte GAS, Thomas T, Peixoto RS. Localization and symbiotic status of probiotics in the coral holobiont. mSystems 2024; 9:e0026124. [PMID: 38606974 PMCID: PMC11097643 DOI: 10.1128/msystems.00261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Corals establish symbiotic relationships with microorganisms, especially endosymbiotic photosynthetic algae. Although other microbes have been commonly detected in coral tissues, their identity and beneficial functions for their host are unclear. Here, we confirm the beneficial outcomes of the inoculation of bacteria selected as probiotics and use fluorescence in situ hybridization (FISH) to define their localization in the coral Pocillopora damicornis. Our results show the first evidence of the inherent presence of Halomonas sp. and Cobetia sp. in native coral tissues, even before their inoculation. Furthermore, the relative enrichment of these coral tissue-associated bacteria through their inoculation in corals correlates with health improvements, such as increases in photosynthetic potential, and productivity. Our study suggests the symbiotic status of Halomonas sp. and Cobetia sp. in corals by indicating their localization within coral gastrodermis and epidermis and correlating their increased relative abundance through active inoculation with beneficial outcomes for the holobiont. This knowledge is crucial to facilitate the screening and application of probiotics that may not be transient members of the coral microbiome. IMPORTANCE Despite the promising results indicating the beneficial outcomes associated with the application of probiotics in corals and some scarce knowledge regarding the identity of bacterial cells found within the coral tissue, the correlation between these two aspects is still missing. This gap limits our understanding of the actual diversity of coral-associated bacteria and whether these symbionts are beneficial. Some researchers, for example, have been suggesting that probiotic screening should only focus on the very few known tissue-associated bacteria, such as Endozoicomonas sp., assuming that the currently tested probiotics are not tissue-associated. Here, we provide specific FISH probes for Halomonas sp. and Cobetia sp., expand our knowledge of the identity of coral-associated bacteria and confirm the probiotic status of the tested probiotics. The presence of these beneficial microorganisms for corals (BMCs) inside host tissues and gastric cavities also supports the notion that direct interactions with the host may underpin their probiotic role. This is a new breakthrough; these results argue against the possibility that the positive effects of BMCs are due to factors that are not related to a direct symbiotic interaction, for example, that the host simply feeds on inoculated bacteria or that the bacteria change the water quality.
Collapse
Affiliation(s)
- P. M. Cardoso
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - L. J. Hill
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H. D. M. Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - C. L. S. Vilela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. M. Assis
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P. M. Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - J. G. Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - M. A. Chacon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. E. Majzoub
- Center for Marine Science and Innovation; School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - G. A. S. Duarte
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T. Thomas
- Center for Marine Science and Innovation; School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - R. S. Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Biology Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
24
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
25
|
Hill LJ, Messias CSMDA, Vilela CLS, Garritano AN, Villela HDM, do Carmo FL, Thomas T, Peixoto RS. Bacteria associated with the in hospite Symbiodiniaceae's phycosphere. iScience 2024; 27:109531. [PMID: 38585661 PMCID: PMC10995889 DOI: 10.1016/j.isci.2024.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Symbiotic interactions between Symbiodiniaceae and bacteria are still poorly explored, especially those in hospite. Here, we adapted a technique that allows for the enrichment of intact and metabolically active in hospite Symbiodiniaceae cells (ihSC) and their associated bacteria from the tissue of the model coral Pocillopora damicornis, using a discontinuous gradient of solution of isotonic Percoll (SIP). The ihSC were concentrated in the 50% SIP fraction, as determined by microscopy. The presence of bacteria associated with ihSC was confirmed by fluorescence in situ hybridization, while microbiome analysis indicated that bacteria of the families Halieaceae, Flavobacteriaceae, and Alcanivoraceae are significantly associated with ihSC. Extracellular vesicles that could be exuding molecules were detected on the symbiosome membranes. Our technique and data contribute to elucidate ihSC-bacteria interactions.
Collapse
Affiliation(s)
- Lilian Jorge Hill
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Caren Leite Spindola Vilela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Alessandro N Garritano
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Helena Dias Muller Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Flavia Lima do Carmo
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel S. Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
27
|
Delgadillo-Ordoñez N, Garcias-Bonet N, Raimundo I, García FC, Villela H, Osman EO, Santoro EP, Curdia J, Rosado JGD, Cardoso P, Alsaggaf A, Barno A, Antony CP, Bocanegra C, Berumen ML, Voolstra CR, Benzoni F, Carvalho S, Peixoto RS. Probiotics reshape the coral microbiome in situ without detectable off-target effects in the surrounding environment. Commun Biol 2024; 7:434. [PMID: 38594357 PMCID: PMC11004148 DOI: 10.1038/s42003-024-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neus Garcias-Bonet
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Inês Raimundo
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francisca C García
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Helena Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Eslam O Osman
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Erika P Santoro
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao Curdia
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao G D Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pedro Cardoso
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Alsaggaf
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adam Barno
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chakkiath Paul Antony
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carolina Bocanegra
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
28
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
29
|
Patel ZZ, Joshi H, Puvar A, Pandit R, Joshi C, Joshi M, Tipre DR. A study into the diversity of coral-associated bacteria using culture-dependent and culture-independent approaches in coral Dipsastraea favus from the Gulf of Kutch. MARINE POLLUTION BULLETIN 2024; 201:116172. [PMID: 38394797 DOI: 10.1016/j.marpolbul.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Corals harbour ~25 % of the marine diversity referring to biodiversity hotspots in marine ecosystems. Global efforts to find ways to restore the coral reef ecosystem from various threats can be complemented by studying coral-associated bacteria. Coral-associated bacteria are vital components of overall coral wellbeing. We explored the bacterial diversity associated with coral Dipsastraea favus (D. favus) collected from the Gulf of Kutch, India, using both culture-dependent and metagenomic approaches. In both approaches, phylum Proteobacteria, Firmicutes, and Actinobacteria predominated, comprising the genera Vibrio, Bacillus, Shewanella, Pseudoalteromonas, Exiguobacterium and Streptomyces. Moreover, the majority of culturable isolates showed multiple antibiotic resistance index ≥0.2. In this study, specific bacterial diversity associated with coral sp. D. favus and its possible role in managing coral health was established. Almost 43 strains from the samples were successfully cultured, creating a base for exploring these microbes for their potential use in coral conservation methods.
Collapse
Affiliation(s)
- Zarna Z Patel
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India; Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Himanshu Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Apurvasinh Puvar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India.
| | - Devayani R Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India.
| |
Collapse
|
30
|
Zhang Q, Su H, Lu C, Huang Q, Wang S, He X, Zou J, Chen Q, Liu Y, Zeng L. Ammonia removal mitigates white plague type II in the coral Pocillopora damicornis. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106403. [PMID: 38335857 DOI: 10.1016/j.marenvres.2024.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
White Plague Type II (WPL II) is a disease increasingly affecting scleractinian coral species and progresses rapidly. However, the etiological pathogen and remedy remain elusive. In this study, transmission experiments demonstrated that Aureimonas altamirensis and Aurantimonas coralicida, representing the WPL II pathogens, could infect Pocillopora damicorni. The infection produced selected pathological symptoms, including bleaching, tissue loss, and decolorization. Furthermore, ammonia degradation significantly reduced the severity of infection by these pathogens, indicating that ammonia may be a virulence factor for WPL II. Coral microbiome analysis suggested that ammonia degradation mediates the anti-white plague effect by maintaining the density of Symbiodiniaceae and stabilizing the core and symbiotic bacteria. Aureimonas altamirensis and Aurantimonas coralicida have been shown to cause diseases of P. damicornis, with ammonia acting as a virulence factor, and ammoniac degradation may be a promising and innovative approach to mitigate coral mortality suffering from increasing diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Chunrong Lu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Qinyu Huang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Shuying Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xucong He
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jie Zou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qiqi Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yuan Liu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Lujia Zeng
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
31
|
Magalhães EA, de Jesus HE, Pereira PHF, Gomes AS, Santos HFD. Beach sand plastispheres are hotspots for antibiotic resistance genes and potentially pathogenic bacteria even in beaches with good water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123237. [PMID: 38159625 DOI: 10.1016/j.envpol.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.
Collapse
Affiliation(s)
- Emily Amorim Magalhães
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Abílio Soares Gomes
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
32
|
Garcias-Bonet N, Roik A, Tierney B, García FC, Villela HDM, Dungan AM, Quigley KM, Sweet M, Berg G, Gram L, Bourne DG, Ushijima B, Sogin M, Hoj L, Duarte G, Hirt H, Smalla K, Rosado AS, Carvalho S, Thurber RV, Ziegler M, Mason CE, van Oppen MJH, Voolstra CR, Peixoto RS. Horizon scanning the application of probiotics for wildlife. Trends Microbiol 2024; 32:252-269. [PMID: 37758552 DOI: 10.1016/j.tim.2023.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.
Collapse
Affiliation(s)
- Neus Garcias-Bonet
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Francisca C García
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena D M Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kate M Quigley
- Minderoo Foundation, Perth, WA, Australia; James Cook University, Townsville, Australia
| | - Michael Sweet
- Aquatic Research Facility, Nature-based Solutions Research Centre, University of Derby, Derby, UK
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; University of Potsdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Maggie Sogin
- Molecular Cell Biology, University of California, Merced, CA, USA
| | - Lone Hoj
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Gustavo Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; IMPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heribert Hirt
- Center for Desert Agriculture (CDA), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; WorldQuant Initiative on Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | | | - Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
33
|
Wei Y, Chen B, Yu K, Liao Z, Yu X, Qin Z, Bao Z, Xu L, Wang Y. Evolutionary radiation and microbial community dynamics shape the thermal tolerance of Fungiidae in the southern South China Sea. Microbiol Spectr 2024; 12:e0243623. [PMID: 38174936 PMCID: PMC10845974 DOI: 10.1128/spectrum.02436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial β-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.
Collapse
Affiliation(s)
- Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Zhiheng Liao
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| |
Collapse
|
34
|
Zou Y, Ip JCH, Xie JY, Yeung YH, Wei L, Guo Z, Zhang Y, Qiu JW. Dynamic changes in bacterial communities in three species of corals during the 2017 bleaching event in subtropical Hong Kong waters. MARINE POLLUTION BULLETIN 2024; 199:116002. [PMID: 38181470 DOI: 10.1016/j.marpolbul.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Bacteria play important roles in coral health, yet little is known about the dynamics of coral-associated bacterial communities during coral bleaching. Here, we reported the dynamic changes of bacterial communities in three scleractinian corals (Montipora peltiformis, Pavona decussata and Platygyra carnosa) during and after bleaching through amplicon sequencing. Our results revealed that the bacterial composition and dominant bacteria varied among the three coral species. The higher susceptibility of M. peltiformis to bleaching corresponded to a lower bacterial community diversity, and the dominant Synechococcus shifted in abundance during the bleaching and coral recovery phases. The resilient P. decussata and P. carnosa had higher bacterial diversity and a more similar bacterial composition between the healthy and bleached conditions. Overall, our study reveals the dynamic changes in coral-associated microbial diversity under different conditions, contributing to explaining the differential susceptibility of corals to extreme climate conditions.
Collapse
Affiliation(s)
- Ying Zou
- School of Life and Health Sciences, Hainan University, Haikou, China
| | | | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lu Wei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zhiqiang Guo
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanjie Zhang
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
35
|
Graham OJ, Adamczyk EM, Schenk S, Dawkins P, Burke S, Chei E, Cisz K, Dayal S, Elstner J, Hausner ALP, Hughes T, Manglani O, McDonald M, Mikles C, Poslednik A, Vinton A, Wegener Parfrey L, Harvell CD. Manipulation of the seagrass-associated microbiome reduces disease severity. Environ Microbiol 2024; 26:e16582. [PMID: 38195072 DOI: 10.1111/1462-2920.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host-microbe-pathogen relationships may continue to show new relationships between plant microbiomes and diseases.
Collapse
Affiliation(s)
- Olivia J Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily M Adamczyk
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siobhan Schenk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phoebe Dawkins
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Samantha Burke
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily Chei
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Kaitlyn Cisz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Sukanya Dayal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Jack Elstner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Taylor Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Omisha Manglani
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Miles McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Chloe Mikles
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Anna Poslednik
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Audrey Vinton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
36
|
Staab S, Cardénas A, Peixoto RS, Schreiber F, Voolstra CR. Coracle-a machine learning framework to identify bacteria associated with continuous variables. Bioinformatics 2024; 40:btad749. [PMID: 38123508 PMCID: PMC10766586 DOI: 10.1093/bioinformatics/btad749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
SUMMARY We present Coracle, an artificial intelligence (AI) framework that can identify associations between bacterial communities and continuous variables. Coracle uses an ensemble approach of prominent feature selection methods and machine learning (ML) models to identify features, i.e. bacteria, associated with a continuous variable, e.g. host thermal tolerance. The results are aggregated into a score that incorporates the performances of the different ML models and the respective feature importance, while also considering the robustness of feature selection. Additionally, regression coefficients provide first insights into the direction of the association. We show the utility of Coracle by analyzing associations between bacterial composition data (i.e. 16S rRNA Amplicon Sequence Variants, ASVs) and coral thermal tolerance (i.e. standardized short-term heat stress-derived diagnostics). This analysis identified high-scoring bacterial taxa that were previously found associated with coral thermal tolerance. Coracle scales with feature number and performs well with hundreds to thousands of features, corresponding to the typical size of current datasets. Coracle performs best if run at a higher taxonomic level first (e.g. order or family) to identify groups of interest that can subsequently be run at the ASV level. AVAILABILITY AND IMPLEMENTATION Coracle can be accessed via a dedicated web server that allows free and simple access: http://www.micportal.org/coracle/index. The underlying code is open-source and available via GitHub https://github.com/SebastianStaab/coracle.git.
Collapse
Affiliation(s)
- Sebastian Staab
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Anny Cardénas
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
- Department of Biology, American University, Washington, DC, 20016, USA
| | - Raquel S Peixoto
- Computational Biology Research Center (CBRC) and Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany
- Faculty of Information Technology, Monash University, 3168, Australia
| | | |
Collapse
|
37
|
Wang L, Bin Q, Liu H, Zhang Y, Wang S, Luo S, Chen Z, Zhang M, Yu K. New insights into the on-site monitoring of probiotics eDNA using biosensing technology for heat-stress relieving in coral reefs. Biosens Bioelectron 2024; 243:115790. [PMID: 37906999 DOI: 10.1016/j.bios.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Coral probiotics can improve the tolerance of corals to heat stress, thus mitigating the process of coral thermal bleaching. Sensitive and specific detection of coral probiotics at low abundances is highly desirable but remains challenging, especially for rapid and on-site detection of coral probiotics. Since the electrochemical biosensor has been recently used in the field of environmental DNA (eDNA) detection, herein, an efficient electrochemical biosensor was developed based on CoS2/CoSe2-NC HNCs electrode material with a specific DNA probe for the C. marina detection. After optimization, the lower limit of detection (LOD) values of such biosensors for the target DNA and genomic DNA were 1.58 fM and 6.5 pM, respectively. On this basis, a portable device was constructed for the practical detection of C. marina eDNA, and its reliability and accuracy were verified by comparison with the ddPCR method (P > 0.05). For each analysis, the average cost was only ∼ $1.08 and could be completed within 100 min with reliable sensitivity and specificity. Overall, the biosensor could reflect the protective effect of probiotics on coral heat stress, and the proposed technique will put new insights into the rapid and on-site detection of coral probiotics to assist corals against global warming.
Collapse
Affiliation(s)
- Liwei Wang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qi Bin
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Hongjie Liu
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yibo Zhang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Shaopeng Wang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Songlin Luo
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhenghua Chen
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China
| | - Man Zhang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.
| | - Kefu Yu
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
38
|
Irudayarajan L, Ravindran C, Raveendran HP. Antimicrobial activity of coral-associated beneficial bacteria against coral disease-causing microbial pathogens. J Basic Microbiol 2024; 64:81-93. [PMID: 37726211 DOI: 10.1002/jobm.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Microbial infection of immune-compromised corals influences disease severity, resulting in coral mortality. However, coral-associated beneficial bacteria are known to produce antimicrobial compounds that prevent the growth of potential pathogens and invading microbes. Hence, beneficial bacteria associated with coral Porites lutea were isolated and antimicrobial protein and bioactive secondary metabolites were extracted and tested for their antimicrobial activity against putative prokaryotic and eukaryotic coral pathogens. Bioactive secondary metabolites exhibited remarkable antagonism against various coral pathogens such as Serratia marcescens, Vibrio species, and Aspergillus sydowii. Besides, the metabolites of Cobetia marina, Cobetia amphilecti, Pseudoalteromonas neustonica, and Virgibacillus halodenitrificans manifested notable inhibition against the protozoan ciliates (Uronema marinum, Holosticha diademata, Cohnilembus verminus, and Euplotes vannus) and zooplankton that are known to be involved in the secondary pathogenesis in coral diseased lesion progression. Thus, the present study may benefit in understanding coral-associated beneficial bacteria for their antagonistic interactions with microbial pathogens, as well as their potential involvement in reducing coral disease severity.
Collapse
Affiliation(s)
- Lawrance Irudayarajan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chinnarajan Ravindran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Haritha P Raveendran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
| |
Collapse
|
39
|
Cain JL, Norris JK, Swan MP, Nielsen MK. A diverse microbial community and common core microbiota associated with the gonad of female Parascaris spp. Parasitol Res 2023; 123:56. [PMID: 38105374 DOI: 10.1007/s00436-023-08086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The microbiome plays an important role in health, where changes in microbiota composition can have significant downstream effects within the host, and host-microbiota relationships can be exploited to affect health outcomes. Parasitic helminths affect animals globally, but an exploration of their microbiota has been limited, despite the development of anti-Wolbachia drugs to help control infections with some filarial nematodes. The equine ascarids, Parascaris spp., are considered the most pathogenic nematodes affecting juvenile horses and are also the only ascarid parasite to have developed widespread anthelmintic resistance. The aim of this study was to characterize the microbiota of this helminth, focusing on the female gonad, determine a core microbiota for this organ, identify bacterial species, and show bacterial localization to the female gonad via in situ hybridization (ISH). A total of 22 gonads were isolated from female Parascaris spp. collected from three foals, and 9 female parasites were formalin-fixed and paraffin-embedded for ISH. Next-generation sequencing was performed using V3-V4 primers as well as the Swift Amplicon™ 16S+ ITS Panel. Overall, ten genera were identified as members of the Parascaris spp. female gonad and twelve bacterial species were identified. The most prevalent genus was Mycoplasma, followed by Reyranella, and there were no differences in alpha diversity between parasites from different horses. Specific eubacteria staining was identified in both the intestine and within the gonad using ISH. Overall, this study provided in-depth information regarding the female Parascaris spp. microbiota and was the first to identify the core microbiota within a specific parasite organ.
Collapse
Affiliation(s)
- Jennifer L Cain
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA.
| | - Jamie K Norris
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| | - Melissa P Swan
- University of Kentucky Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY, 40511, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| |
Collapse
|
40
|
Modolon F, Schultz J, Duarte G, Vilela CLS, Thomas T, Peixoto RS. In situ devices can culture the microbial dark matter of corals. iScience 2023; 26:108374. [PMID: 38162026 PMCID: PMC10755713 DOI: 10.1016/j.isci.2023.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/16/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024] Open
Abstract
Most microorganisms found in environmental samples have never been cultured and can often only be explored through molecular or microscopic approaches. Here, we adapt the use of in situ diffusion-based devices to culture "yet-to-be-cultured" microorganisms associated with coral mucus and compare this with a traditional culturing method. The culturability of microorganisms associated with mucus of the coral Pocillopora damicornis increased by 420% and 570% with diffusion growth chambers and microwell chip devices, respectively, compared with the traditional method tested. The obtained cultures represent up to 64.4% of the total diversity of amplicon sequence variants (ASVs) found in the mucus of the coral P. damicornis. In addition, some previously uncultured microorganisms, such as members of the family Nitrosopumilaceae and halophilic/halotolerant bacteria were cultured. Our results validate alternative microbial culturing strategies to culture coral-associated microorganisms, while significantly increasing the culturability of previous microbial dark matter.
Collapse
Affiliation(s)
- Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Júnia Schultz
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| | - Gustavo Duarte
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| | - Caren Leite Spindola Vilela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raquel Silva Peixoto
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
41
|
Li J, Zou Y, Li Q, Zhang J, Bourne DG, Lyu Y, Liu C, Zhang S. A coral-associated actinobacterium mitigates coral bleaching under heat stress. ENVIRONMENTAL MICROBIOME 2023; 18:83. [PMID: 37996910 PMCID: PMC10668361 DOI: 10.1186/s40793-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The positive effects of exposing corals to microorganisms have been reported though how the benefits are conferred are poorly understood. Here, we isolated an actinobacterial strain (SCSIO 13291) from Pocillopora damicornis with capabilities to synthesize antioxidants, vitamins, and antibacterial and antiviral compounds supported with phenotypic and/or genomic evidence. Strain SCSIO 13291 was labeled with 5 (and - 6)-carboxytetramethylrhodamine, succinimidyl ester and the labeled cell suspension directly inoculated onto the coral polyp tissues when nubbins were under thermal stress in a mesocosm experiment. We then visualized the labelled bacterial cells and analyzed the coral physiological, transcriptome and microbiome to elucidate the effect this strain conferred on the coral holobiont under thermal stress. RESULTS Subsequent microscopic observations confirmed the presence of the bacterium attached to the coral polyps. Addition of the SCSIO 13291 strain reduced signs of bleaching in the corals subjected to heat stress. At the same time, alterations in gene expression, which were involved in reactive oxygen species and light damage mitigation, attenuated apoptosis and exocytosis in addition to metabolite utilization, were observed in the coral host and Symbiodiniaceae populations. In addition, the coral associated bacterial community altered with a more stable ecological network for samples inoculated with the bacterial strain. CONCLUSIONS Our results provide insights into the benefits of a putative actinobacterial probiotic strain that mitigate coral bleaching signs. This study suggests that the inoculation of bacteria can potentially directly benefit the coral holobiont through conferring metabolic activities or through indirect mechanisms of suppling additional nutrient sources.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China.
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
42
|
Matthews JL, Khalil A, Siboni N, Bougoure J, Guagliardo P, Kuzhiumparambil U, DeMaere M, Le Reun NM, Seymour JR, Suggett DJ, Raina JB. Coral endosymbiont growth is enhanced by metabolic interactions with bacteria. Nat Commun 2023; 14:6864. [PMID: 37891154 PMCID: PMC10611727 DOI: 10.1038/s41467-023-42663-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.
Collapse
Affiliation(s)
- Jennifer L Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Matthew DeMaere
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine M Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
43
|
Alker AT, Farrell MV, Aspiras AE, Dunbar TL, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. mBio 2023; 14:e0150223. [PMID: 37530556 PMCID: PMC10470607 DOI: 10.1128/mbio.01502-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Morgan V. Farrell
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Alpher E. Aspiras
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andriy Fedoriouk
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jeffrey E. Jones
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Sama R. Mikhail
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
44
|
Xu W, Lv Z, Guo Q, Deng Z, Yang C, Cao Z, Li Y, Huang C, Wu Z, Chen S, He Y, Sun J, Liu Y, Gan L. Selective Antagonism of Lactiplantibacillus plantarum and Pediococcus acidilactici against Vibrio and Aeromonas in the Bacterial Community of Artemia nauplii. Microbiol Spectr 2023; 11:e0053323. [PMID: 37428079 PMCID: PMC10434253 DOI: 10.1128/spectrum.00533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Empiric probiotics are commonly consumed by healthy individuals as a means of disease prevention, pathogen control, etc. However, controversy has existed for a long time regarding the safety and benefits of probiotics. Here, two candidate probiotics, Lactiplantibacillus plantarum and Pediococcus acidilactici, which are antagonistic to Vibrio and Aeromonas species in vitro, were tested on Artemia under in vivo conditions. In the bacterial community of Artemia nauplii, L. plantarum reduced the abundance of the genera Vibrio and Aeromonas and P. acidilactici significantly increased the abundance of Vibrio species in a positive dosage-dependent manner, while higher and lower dosages of P. acidilactici increased and decreased the abundance of the genus Aeromonas, respectively. Based on the liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses of the metabolite of L. plantarum and P. acidilactici, pyruvic acid was used in an in vitro test to explain such selective antagonism; the results showed that pyruvic acid was conducive or suppressive to V. parahaemolyticus and beneficial to A. hydrophila. Collectively, the results of this study demonstrate the selective antagonism of probiotics on the bacterial community composition of aquatic organisms and the associated pathogens. IMPORTANCE Over the last decade, the common preventive method for controlling potential pathogens in aquaculture has been the use of probiotics. However, the mechanisms of probiotics are complicated and mostly undefined. At present, less attention has been paid to the potential risks of probiotic use in aquaculture. Here, we investigated the effects of two candidate probiotics, L. plantarum and P. acidilactici, on the bacterial community of Artemia nauplii and the in vitro interactions between these two candidate probiotics and two pathogens, Vibrio and Aeromonas species. The results demonstrated the selective antagonism of probiotics on the bacterial community composition of an aquatic organism and its associated pathogens. This research contributes to providing a basis and reference for the long-term rational use of probiotics and to reducing the inappropriate use of probiotics in aquaculture.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaolin Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Qingqi Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaojie Deng
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Canmin Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Cuifen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zizhan Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Jijia Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yiying Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Lian Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
45
|
Pérez-Llano Y, Yarzábal Rodríguez LA, Martínez-Romero E, Dobson ADW, Gunde-Cimerman N, Vasconcelos V, Batista-García RA. From friends to foes: fungi could be emerging marine sponge pathogens under global change scenarios. Front Microbiol 2023; 14:1213340. [PMID: 37670990 PMCID: PMC10476623 DOI: 10.3389/fmicb.2023.1213340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Global change, experienced in the form of ocean warming and pollution by man-made goods and xenobiotics, is rapidly affecting reef ecosystems and could have devastating consequences for marine ecology. Due to their critical role in regulating marine food webs and trophic connections, sponges are an essential model for studying and forecasting the impact of global change on reef ecosystems. Microbes are regarded as major contributors to the health and survival of sponges in marine environments. While most culture-independent studies on sponge microbiome composition to date have focused on prokaryotic diversity, the importance of fungi in holobiont behavior has been largely overlooked. Studies focusing on the biology of sponge fungi are uncommon. Thus, our current understanding is quite limited regarding the interactions and “crosstalk” between sponges and their associated fungi. Anthropogenic activities and climate change may reveal sponge-associated fungi as novel emerging pathogens. Global change scenarios could trigger the expression of fungal virulence genes and unearth new opportunistic pathogens, posing a risk to the health of sponges and severely damaging reef ecosystems. Although ambitious, this hypothesis has not yet been proven. Here we also postulate as a pioneering hypothesis that manipulating sponge-associated fungal communities may be a new strategy to cope with the threats posed to sponge health by pathogens and pollutants. Additionally, we anticipate that sponge-derived fungi might be used as novel sponge health promoters and beneficial members of the resident sponge microbiome in order to increase the sponge's resistance to opportunistic fungal infections under a scenario of global change.
Collapse
Affiliation(s)
- Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Center for Genomic Sciences, Autonomous National University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | | | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Autonomous National University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | | | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty. University of Ljubljana, Ljubljana, Slovenia
| | - Vitor Vasconcelos
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
46
|
McCauley M, Goulet TL, Jackson CR, Loesgen S. Systematic review of cnidarian microbiomes reveals insights into the structure, specificity, and fidelity of marine associations. Nat Commun 2023; 14:4899. [PMID: 37580316 PMCID: PMC10425419 DOI: 10.1038/s41467-023-39876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 08/16/2023] Open
Abstract
Microorganisms play essential roles in the health and resilience of cnidarians. Understanding the factors influencing cnidarian microbiomes requires cross study comparisons, yet the plethora of protocols used hampers dataset integration. We unify 16S rRNA gene sequences from cnidarian microbiome studies under a single analysis pipeline. We reprocess 12,010 cnidarian microbiome samples from 186 studies, alongside 3,388 poriferan, 370 seawater samples, and 245 cultured Symbiodiniaceae, unifying ~6.5 billion sequence reads. Samples are partitioned by hypervariable region and sequencing platform to reduce sequencing variability. This systematic review uncovers an incredible diversity of 86 archaeal and bacterial phyla associated with Cnidaria, and highlights key bacteria hosted across host sub-phylum, depth, and microhabitat. Shallow (< 30 m) water Alcyonacea and Actinaria are characterized by highly shared and relatively abundant microbial communities, unlike Scleractinia and most deeper cnidarians. Utilizing the V4 region, we find that cnidarian microbial composition, richness, diversity, and structure are primarily influenced by host phylogeny, sampling depth, and ocean body, followed by microhabitat and sampling date. We identify host and geographical generalist and specific Endozoicomonas clades within Cnidaria and Porifera. This systematic review forms a framework for understanding factors governing cnidarian microbiomes and creates a baseline for assessing stress associated dysbiosis.
Collapse
Affiliation(s)
- M McCauley
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
- Department of Biology, University of Mississippi, University, MS, USA.
- U.S. Geological Survey, Wetland and Aquatic Research Centre, Gainesville, FL, USA.
| | - T L Goulet
- Department of Biology, University of Mississippi, University, MS, USA
| | - C R Jackson
- Department of Biology, University of Mississippi, University, MS, USA
| | - S Loesgen
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| |
Collapse
|
47
|
Villela H, Modolon F, Schultz J, Delgadillo-Ordoñez N, Carvalho S, Soriano AU, Peixoto RS. Genome analysis of a coral-associated bacterial consortium highlights complementary hydrocarbon degradation ability and other beneficial mechanisms for the host. Sci Rep 2023; 13:12273. [PMID: 37507453 PMCID: PMC10382565 DOI: 10.1038/s41598-023-38512-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Here we report the oil degradation genetic potential of six oil-degrading bacteria (ODB), previously used as a bioremediation consortium, isolated from the hydrocoral Millepora alcicornis and seawater. The strains were identified as Halomonas sp. (LC_1), Cobetia sp. (LC_6), Pseudoalteromonas shioyasakiensis (LC_2), Halopseudomonas aestusnigri (LC_3), Shewanella algae (LC_4), and Brucella intermedia (LC_5). The taxonomic identification differed from that of the original paper when we used whole genome gene markers instead of just 16S rRNA gene. Genes responsible for the degradation of aromatic hydrocarbons and n-alkanes were found in all genomes, although different (and complementary) steps of the metabolic pathways were unique to each strain. Genes for naphthalene and toluene degradation were found in various strains. We annotated quinate degradation genes in LC_6, while LC_3 and LC_5 presented genes for biosurfactant and rhamnolipid biosynthesis. We also annotated genes related to beneficial mechanisms for corals, such as genes involved in nitrogen and DMSP metabolism, cobalamin biosynthesis and antimicrobial compounds production. Our findings reinforce the importance of using bacterial consortia for bioremediation approaches instead of single strains, due to their complementary genomic arsenals. We also propose a genome-based framework to select complementary ODB that can provide additional benefits to coral health.
Collapse
Affiliation(s)
- Helena Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Flúvio Modolon
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Júnia Schultz
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Computational Biology Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Nathalia Delgadillo-Ordoñez
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | | | - Raquel Silva Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
- Computational Biology Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
48
|
Xu M, Cheng K, Xiao B, Tong M, Cai Z, Jong MC, Chen G, Zhou J. Bacterial Communities Vary from Different Scleractinian Coral Species and between Bleached and Non-Bleached Corals. Microbiol Spectr 2023; 11:e0491022. [PMID: 37191552 PMCID: PMC10269541 DOI: 10.1128/spectrum.04910-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People’s Republic of China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, People’s Republic of China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| |
Collapse
|
49
|
Delva S, De Baets B, Baetens JM, De Clerck O, Stock W. No bacterial-mediated alleviation of thermal stress in a brown seaweed suggests the absence of ecological bacterial rescue effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162532. [PMID: 36870499 DOI: 10.1016/j.scitotenv.2023.162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
While microbiome alterations are increasingly proposed as a rapid mechanism to buffer organisms under changing environmental conditions, studies of these processes in the marine realm are lagging far behind their terrestrial counterparts. Here, we used a controlled laboratory experiment to examine whether the thermal tolerance of the brown seaweed Dictyota dichotoma, a common species in European coastal ecosystems, could be enhanced by the repeated addition of bacteria from its natural environment. Juvenile algae from three genotypes were subjected for two weeks to a temperature gradient, spanning almost the entire thermal range that can be tolerated by the species (11-30 °C). At the start of the experiment and again in the middle of the experiment, the algae were inoculated with bacteria from their natural environment or left untouched as a control. Relative growth rate was measured over the two-week period, and we assessed bacterial community composition prior to and at the end of the experiment. Since the growth of D. dichotoma over the full thermal gradient was not affected by supplementing bacteria, our results indicate no scope for bacterial-mediated stress alleviation. The minimal changes in the bacterial communities linked to bacterial addition, particularly at temperatures above the thermal optimum (22-23 °C), suggest the existence of a barrier to bacterial recruitment. These findings indicate that ecological bacterial rescue is unlikely to play a role in mitigating the effects of ocean warming on this brown seaweed.
Collapse
Affiliation(s)
- Soria Delva
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Bernard De Baets
- Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Jan M Baetens
- Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium.
| | - Willem Stock
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium.
| |
Collapse
|
50
|
Li J, Chai G, Xiao Y, Li Z. The impacts of ocean acidification, warming and their interactive effects on coral prokaryotic symbionts. ENVIRONMENTAL MICROBIOME 2023; 18:49. [PMID: 37287087 DOI: 10.1186/s40793-023-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Reef-building corals, the foundation of tropical coral reefs, are vulnerable to climate change e.g. ocean acidification and elevated seawater temperature. Coral microbiome plays a key role in host acclimatization and maintenance of the coral holobiont's homeostasis under different environmental conditions, however, the response patterns of coral prokaryotic symbionts to ocean acidification and/or warming are rarely known at the metatranscriptional level, particularly the knowledge of interactive and persistent effects is limited. Using branching Acropora valida and massive Galaxea fascicularis as models in a lab system simulating extreme ocean acidification (pH 7.7) and/or warming (32 °C) in the future, we investigated the changes of in situ active prokaryotic symbionts community and gene expression of corals under/after (6/9 d) acidification (A), warming (H) and acidification-warming (AH) by metatranscriptome analysis with pH8.1, 26 °C as the control. RESULTS A, H and AH increased the relative abundance of in situ active pathogenic bacteria. Differentially expressed genes (DEGs) involved in virulence, stress resistance, and heat shock proteins were up-regulated. Many DEGs involved in photosynthesis, carbon dioxide fixation, amino acids, cofactors and vitamins, auxin synthesis were down-regulated. A broad array of new DEGs involved in carbohydrate metabolism and energy production emerged after the stress treatment. Different response patterns of prokaryotic symbionts of massive G. fascicularis and branching A. valida were suggested, as well as the interactive effects of combined AH and persistent effects. CONCLUSIONS The metatranscriptome-based study indicates that acidification and/or warming might change coral's in situ active prokaryotic microbial diversity and functional gene expression towards more pathogenic and destabilized coral-microbes symbioses, particularly combined acidification and warming show interactive effects. These findings will aid in comprehension of the coral holobiont's ability for acclimatization under future climate change.
Collapse
Affiliation(s)
- Jinlong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guangjun Chai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yilin Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|