1
|
Ribeiro B, N Garritano A, Raimundo I, Delgadillo-Ordoñez N, Nappi J, Garcias-Bonet N, Villela H, Thomas T, Klautau M, Peixoto RS. Not only for corals: exploring the uptake of beneficial microorganisms for corals by sponges. NPJ Biofilms Microbiomes 2024; 10:125. [PMID: 39537620 PMCID: PMC11561086 DOI: 10.1038/s41522-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Microbiome restoration using beneficial microorganisms for corals (BMCs) comprise a promising strategy to help corals cope with anthropogenic stressors. However, there is limited knowledge on the uptake of BMCs by nontarget animals, especially sponges. This study explores whether sponges can acquire BMCs upon direct application and whether inoculations affect sponge health. A 4-week field experiment applying BMCs to Stylissa carteri and Callyspongia crassa assessed three conditions: no inoculation, and BMCs inoculation once and thrice a week. BMC-related strains were naturally present in the seawater and the microbiome of S. carteri. These strains were enriched in response to the inoculation only in the S. carteri microbiome. Microbiomes of both sponges were restructured; sponges were visually healthy and efficiently pumped water at the end of the experiment. These results suggest that sponges can be enriched with BMC-related strains, and that BMC application on nearby corals is unlikely to negatively affect sponge health.
Collapse
Affiliation(s)
- Bárbara Ribeiro
- Federal University of Rio de Janeiro, Biology Institute, Zoology Department, TaxoN Laboratory, Rio de Janeiro, Brazil
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Alessandro N Garritano
- University of New South Wales, Centre for Marine Science and Innovation, Sydney, Australia
| | - Inês Raimundo
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Nathalia Delgadillo-Ordoñez
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Jadranka Nappi
- University of New South Wales, Centre for Marine Science and Innovation, Sydney, Australia
| | - Neus Garcias-Bonet
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Helena Villela
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Torsten Thomas
- University of New South Wales, Centre for Marine Science and Innovation, Sydney, Australia
| | - Michelle Klautau
- Federal University of Rio de Janeiro, Biology Institute, Zoology Department, TaxoN Laboratory, Rio de Janeiro, Brazil
| | - Raquel S Peixoto
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
El Khoury S, Gauthier J, Mercier PL, Moïse S, Giovenazzo P, Derome N. Honeybee gut bacterial strain improved survival and gut microbiota homeostasis in Apis mellifera exposed in vivo to clothianidin. Microbiol Spectr 2024; 12:e0057824. [PMID: 39189755 PMCID: PMC11448422 DOI: 10.1128/spectrum.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/04/2024] [Indexed: 08/28/2024] Open
Abstract
Pesticides are causing honeybee mortality worldwide. Research carried out on honeybees indicates that application of pesticides has a significant impact on the core gut community, which ultimately leads to an increase in the growth of harmful pathogens. Disturbances caused by pesticides also affect the way bacterial members interact, which results in gut microbial dysbiosis. Administration of beneficial microbes has been previously demonstrated to be effective in treating or preventing disease in honeybees. The objective of this study was to measure under in vivo conditions the ability of two bacterial strains (the Enterobacter sp. and Pantoea sp.) isolated from honeybee gut to improve survival and mitigate gut microbiota dysbiosis in honeybees exposed to a sublethal clothianidin dose (0.1 ppb). Both gut bacterial strains were selected for their ability to degrade clothianidin in vitro regardless of their host-microbe interaction characteristics (e.g., beneficial, neutral, or harmful). To this end, we conducted cage trials on 4- to 6-day-old newly emerging honeybees. During microbial administration, we jointly monitored the taxonomic distribution and activity level of bacterial symbionts quantifying 16S rRNA transcripts. First, curative administration of the Pantoea sp. strain significantly improved the survival of clothianidin-exposed honeybees compared to sugar control bees (i.e., supplemented with sugar [1:1]). Second, curative administration of the Enterobacter sp. strain significantly mitigated the clothianidin-induced dysbiosis observed in the midgut structural network, but without improving survival. IMPORTANCE The present work suggests that administration of bacterial strains isolated from honeybee gut may promote recovery of gut microbiota homeostasis after prolonged clothianidin exposure, while improving survival. This study highlights that gut bacterial strains hold promise for developing efficient microbial formulations to mitigate environmental pesticide exposure in honeybee colonies.
Collapse
Affiliation(s)
- Sarah El Khoury
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Jeff Gauthier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Pierre Luc Mercier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Stéphane Moïse
- INRS, Institut National de la Recherche Scientifique, Québec, Canada
| | | | - Nicolas Derome
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
3
|
Papić B, Žvokelj L, Pislak Ocepek M, Hočevar B, Kozar M, Rus R, Zajc U, Kušar D. The Diagnostic Value of qPCR Quantification of Paenibacillus larvae in Hive Debris and Adult Bees for Predicting the Onset of American Foulbrood. Vet Sci 2024; 11:442. [PMID: 39330821 PMCID: PMC11436083 DOI: 10.3390/vetsci11090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
American foulbrood (AFB) is a serious infectious disease of honeybees (Apis mellifera) caused by Paenibacillus larvae. Increased P. larvae count in hive-related material is associated with an increased risk of AFB. Here, we quantified P. larvae cells in 106 adult bee and 97 hive debris samples using quantitative PCR (qPCR); 66/106 adult bee and 66/97 hive debris samples were collected simultaneously from the same bee colony (paired-sample design). The corresponding bee colonies were also examined for the presence of AFB clinical signs. A binary logistic regression model to distinguish between AFB-affected and unaffected honeybee colonies showed a strong diagnostic accuracy of both sample types for predicting the onset of AFB based on P. larvae counts determined by qPCR. The colonies with a P. larvae count greater than 4.5 log cells/adult bee or 7.3 log cells/mL hive debris had a 50% probability of being clinically affected and were categorized as high-risk. The AFB-unaffected colonies had significantly lower P. larvae counts than the AFB-affected colonies, but the latter did not differ significantly in P. larvae counts in relation to the severity of clinical signs. Both bee-related sample types had a high diagnostic value for predicting disease outcome based on P. larvae counts. These results improve the understanding of the relationship between P. larvae counts and AFB occurrence, which is essential for early detection of high-risk colonies.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Lucija Žvokelj
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Metka Pislak Ocepek
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Barbara Hočevar
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Monika Kozar
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Rene Rus
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Urška Zajc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Lau E, Maccaro J, McFrederick QS, Nieh JC. Exploring the interactions between Nosema ceranae infection and the honey bee gut microbiome. Sci Rep 2024; 14:20037. [PMID: 39198535 PMCID: PMC11358482 DOI: 10.1038/s41598-024-67796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Managed colonies of the European honey bee, Apis mellifera, have faced considerable losses in recent years. A widespread contributing factor is a microsporidian pathogen, Nosema ceranae, which occurs worldwide, is increasingly resistant to antibiotic treatment, and can alter the host's immune response and nutritional uptake. These obligate gut pathogens share their environment with a natural honey bee microbiome whose composition can affect pathogen resistance. We tested the effect of N. ceranae infection on this microbiome by feeding 5 day-old adult bees that had natural, fully developed microbiomes with live N. ceranae spores (40,000 per bee) or a sham inoculation, sterile 2.0 M sucrose solution. We caged and reared these bees in a controlled lab environment and tracked their mortality over 12 d, after which we dissected them, measured their infection levels (gut spore counts), and analyzed their microbiomes. Bees fed live spores had two-fold higher mortality by 12 d and 36.5-fold more spores per bee than controls. There were also strong colony effects on infection levels, and 9% of spore-inoculated bees had no spore counts at all (defined as fed-spores-but-not-infected). Nosema ceranae infection had significant but subtle effects on the gut microbiomes of experimentally infected bees, bees with different infection levels, and fed-spores-but-not-infected vs. bees with gut spores. Specific bacteria, including Gilliamella ASVs, were positively associated with infection, indicating that multiple strains of core gut microbes either facilitate or resist N. ceranae infection. Future studies on the interactions between bacterial, pathogen, and host genotypes would be illuminating.
Collapse
Affiliation(s)
- Edmund Lau
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Maccaro
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - James C Nieh
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Robino P, Galosi L, Bellato A, Vincenzetti S, Gonella E, Ferrocino I, Serri E, Biagini L, Roncarati A, Nebbia P, Menzio C, Rossi G. Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome. Biol Res 2024; 57:50. [PMID: 39113128 PMCID: PMC11304726 DOI: 10.1186/s40659-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology. RESULTS The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host. CONCLUSIONS This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.
Collapse
Affiliation(s)
- Patrizia Robino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy.
| | | | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Elena Gonella
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Evelina Serri
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Chiara Menzio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
6
|
Robinson JM, Breed MF, Beckett R. Probiotic Cities: microbiome-integrated design for healthy urban ecosystems. Trends Biotechnol 2024; 42:942-945. [PMID: 38368168 DOI: 10.1016/j.tibtech.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
Combining microbiome science and biointegrated design offers opportunities to help address the intertwined challenges of urban ecosystem degradation and human disease. Biointegrated materials have the potential to combat superbugs and remediate pollution while inoculating landscape materials with microbiota can promote human immunoregulation and biodiverse green infrastructure, contributing to 'probiotic cities'.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia5042, Australia.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia5042, Australia
| | - Richard Beckett
- The Bartlett School of Architecture, University College London, Gordon Street, London, WC1H 0QB, UK
| |
Collapse
|
7
|
Todorov SD, Alves MV, Bueno GCA, Alves VF, Ivanova IV. Bee-Associated Beneficial Microbes-Importance for Bees and for Humans. INSECTS 2024; 15:430. [PMID: 38921144 PMCID: PMC11204305 DOI: 10.3390/insects15060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024]
Abstract
Bees are one of the best-known and, at the same time, perhaps the most enigmatic insects on our planet, known for their organization and social structure, being essential for the pollination of agricultural crops and several other plants, playing an essential role in food production and the balance of ecosystems, being associated with the production of high-value-added inputs, and a unique universe in relation to bees' microbiota. In this review, we summarize information regarding on different varieties of bees, with emphasis on their specificity related to microbial variations. Noteworthy are fructophilic bacteria, a lesser-known bacterial group, which use fructose fermentation as their main source of energy, with some strains being closely related to bees' health status. The beneficial properties of fructophilic bacteria may be extendable to humans and other animals as probiotics. In addition, their biotechnological potential may ease the development of new-generation antimicrobials with applications in biopreservation. The concept of "One Health" brings together fundamental and applied research with the aim of clarifying that the connections between the different components of ecosystems must be considered part of a mega-structure, with bees being an iconic example in that the healthy functionality of their microbiota is directly and indirectly related to agricultural production, bee health, quality of bee products, and the functional prosperity for humans and other animals. In fact, good health of bees is clearly related to the stable functionality of ecosystems and indirectly relates to humans' wellbeing, a concept of the "One Health".
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Marcos Vinício Alves
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | | | - Virgínia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia 74605-170, GO, Brazil (V.F.A.)
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164 Sofia, Bulgaria;
| |
Collapse
|
8
|
Yu Q, Liu Y, Liu S, Li S, Zhai Y, Zhang Q, Zheng L, Zheng H, Zhai Y, Wang X. Lactobacillus melliventris promotes hive productivity and immune functionality in Bombus terrestris performance in the greenhouse. INSECT SCIENCE 2024; 31:911-926. [PMID: 37830269 DOI: 10.1111/1744-7917.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
Bumblebees are important pollinators in agricultural ecosystems, but their abundance is declining globally. There is an urgent need to protect bumblebee health and their pollination services. Bumblebees possess specialized gut microbiota with potential to be used as probiotics to help defend at-risk bumblebee populations. However, evidence for probiotic benefits on bumblebees is lacking. Here, we evaluated how supplementation with Lactobacillus melliventris isolated from bumblebee gut affected the colony development of Bombus terrestris. This native strain colonized robustly and persisted long-term in bumblebees, leading to a significantly higher quality of offspring. Subsequently, the tyrosine pathway was upregulated in the brain and fat body, while the Wnt and mTOR pathways of the gut were downregulated. Notably, the field experiment in the greenhouse revealed the supplementation of L. melliventris led to a 2.5-fold increase in the bumblebee survival rate and a more than 10% increase in the number of flowers visited, indicating a better health condition and pollination ability in field conditions. Our study represents a first screening for the potential use of the native gut member, L. melliventris, as probiotic strains in hive supplement for bumblebee breeding, which may be a practical approach to improve immunity and hive health.
Collapse
Affiliation(s)
- Qianhui Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Shaogang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qingchao Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
El-Meihy RM, Hassan EO, Alamoudi SA, Negm S, Al-Hoshani N, Al-Ghamdi MS, Nowar EE. Probing the interaction of Paenibacillus larvae bacteriophage as a biological agent to control the american foulbrood disease in honeybee. Saudi J Biol Sci 2024; 31:104002. [PMID: 38706719 PMCID: PMC11070271 DOI: 10.1016/j.sjbs.2024.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
American foulbrood (AFB) is a harmful honeybee disease primarily caused by Paenibacillus larvae. The study aims to isolate and identify the AFB causative agent P. larvae and their specific phages to use as a new biological method for AFB disease control. Eight apiaries were inspected for AFB infections. Symptoms of diseased brood comb, were odd brood cells with soft brown decayed brood amongst healthy brood, were identified in the field and demonstrated the prevalence of AFB in every apiary. Three P. larvae isolates were identified using traditional techniques using a 452-bp PCR amplicon specific to the bacterial 16SrRNA gene and was compared between Paenibacillus isolates. Additionally, specific phages of P. larvae strains were applied to examine their efficiency in reducing the infection rate under the apiary condition. The infection rate was reduced to approximately 94.6 to 100 % through the application of a phage mixture, as opposed to 20 to 85.7 % when each phage was administered individually or 78.6 to 88.9 % when antibiotic treatment was implemented. Histological studies on phage-treated bee larvae revealed some cells regaining normal shape, with prominent nuclei and microvilli. The gastrointestinal tract showed normal longitudinal and circular muscles, unlike bee larvae treated with bacterial strains with abnormal and destroyed tissues, as shown by the basement membrane surrounding the mid-gut epithelium. Phage techniques exhibited promise in resolving the issue of AFB in honeybees due to their ease of application, comparatively lower cost, and practicality for beekeepers in terms of laboratory preparation.
Collapse
Affiliation(s)
- Rasha M. El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia 13736, Egypt
| | - Eman O. Hassan
- Department of Plant Pathology, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia 13736, Egypt
| | - Soha A. Alamoudi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mariam S. Al-Ghamdi
- Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Elhosseny E. Nowar
- Department of Plant Protection, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia 13736, Egypt
| |
Collapse
|
10
|
Smriti, Rana A, Singh G, Gupta G. Prospects of probiotics in beekeeping: a review for sustainable approach to boost honeybee health. Arch Microbiol 2024; 206:205. [PMID: 38573383 DOI: 10.1007/s00203-024-03926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Smriti
- Department of Biosciences (UIBT), Chandigarh University, Mohali, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Mohali, 140413, India.
| | - Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Mohali, 140413, India
| | - Garima Gupta
- Department of Agriculture (UIAS), Chandigarh University, Mohali, 140413, India
| |
Collapse
|
11
|
Tilocca B, Greco V, Piras C, Ceniti C, Paonessa M, Musella V, Bava R, Palma E, Morittu VM, Spina AA, Castagna F, Urbani A, Britti D, Roncada P. The Bee Gut Microbiota: Bridging Infective Agents Potential in the One Health Context. Int J Mol Sci 2024; 25:3739. [PMID: 38612550 PMCID: PMC11012054 DOI: 10.3390/ijms25073739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The bee gut microbiota plays an important role in the services the bees pay to the environment, humans and animals. Alongside, gut-associated microorganisms are vehiculated between apparently remote habitats, promoting microbial heterogeneity of the visited microcosms and the transfer of the microbial genetic elements. To date, no metaproteomics studies dealing with the functional bee microbiota are available. Here, we employ a metaproteomics approach to explore a fraction of the bacterial, fungal, and unicellular parasites inhabiting the bee gut. The bacterial community portrays a dynamic composition, accounting for specimens of human and animal concern. Their functional features highlight the vehiculation of virulence and antimicrobial resistance traits. The fungal and unicellular parasite fractions include environment- and animal-related specimens, whose metabolic activities support the spatial spreading of functional features. Host proteome depicts the major bee physiological activities, supporting the metaproteomics strategy for the simultaneous study of multiple microbial specimens and their host-crosstalks. Altogether, the present study provides a better definition of the structure and function of the bee gut microbiota, highlighting its impact in a variety of strategies aimed at improving/overcoming several current hot topic issues such as antimicrobial resistance, environmental pollution and the promotion of environmental health.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (V.G.); (A.U.)
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Piras
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Carlotta Ceniti
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Mariachiara Paonessa
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Vincenzo Musella
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Roberto Bava
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Ernesto Palma
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Valeria Maria Morittu
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Anna Antonella Spina
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Fabio Castagna
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (V.G.); (A.U.)
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Domenico Britti
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| |
Collapse
|
12
|
Garcias-Bonet N, Roik A, Tierney B, García FC, Villela HDM, Dungan AM, Quigley KM, Sweet M, Berg G, Gram L, Bourne DG, Ushijima B, Sogin M, Hoj L, Duarte G, Hirt H, Smalla K, Rosado AS, Carvalho S, Thurber RV, Ziegler M, Mason CE, van Oppen MJH, Voolstra CR, Peixoto RS. Horizon scanning the application of probiotics for wildlife. Trends Microbiol 2024; 32:252-269. [PMID: 37758552 DOI: 10.1016/j.tim.2023.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.
Collapse
Affiliation(s)
- Neus Garcias-Bonet
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Francisca C García
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena D M Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kate M Quigley
- Minderoo Foundation, Perth, WA, Australia; James Cook University, Townsville, Australia
| | - Michael Sweet
- Aquatic Research Facility, Nature-based Solutions Research Centre, University of Derby, Derby, UK
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; University of Potsdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Maggie Sogin
- Molecular Cell Biology, University of California, Merced, CA, USA
| | - Lone Hoj
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Gustavo Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; IMPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heribert Hirt
- Center for Desert Agriculture (CDA), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; WorldQuant Initiative on Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | | | - Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
13
|
Savio C, Herren P, Rejasse A, Rios A, Bourelle W, Bruun-Jensen A, Lecocq A, van Loon JJA, Nielsen-LeRoux C. Minor impact of probiotic bacteria and egg white on Tenebrio molitor growth, microbial composition, and pathogen infection. FRONTIERS IN INSECT SCIENCE 2024; 4:1334526. [PMID: 38469340 PMCID: PMC10926391 DOI: 10.3389/finsc.2024.1334526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
The industrial rearing of the yellow mealworm (Tenebrio molitor) for feed and food purposes on agricultural by-products may expose larvae and adults to entomopathogens used as biocontrol agents in crop production. Bacterial spores/toxins or fungal conidia from species such as Bacillus thuringiensis or Metarhizium brunneum could affect the survival and growth of insects. Therefore, the aim of this study was to investigate the potential benefits of a wheat bran diet supplemented with probiotic bacteria and dried egg white on larval development and survival and its effects on the gut microbiome composition. Two probiotic bacterial species, Pediococcus pentosaceus KVL B19-01 and Lactiplantibacillus plantarum WJB, were added to wheat bran feed with and without dried egg white, as an additional protein source, directly from neonate larval hatching until reaching a body mass of 20 mg. Subsequently, larvae from the various diets were exposed for 72 h to B. thuringiensis, M. brunneum, or their combination. Larval survival and growth were recorded for 14 days, and the bacterial microbiota composition was analyzed using 16S rDNA sequencing prior to pathogen exposure and on days 3 and 11 after inoculation with the pathogens. The results showed increased survival for T. molitor larvae reared on feed supplemented with P. pentosaceus in the case of co-infection. Larval growth was also impacted in the co-infection treatment. No significant impact of egg white or of P. pentosaceus on larval growth was recorded, while the addition of Lb. plantarum resulted in a minor increase in individual mass gain compared with infected larvae without the latter probiotic. On day 14, B. thuringiensis was no longer detected and the overall bacterial community composition of the larvae was similar in all treatments. On the other hand, the relative operational taxonomic unit (OTU) abundance was dependent on day, diet, and probiotic. Interestingly, P. pentosaceus was present throughout the experiments, while Lb. plantarum was not found at a detectable level, although its transient presence slightly improved larval performance. Overall, this study confirms the potential benefits of some probiotics during the development of T. molitor while underlining the complexity of the relationship between the host and its microbiome.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pascal Herren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Agnès Rejasse
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | | | - William Bourelle
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | - Annette Bruun-Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Joop J. A. van Loon
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
14
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
15
|
Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. THE ISME JOURNAL 2024; 18:wrae104. [PMID: 38861457 PMCID: PMC11195472 DOI: 10.1093/ismejo/wrae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
Collapse
Affiliation(s)
- Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- International Union for Conservation of Nature, C. 39, Los Yoses, San Jose, 146-2150, Costa Rica
| | - Allison Q Byrne
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, United States
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian’s National Zoological Park and Conservation Biology Institute, Front Royal, VA 22630, United States
| | - Amy Ellison
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
| |
Collapse
|
16
|
Damico ME, Beasley B, Greenstein D, Raymann K. Testing the Effectiveness of a Commercially Sold Probiotic on Restoring the Gut Microbiota of Honey Bees: a Field Study. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10203-1. [PMID: 38112994 DOI: 10.1007/s12602-023-10203-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Antibiotic use in apiculture is often necessary to ensure the survival of honey bee colonies. However, beekeepers are faced with the dilemma of needing to combat bacterial brood infections while also knowing that antibiotics kill beneficial bacteria important for bee health. In recent years, bee probiotics have become increasingly purchased by beekeepers because of product claims like being able to "replenish the microbes lost due to agricultural modifications of honey bees' environment" or "promote optimal gut health." Unfortunately, these products have little scientific evidence to support their efficacy, and previous lab experiments have refuted some of their claims. Here, we performed hive-level field experiments to test the effectiveness of SuperDFM-HoneyBee™ - the most commonly purchased honey bee probiotic in the United States - on restoring the honey bee gut microbiota after antibiotic treatment. We found slight but significant changes in the microbiota composition of bees following oxytetracycline (TerraPro) treatment and no difference between the microbiota of antibiotic treated bees with or without subsequent probiotic supplementation. Moreover, the microorganisms in the probiotic supplement were never found in the guts of the worker bee samples. These results highlight that more research is needed to test the efficacy and outcomes of currently available commercial honey bee probiotic supplements.
Collapse
Affiliation(s)
- Megan E Damico
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Burton Beasley
- North Carolina State Beekeepers Association, Hurdle Mills, NC, 27541, USA
| | - Drew Greenstein
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Kasie Raymann
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Reid G. A value chain to improve human, animal and insect health in developing countries. MICROBIOME RESEARCH REPORTS 2023; 3:10. [PMID: 38455087 PMCID: PMC10917616 DOI: 10.20517/mrr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 03/09/2024]
Affiliation(s)
- Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London N6A 4V2, Ontario, Canada
- Departments of Microbiology and Immunology, and Surgery, Western University, London N6A 4V2, Ontario, Canada
| |
Collapse
|
18
|
Fang P, Lei Q, Lv M, Xu L, Dong K, Zhao W, Yue D, Cao Z, Lin Q. Effects of the combination of Lactobacillus helveticus and isomalto-oligosaccharide on survival, gut microbiota, and immune function in Apis cerana worker bees. Lett Appl Microbiol 2023; 76:ovad134. [PMID: 38049374 DOI: 10.1093/lambio/ovad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The adult worker bees were fed sucrose syrup or sucrose syrup supplemented with Lactobacillus helveticus KM7, prebiotic isomalto-oligosaccharide (IMO), or L. helveticus KM7 combined with IMO. Survival rate, gut microbiota, and gene expression of gut antimicrobial peptides in worker honey bees were determined. Administration of L. helveticus KM7 and IMO significantly increased the survival rate in worker bees relative to bees fed sucrose only. Then, higher concentration of both lactic acid bacteria and Bifidobacterium in the gut and lower counts of gut fungi, Enterococcus, and Bacteroides-Porphyromonas-Prevotella were observed in bees fed the combination of KM7 and IMO compared with control bees. The combination of L. helveticus KM7 with IMO showed a greater or comparable modulating effect on those bacteria relative to either KM7 or IMO alone. Furthermore, the combination treatment of L. helveticus KM7 and IMO enhanced mRNA expression of antimicrobial peptide genes, including Abaecin, Defensin, and the gene encoding prophenoloxidase (PPO) in the gut compared with both control bees and those either L. helveticus KM7 or IMO alone. These results suggest that the combination of L. helveticus KM7 and IMO synergistically modifies the gut microbiota and immunity and consequently improves the survival rate of Apis cerana adult workers.
Collapse
Affiliation(s)
- Pingping Fang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Qingzhi Lei
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Mingkui Lv
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Kun Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Wenzheng Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Dan Yue
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming 650201, People's Republic of China
| |
Collapse
|
19
|
Rodríguez MA, Fernández LA, Daisley BA, Reynaldi FJ, Allen-Vercoe E, Thompson GJ. Probiotics and in-hive fermentation as a source of beneficial microbes to support the gut microbial health of honey bees. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:19. [PMID: 38055943 PMCID: PMC10699873 DOI: 10.1093/jisesa/iead093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.
Collapse
Affiliation(s)
- María A Rodríguez
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Leticia A Fernández
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brendan A Daisley
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Francisco J Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
20
|
Nguyen PN, Rehan SM. Environmental Effects on Bee Microbiota. MICROBIAL ECOLOGY 2023; 86:1487-1498. [PMID: 37099156 DOI: 10.1007/s00248-023-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic activities and increased land use, which include industrialization, agriculture and urbanization, directly affect pollinators by changing habitats and floral availability, and indirectly by influencing their microbial composition and diversity. Bees form vital symbioses with their microbiota, relying on microorganisms to perform physiological functions and aid in immunity. As altered environments and climate threaten bees and their microbiota, characterizing the microbiome and its complex relationships with its host offers insights into understanding bee health. This review summarizes the role of sociality in microbiota establishment, as well as examines if such factors result in increased susceptibility to altered microbiota due to environmental changes. We characterize the role of geographic distribution, temperature, precipitation, floral resources, agriculture, and urbanization on bee microbiota. Bee microbiota are affected by altered surroundings regardless of sociality. Solitary bees that predominantly acquire their microbiota through the environment are particularly sensitive to such effects. However, the microbiota of obligately eusocial bees are also impacted by environmental changes despite typically well conserved and socially inherited microbiota. We provide an overview of the role of microbiota in plant-pollinator relationships and how bee microbiota play a larger role in urban ecology, offering microbial connections between animals, humans, and the environment. Understanding bee microbiota presents opportunities for sustainable land use restoration and aiding in wildlife conservation.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
21
|
Huang Y, Li N, Yang C, Lin Y, Wen Y, Zheng L, Zhao C. Honeybee as a food nutrition analysis model of neural development and gut microbiota. Neurosci Biobehav Rev 2023; 153:105372. [PMID: 37652394 DOI: 10.1016/j.neubiorev.2023.105372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Research on the relationships between the gut microbiota and the neurophysiology and behavior of animals has grown exponentially in just a few years. Insect behavior may be controlled by molecular mechanisms that are partially homologous to those in mammals, and swarming insects may be suitable as experiment models in these types of investigations. All core gut bacteria in honeybees can be cultivated in vitro. Certain gut microflora of bees can be genetically engineered or sterilized and colonized. The bee gut bacteria model is established more rapidly and has a higher flux than other sterile animal models. It may help elucidate the pathogenesis of intestinal diseases and identify effective molecular therapeutic targets against them. In the present review, we focused on the contributions of the honeybee model in learning cognition and microbiome research. We explored the relationship between honeybee behavior and neurodevelopment and the factors determining the mechanisms by which the gut microbiota affects the host. In particular, we concentrated on the correlation between gut microbiota and brain development. Finally, we examined strategies for the effective use of simple animal models in animal cognition and microbiome research.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Lin
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Daisley BA, Pitek AP, Torres C, Lowery R, Adair BA, Al KF, Niño B, Burton JP, Allen-Vercoe E, Thompson GJ, Reid G, Niño E. Delivery mechanism can enhance probiotic activity against honey bee pathogens. THE ISME JOURNAL 2023; 17:1382-1395. [PMID: 37311937 PMCID: PMC10432525 DOI: 10.1038/s41396-023-01422-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/15/2023]
Abstract
Managed honey bee (Apis mellifera) populations play a crucial role in supporting pollination of food crops but are facing unsustainable colony losses, largely due to rampant disease spread within agricultural environments. While mounting evidence suggests that select lactobacilli strains (some being natural symbionts of honey bees) can protect against multiple infections, there has been limited validation at the field-level and few methods exist for applying viable microorganisms to the hive. Here, we compare how two different delivery systems-standard pollen patty infusion and a novel spray-based formulation-affect supplementation of a three-strain lactobacilli consortium (LX3). Hives in a pathogen-dense region of California are supplemented for 4 weeks and then monitored over a 20-week period for health outcomes. Results show both delivery methods facilitate viable uptake of LX3 in adult bees, although the strains do not colonize long-term. Despite this, LX3 treatments induce transcriptional immune responses leading to sustained decreases in many opportunistic bacterial and fungal pathogens, as well as selective enrichment of core symbionts including Bombilactobacillus, Bifidobacterium, Lactobacillus, and Bartonella spp. These changes are ultimately associated with greater brood production and colony growth relative to vehicle controls, and with no apparent trade-offs in ectoparasitic Varroa mite burdens. Furthermore, spray-LX3 exerts potent activities against Ascosphaera apis (a deadly brood pathogen) likely stemming from in-hive dispersal differences, whereas patty-LX3 promotes synergistic brood development via unique nutritional benefits. These findings provide a foundational basis for spray-based probiotic application in apiculture and collectively highlight the importance of considering delivery method in disease management strategies.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Christina Torres
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Robin Lowery
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Bethany A Adair
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bernardo Niño
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Agricultural Research Service, United States Department of Agriculture, Davis, CA, 95616, USA
| | - Jeremy P Burton
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Elina Niño
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA.
- University of California Agriculture and Natural Resources, Oakland, CA, 95618, USA.
| |
Collapse
|
23
|
Truong AT, Kang JE, Yoo MS, Nguyen TT, Youn SY, Yoon SS, Cho YS. Probiotic candidates for controlling Paenibacillus larvae, a causative agent of American foulbrood disease in honey bee. BMC Microbiol 2023; 23:150. [PMID: 37226109 DOI: 10.1186/s12866-023-02902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND American foulbrood (AFB) disease caused by Paenibacillus larvae is dangerous, and threatens beekeeping. The eco-friendly treatment method using probiotics is expected to be the prospective method for controlling this pathogen in honey bees. Therefore, this study investigated the bacterial species that have antimicrobial activity against P. larvae. RESULTS Overall, 67 strains of the gut microbiome were isolated and identified in three phyla; the isolates had the following prevalence rates: Firmicutes 41/67 (61.19%), Actinobacteria 24/67 (35.82%), and Proteobacteria 2/67 (2.99%). Antimicrobial properties against P. larvae on agar plates were seen in 20 isolates of the genus Lactobacillus, Firmicutes phylum. Six representative strains from each species (L. apis HSY8_B25, L. panisapium PKH2_L3, L. melliventris HSY3_B5, L. kimbladii AHS3_B36, L. kullabergensis OMG2_B25, and L. mellis OMG2_B33) with the largest inhibition zones on agar plates were selected for in vitro larvae rearing challenges. The results showed that three isolates (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) had the potential to be probiotic candidates with the properties of safety to larvae, inhibition against P. larvae in infected larvae, and high adhesion ability. CONCLUSIONS Overall, 20 strains of the genus Lactobacillus with antimicrobial properties against P. larvae were identified in this study. Three representative strains from different species (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) were evaluated to be potential probiotic candidates and were selected for probiotic development for the prevention of AFB. Importantly, the species L. panisapium isolated from larvae was identified with antimicrobial activity for the first time in this study.
Collapse
Affiliation(s)
- A-Tai Truong
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, 250000, Vietnam
| | - Jeong Eun Kang
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Mi-Sun Yoo
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Thi Thu Nguyen
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - So-Youn Youn
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yun Sang Cho
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
24
|
Sinpoo C, In-on A, Noirungsee N, Attasopa K, Chantawannakul P, Chaimanee V, Phokasem P, Ling TC, Purahong W, Disayathanoowat T. Microbial community profiling and culturing reveal functional groups of bacteria associated with Thai commercial stingless worker bees (Tetragonula pagdeni). PLoS One 2023; 18:e0280075. [PMID: 36857385 PMCID: PMC9977063 DOI: 10.1371/journal.pone.0280075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/20/2022] [Indexed: 03/02/2023] Open
Abstract
Stingless bees play a crucial role in the environment and agriculture as they are effective pollinators. Furthermore, they can produce various products that can be exploited economically, such as propolis and honey. Despite their economic value, the knowledge of microbial community of stingless bees, and their roles on the bees' health, especially in Thailand, are in its infancy. This study aimed to investigate the composition and the functions of bacterial community associated with Tetragonula pagdeni stingless bees using culture-independent and culture-dependent approaches with emphasis on lactic acid bacteria. The culture-independent results showed that the dominant bacterial phyla were Firmicutes, Proteobacteria and Actinobacteria. The most abundant families were Lactobacillaceae and Halomonadaceae. Functional prediction indicated that the prevalent functions of bacterial communities were chemoheterotrophy and fermentation. In addition, the bacterial community might be able to biosynthesize amino acid and antimicrobial compounds. Further isolation and characterization resulted in isolates that belonged to the dominant taxa of the community and possessed potentially beneficial metabolic activity. This suggested that they are parts of the nutrient acquisition and host defense bacterial functional groups in Thai commercial stingless bees.
Collapse
Affiliation(s)
- Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ammarin In-on
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi (Bang Khun Thian Campus), Bang Khun Thian, Bangkok, Thailand
| | - Nuttapol Noirungsee
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Veeranan Chaimanee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae, Thailand
| | - Patcharin Phokasem
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Tial Cung Ling
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- * E-mail: (WP); (TD)
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- * E-mail: (WP); (TD)
| |
Collapse
|
25
|
Ye M, Li X, Yang F, Zhou B. Beneficial bacteria as biocontrol agents for American foulbrood disease in honey bees (Apis mellifera). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:6. [PMID: 36947033 PMCID: PMC10032306 DOI: 10.1093/jisesa/iead013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/30/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
American foulbrood (AFB) is a cosmopolitan bacterial disease that affects honey bee (Apis mellifera) larvae and causes great economic losses in apiculture. Currently, no satisfactory methods are available for AFB treatment mainly due to the difficulties to eradicate the tenacious spores produced by the etiological agent of AFB, Paenibacillus larvae (Bacillales, Paenibacillaceae). This present review focused on the beneficial bacteria that displayed antagonistic activities against P. larvae and demonstrated potential in AFB control. Emphases were placed on commensal bacteria (genus Bacillus and lactic acid bacteria in particular) in the alimentary tract of honey bees. The probiotic roles lactic acid bacteria play in combating the pathogenic P. larvae and the limitations referring to the application of these beneficial bacteria were addressed.
Collapse
Affiliation(s)
- Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiaoyuan Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Fengping Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | | |
Collapse
|
26
|
The promise of probiotics in honeybee health and disease management. Arch Microbiol 2023; 205:73. [PMID: 36705763 DOI: 10.1007/s00203-023-03416-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Over the last decades, losses of bee populations have been observed worldwide. A panoply of biotic and abiotic factors, as well as the interplay among them, has been suggested to be responsible for bee declines, but definitive causes have not yet been identified. Among pollinators, the honeybee Apis mellifera is threatened by various diseases and environmental stresses, which have been shown to impact the insect gut microbiota that is known to be fundamental for host metabolism, development and immunity. Aimed at preserving the gut homeostasis, many researches are currently focusing on improving the honeybee health through the administration of probiotics e.g., by boosting the innate immune response against microbial infections. Here, we review the knowledge available on the characterization of the microbial diversity associated to honeybees and the use of probiotic symbionts as a promising approach to maintain honeybee fitness, sustaining a healthy gut microbiota and enhancing its crucial relationship with the host immune system.
Collapse
|
27
|
Gorrens E, Lecocq A, De Smet J. The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms 2023; 11:245. [PMID: 36838211 PMCID: PMC9960648 DOI: 10.3390/microorganisms11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Given the novelty of the industrial production of the edible insects sector, research has primarily focused on the zootechnical performances of black soldier fly larvae (BSFL) in response to different substrates and rearing conditions as a basis to optimize yield and quality. However recently, research has started to focus more on the associated microbes in the larval digestive system and their substrates and the effect of manipulating the composition of these communities on insect performance as a form of microbiome engineering. Here we present an overview of the existing literature on the use of microorganisms during rearing of the BSFL to optimize the productivity of this insect. These studies have had variable outcomes and potential explanations for this variation are offered to inspire future research that might lead to a better success rate for microbiome engineering in BSFL.
Collapse
Affiliation(s)
- Ellen Gorrens
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| |
Collapse
|
28
|
Decker LE, San Juan PA, Warren ML, Duckworth CE, Gao C, Fukami T. Higher Variability in Fungi Compared to Bacteria in the Foraging Honey Bee Gut. MICROBIAL ECOLOGY 2023. [PMID: 34997310 DOI: 10.1101/2020.10.20.348128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Along with bacteria, fungi can represent a significant component of animal- and plant-associated microbial communities. However, we have only begun to describe these fungi, much less examine their effects on most animals and plants. Bacteria associated with the honey bee, Apis mellifera, have been well characterized across different regions of the gut. The mid- and hindgut of foraging bees house a deterministic set of core species that affect host health, whereas the crop, or the honey stomach, harbors a more diverse set of bacteria that is highly variable in composition among individual bees. Whether this contrast between the two regions of the gut also applies to fungi remains unclear despite their potential influence on host health. In honey bees caught foraging at four sites across the San Francisco Peninsula of California, we found that fungi were less distinct in species composition between the crop and the mid- and hindgut than bacteria. Unlike bacteria, fungi varied substantially in species composition throughout the honey bee gut, and much of this variation could be predicted by the location where we collected the bees. These observations suggest that fungi may be transient passengers and unimportant as gut symbionts. However, our findings also indicate that honey bees could be vectors of infectious plant diseases as many of the fungi we found in the honey bee gut are recognized as plant pathogens.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA.
| | - Priscilla A San Juan
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
| | - Magdalena L Warren
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
| | - Cory E Duckworth
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
- Department of Biology, University of North Georgia, 159 Sunset Dr, Health and Natural Sciences Building, Dahlonega, GA, 30597, USA
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Cheng Gao
- Department of Plant & Microbial Biology, University of California, Berkeley, 321 Koshland Hall, Berkeley, CA, 94720, USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
| |
Collapse
|
29
|
Decker LE, San Juan PA, Warren ML, Duckworth CE, Gao C, Fukami T. Higher Variability in Fungi Compared to Bacteria in the Foraging Honey Bee Gut. MICROBIAL ECOLOGY 2023; 85:330-334. [PMID: 34997310 DOI: 10.1007/s00248-021-01922-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Along with bacteria, fungi can represent a significant component of animal- and plant-associated microbial communities. However, we have only begun to describe these fungi, much less examine their effects on most animals and plants. Bacteria associated with the honey bee, Apis mellifera, have been well characterized across different regions of the gut. The mid- and hindgut of foraging bees house a deterministic set of core species that affect host health, whereas the crop, or the honey stomach, harbors a more diverse set of bacteria that is highly variable in composition among individual bees. Whether this contrast between the two regions of the gut also applies to fungi remains unclear despite their potential influence on host health. In honey bees caught foraging at four sites across the San Francisco Peninsula of California, we found that fungi were less distinct in species composition between the crop and the mid- and hindgut than bacteria. Unlike bacteria, fungi varied substantially in species composition throughout the honey bee gut, and much of this variation could be predicted by the location where we collected the bees. These observations suggest that fungi may be transient passengers and unimportant as gut symbionts. However, our findings also indicate that honey bees could be vectors of infectious plant diseases as many of the fungi we found in the honey bee gut are recognized as plant pathogens.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA.
| | - Priscilla A San Juan
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
| | - Magdalena L Warren
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
| | - Cory E Duckworth
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
- Department of Biology, University of North Georgia, 159 Sunset Dr, Health and Natural Sciences Building, Dahlonega, GA, 30597, USA
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Cheng Gao
- Department of Plant & Microbial Biology, University of California, Berkeley, 321 Koshland Hall, Berkeley, CA, 94720, USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 48109-1085, USA
| |
Collapse
|
30
|
Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee ( Apis mellifera L.) Pathogens. Molecules 2022; 27:molecules27248945. [PMID: 36558073 PMCID: PMC9786635 DOI: 10.3390/molecules27248945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.
Collapse
|
31
|
Biocontrol potential of Apilactobacillus kunkeei EIR/BG-1 against infectious diseases in honey bees (Apis mellifera L.). Vet Res Commun 2022; 47:753-765. [DOI: 10.1007/s11259-022-10036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
|
32
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
33
|
Daisley BA, Pitek AP, Mallory E, Chernyshova AM, Allen-Vercoe E, Reid G, Thompson GJ. Disentangling the microbial ecological factors impacting honey bee susceptibility to Paenibacillus larvae infection. Trends Microbiol 2022; 31:521-534. [PMID: 36526535 DOI: 10.1016/j.tim.2022.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Paenibacillus larvae is a spore-forming bacterial entomopathogen and causal agent of the important honey bee larval disease, American foulbrood (AFB). Active infections by vegetative P. larvae are often deadly, highly transmissible, and incurable for colonies but, when dormant, the spore form of this pathogen can persist asymptomatically for years. Despite intensive investigation over the past century, this process has remained enigmatic. Here, we provide an up-to-date synthesis on the often overlooked microbiota factors involved in the spore-to-vegetative growth transition (corresponding with the onset of AFB disease symptoms) and offer a novel outlook on AFB pathogenesis by focusing on the 'collaborative' and 'competitive' interactions between P. larvae and other honey bee-adapted microorganisms. Furthermore, we discuss the health trade-offs associated with chronic antibiotic exposure and propose new avenues for the sustainable control of AFB via probiotic and microbiota management strategies.
Collapse
|
34
|
Wang J, Lang H, Zhang W, Zhai Y, Zheng L, Chen H, Liu Y, Zheng H. Stably transmitted defined microbial community in honeybees preserves Hafnia alvei inhibition by regulating the immune system. Front Microbiol 2022; 13:1074153. [PMID: 36532452 PMCID: PMC9751035 DOI: 10.3389/fmicb.2022.1074153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 12/08/2023] Open
Abstract
The gut microbiota of honeybees is highly diverse at the strain level and essential to the proper function and development of the host. Interactions between the host and its gut microbiota, such as specific microbes regulating the innate immune system, protect the host against pathogen infections. However, little is known about the capacity of these strains deposited in one colony to inhibit pathogens. In this study, we assembled a defined microbial community based on phylogeny analysis, the 'Core-20' community, consisting of 20 strains isolated from the honeybee intestine. The Core-20 community could trigger the upregulation of immune gene expressions and reduce Hafnia alvei prevalence, indicating immune priming underlies the microbial protective effect. Functions related to carbohydrate utilization and the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS systems) are represented in genomic analysis of the defined community, which might be involved in manipulating immune responses. Additionally, we found that the defined Core-20 community is able to colonize the honeybee gut stably through passages. In conclusion, our findings highlight that the synthetic gut microbiota could offer protection by regulating the host immune system, suggesting that the strain collection can yield insights into host-microbiota interactions and provide solutions to protect honeybees from pathogen infections.
Collapse
Affiliation(s)
- Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenhao Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Yifan Zhai
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Li Zheng
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Hao Chen
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Yan Liu
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Xia B, Liu X, Li Z, Ren J, Liu X. The Effects of Microbiota-targeted Approaches in Inflammatory Bowel Disease: Probiotics, Probiotic Foods and Prebiotics. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
36
|
Lanh PT, Duong BTT, Thu HT, Hoa NT, Yoo MS, Cho YS, Quyen DV. The Gut Microbiota at Different Developmental Stages of Apis cerana Reveals Potential Probiotic Bacteria for Improving Honeybee Health. Microorganisms 2022; 10:1938. [PMID: 36296213 PMCID: PMC9607016 DOI: 10.3390/microorganisms10101938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2024] Open
Abstract
Honeybees play a vital role in the ecological environment and agricultural economy. Increasing evidence shows that the gut microbiome greatly influences the host's health. Therefore, a thorough understanding of gut bacteria composition can lead to the development of probiotics specific for each development stage of honeybees. In this study, the gut microbiota at different developmental stages (larvae, pupae, and adults) of the honeybees Apis cerana in Hanoi, Vietnam, was assessed by sequencing the V3-V4 region in the 16S rRNA gene using the Illumina Miseq platform. The results indicated that the richness and diversity of the gut microbiota varied over the investigated stages of A. cenara. All three bee groups showed relative abundance at both phylum and family levels. In larvae, Firmicutes were the most predominant (81.55%); however, they decreased significantly along with the bee development (33.7% in pupae and 10.3% in adults) in favor of Proteobacteria. In the gut of adult bees, four of five core bacteria were found, including Gilliamella apicola group (34.01%) Bifidobacterium asteroides group (10.3%), Lactobacillus Firm-4 (2%), and Lactobacillus Firm-5 (1%). In contrast, pupae and larvae lacked almost all core bacteria except G. apicola (4.13%) in pupae and Lactobacillus Firm-5 (4.04%) in larvae. This is the first report on the gut microbiota community at different developmental stages of A. cerana in Vietnam and provides potential probiotic species for beekeeping.
Collapse
Affiliation(s)
- Pham Thi Lanh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Bui Thi Thuy Duong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Ha Thi Thu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Nguyen Thi Hoa
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Mi Sun Yoo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Korea
| | - Yun Sang Cho
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Korea
| | - Dong Van Quyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| |
Collapse
|
37
|
Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari I. Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 2022; 10:2896-2910. [PMID: 36171785 PMCID: PMC9469857 DOI: 10.1002/fsn3.2885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/06/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Weissella strains have been reported to be useful in biotechnological and probiotic determinations, and some of them are considered opportunistic pathogens. Given the widespread interest about antimicrobial susceptibilities, transmission of resistances, and virulence factors, there is little research available on such topics for Weissella. The aim of this study was to assess the safety aspects and antimicrobial potential of 54 Weissella spp. strains from different environmental sources. Antibiotic susceptibility, hemolytic activity, horizontal transfer, and antibacterial activity were studied, as well as the detection of biogenic amine BA production on decarboxylase medium and PCR was performed. All the strains were nonhemolytic and sensitive to chloramphenicol and ampicillin. Several strains were classified as resistant to fusidic acid, and very low resistance rates were detected to ciprofloxacin, tetracycline, streptomycin, lincomycin, erythromycin, and rifampicin, although all strains had intrinsic resistance to vancomycin, nalidixic acid, kanamycin, and teicoplanin. Two BA-producing strains (W. halotolerans FAS30 and FAS29) exhibited tyrosine decarboxylase activity, and just one W. confusa FS077 produced both tyramine and histamine, and their genetic determinants were identified. Ornithine decarboxylase/odc gene was found in 16 of the Weissella strains, although 3 of them synthesize putrescine. Interestingly, eight strains with good properties displayed antibacterial activity. Conjugation frequencies of erythromycin from Bacillus to Weissella spp. varied in the average of 3 × 10-9 transconjugants/recipient. However, no tetracycline-resistant transconjugant was obtained with Enterococcus faecalis JH2-2 as recipient. The obtained results support the safe status of Weissella strains, derived from environmental sources, when used as probiotics in animal feed.
Collapse
Affiliation(s)
- Imene Fhoula
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Mohamed Boumaiza
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Ghassan Tayh
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
- Service de Microbiologie et d’ImmunologieEcole Nationale de Médecine VétérinaireUniversité ManoubaSidi ThabetTunisia
| | - Amel Rehaiem
- Faculty of Medicine of TunisResearch Laboratory “Antimicrobial Resistance” LR99ES09University of Tunis El ManarTunisTunisia
- Laboratory of MicrobiologyCharles Nicolle HospitalTunisTunisia
| | - Naouel Klibi
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Imene‐Hadda Ouzari
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| |
Collapse
|
38
|
Tlais AZA, Polo A, Filannino P, Cantatore V, Gobbetti M, Di Cagno R. Biofilm formation as an extra gear for Apilactobacillus kunkeei to counter the threat of agrochemicals in honeybee crop. Microb Biotechnol 2022; 15:2160-2175. [PMID: 35417624 PMCID: PMC9328740 DOI: 10.1111/1751-7915.14051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
The alteration of a eubiosis status in honeybees' gut microbiota is directly linked to the occurrence of diseases, and likely to the honeybees decline. Since fructophilic lactobacilli were suggested as symbionts for honeybees, we mechanistically investigated their behaviour under the exposure to agrochemicals (Roundup, Mediator and Reldan containing glyphosate, imidacloprid and chlorpyrifos-methyl as active ingredients respectively) and plant secondary metabolites (nicotine and p-coumaric acid) ingested by honeybees as part of their diet. The effects of exposure to agrochemicals and plant secondary metabolites were assessed both on planktonic cells and sessile communities of three biofilm-forming strains of Apilactobacillus kunkeei. We identified the high sensitivity of A. kunkeei planktonic cells to Roundup and Reldan, while cells embedded in mature biofilms had increased resistance to the same agrochemicals. However, agrochemicals still exerted a substantial inhibitory/control effect if the exposure was during the preliminary steps of biofilm formation. The level of susceptibility resulted to be strain-specific. Exopolysaccharides resulted in the main component of extracellular polymeric matrix (ECM) in biofilm, but the exposure to Roundup caused a change in ECM production and composition. Nicotine and p-coumaric acid had a growth-promoting effect in sessile communities, although no effect was found on planktonic growth.
Collapse
Affiliation(s)
| | - Andrea Polo
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| | - Pasquale Filannino
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBariItaly
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBariItaly
| | - Marco Gobbetti
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| | - Raffaella Di Cagno
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| |
Collapse
|
39
|
Zhang ZJ, Zheng H. Bumblebees with the socially transmitted microbiome: A novel model organism for gut microbiota research. INSECT SCIENCE 2022; 29:958-976. [PMID: 35567381 DOI: 10.1111/1744-7917.13040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eusocial bumble and honey bees are important pollinators for global ecology and the agricultural economy. Although both the bumble and honey bees possess similar and host-restricted gut microbiota, they differ in aspects of morphology, autonomy, physiology, behavior, and life cycle. The social bee gut bacteria exhibit host specificity that is likely a result of long-term co-evolution. The unique life cycle of bumblebees is key for the acquisition and development of their gut microbiota, and affects the strain-level diversity of the core bacterial species. Studies on bumblebee gut bacteria show that they retain less functional capacity for carbohydrate metabolism compared with that of the honeybee. We discuss the potential roles of the bumblebee gut microbiota against pathogenic threats and the application of host-specific probiotics for bumblebees. Given the advantages of the bumblebee microbiome, including the simple structure and host specificity, and the ease of manipulating bumblebee colonies, we propose that bumblebees may provide a valuable system for understanding the general principles of host-microbe interactions, gut-brain axis, and vertical transmission.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Peixoto RS, Voolstra CR, Sweet M, Duarte CM, Carvalho S, Villela H, Lunshof JE, Gram L, Woodhams DC, Walter J, Roik A, Hentschel U, Thurber RV, Daisley B, Ushijima B, Daffonchio D, Costa R, Keller-Costa T, Bowman JS, Rosado AS, Reid G, Mason CE, Walke JB, Thomas T, Berg G. Harnessing the microbiome to prevent global biodiversity loss. Nat Microbiol 2022; 7:1726-1735. [PMID: 35864220 DOI: 10.1038/s41564-022-01173-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Christian R Voolstra
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jeantine E Lunshof
- Department of Global Health and Social Medicine, Center for Bioethics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Brendan Daisley
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gregor Reid
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Torsten Thomas
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.,University of Postdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
41
|
Motta EVS, Powell JE, Leonard SP, Moran NA. Prospects for probiotics in social bees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210156. [PMID: 35491599 PMCID: PMC9058534 DOI: 10.1098/rstb.2021.0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social corbiculate bees are major pollinators. They have characteristic bacterial microbiomes associated with their hives and their guts. In honeybees and bumblebees, worker guts contain a microbiome composed of distinctive bacterial taxa shown to benefit hosts. These benefits include stimulating immune and metabolic pathways, digesting or detoxifying food, and defending against pathogens and parasites. Stressors including toxins and poor nutrition disrupt the microbiome and increase susceptibility to opportunistic pathogens. Administering probiotic bacterial strains may improve the health of individual bees and of hives, and several commercial probiotics are available for bees. However, evidence for probiotic benefits is lacking or mixed. Most bacterial species used in commercial probiotics are not native to bee guts. We present new experimental results showing that cultured strains of native bee gut bacteria colonize robustly while bacteria in a commercial probiotic do not establish in bee guts. A defined community of native bee gut bacteria resembles unperturbed native gut communities in its activation of genes for immunity and metabolism in worker bees. Although many questions remain unanswered, the development of natural probiotics for honeybees, or for commercially managed bumblebees, is a promising direction for protecting the health of managed bee colonies. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
42
|
Alpay Karaoğlu Ş, Yayli N, Erik İ, Korkmaz B, Akpinar R, Bozdeveci A, Suyabatmaz Ş, Batan N, Yeşilyurt A, Kaya S, Nisbet C, Güler A. Biological Activity and Phytochemical Analysis of Dicranum scoparium against the Bacterial Disease for Honey Bee. Chem Biodivers 2022; 19:e202100887. [PMID: 35653619 DOI: 10.1002/cbdv.202100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/02/2022] [Indexed: 11/06/2022]
Abstract
Bacterial diseases, such as American Foulbrood (AFB) and European Foulbrood (EFB), are known to have catastrophic effects on honey bees (if left to spread, can wipe out entire colonies), leading to severe financial losses in the beekeeping industry. The aim of this study was to evaluate the pharmacological properties of methanol extract and its fractions (ethyl acetate, hexane, water) derived from Dicranum scoparium Hedw., which could be utilized as a potential drug to prevent the bacterial diseases (AFB and EFB) affecting the honey bees. For this purpose, crude methanol extract and ethyl acetate/hexane/water fractions were prepared from the aerial part of D. scoparium, collected from Trabzon province. Bio-guided fractionation of the extract and its fractions led to the first-time isolation of five compounds. The structure of all compounds was elucidated by nuclear magnetic resonance (NMR) spectroscopy, ultraviolet (UV) spectral analysis, Fourier-transform infrared spectroscopy (FT-IR), liquid chromatography quadrupole time-of-flight mass spectroscopy (LC-QToF-MS), and by comparison of their NMR data with that of literature. The analysis of these compounds revealed significant antibacterial and sporicidal activities against bacteria causing larval diseases in honey bees. The antibacterial activity of these compounds ranged from 0.6 to 60 μg/mL against AFB and EFB causing bacteria. Therefore, the natural raw extract and fractions of D. scoparium could be used as potential therapeutic agents against bacterial agents affecting honey bees.
Collapse
Affiliation(s)
- Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Nurettin Yayli
- Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - İshak Erik
- Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Büşra Korkmaz
- Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Rahşan Akpinar
- Laboratory of Bee Diseases, Veterinary Control Institute, Samsun, Turkey
| | - Arif Bozdeveci
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Şeyma Suyabatmaz
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Nevzat Batan
- Maçka Vocational School, Karadeniz Technical University, Trabzon, Turkey
| | - Aydın Yeşilyurt
- Tonya Vocational School, Trabzon University, Trabzon, Turkey
| | - Selma Kaya
- Laboratory of Bee Diseases, Veterinary Control Institute, Samsun, Turkey
| | - Cevat Nisbet
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Güler
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
43
|
Iorizzo M, Ganassi S, Albanese G, Letizia F, Testa B, Tedino C, Petrarca S, Mutinelli F, Mazzeo A, De Cristofaro A. Antimicrobial Activity from Putative Probiotic Lactic Acid Bacteria for the Biological Control of American and European Foulbrood Diseases. Vet Sci 2022; 9:vetsci9050236. [PMID: 35622764 PMCID: PMC9143654 DOI: 10.3390/vetsci9050236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
The balance of the gut microbiome is important for the honey bee’s growth and development, immune function and defense against pathogens. The use of a beneficial bacteria-based strategy for the prevention and biocontrol of American foulbrood (AFB) and European foulbrood (EFB) diseases in honey bees offers interesting prospects. Lactic acid bacteria (LAB) are common inhabitants of the gastrointestinal tract of the honey bee. Among LABs associated with bee gut microbiota, Lactiplantibacillus plantarum (previously Lactobacillus plantarum) and Apilactobacillus kunkeei (formerly classified as Lactobacillus kunkeei) are two of the most abundant species. In this study, four Lactiplantibacillus plantarum strains and four Apilactobacillus kunkeei strains, isolated from the gastrointestinal tract of honey bee (Apis mellifera L.) were selected for their in vitro inhibition ability of Paenibacillus larvae ATCC 9545 and Melissococccus plutonius ATCC 35311. In addition, these LABs have been characterized through some biochemical and functional characteristics: cell surface properties (hydrophobicity and auto-aggregation), carbohydrates assimilation and enzymatic activities. The antimicrobial, biochemical and cell surface properties of these LABs have been functional to their candidature as potential probiotics in beekeeping and for the biocontrol of AFB and EFB diseases.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
- Correspondence:
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Cosimo Tedino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Sonia Petrarca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
- Conaproa, Consorzio Nazionale Produttori Apistici, 86100 Campobasso, Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), National Reference Laboratory for Honey Bee Health, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Alessandra Mazzeo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| |
Collapse
|
44
|
Sidashova S, Adamchuk L, Yasko V, Kirovich N, Lisohurska D, Postoienko H, Lisohurska O, Furman S, Bezditko L. The inhibitory effect of Ukrainian honey on probiotic bacteria. POTRAVINARSTVO 2022. [DOI: 10.5219/1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Honey is used in the food industry as a natural sweetener and has therapeutic effects on the human body. Obtaining quality honey involves using organic preventive and treatment agents in beekeeping. The most common of these agents are probiotic supplements. This research aimed to study honey’s interaction with an inhibitory effect on the growth of microorganisms from the probiotic supplement Immunobacterin-D under laboratory and experimental field conditions. At the first stage of the research, we assessed the effects of ten honey varieties (buckwheat, sunflower, meadow and forest plants, linden) on B. subtilis and B. licheniformis from the dry probiotic supplement. The honey-containing nutrient media had an inhibitory effect on the growth of B. subtilis colonies. After 24 hours of cultivation under aerobic conditions, the concentration of B. subtilis decreased, on average, from 5×1012 colony-forming units in 1 g to 3.2×104 and 2.1×105 CFU/g in samples with monofloral and polyfloral honey, respectively. These results emphasize the need for further research on the symbiotic role of microflora in the stability of the microbiota of the hive and bee colony ecosystem. The next stage of the study investigated the probiotic effect on bee colonies in the field. Observations were made on the sanitary conditions of the hives and the behaviour of bees at the Petrodolyna demo apiary. No differences were found at the macro hive-bee colony ecosystem level between control bee colonies (n = 5) and the experimental ones (n = 5) that had received carbohydrate feeding with added probiotics. This confirms the inhibitory effect of honey on the development of bacteria, which eliminates the risk of uncontrolled growth of B. subtilis and B. licheniformis strain colonies inside the hive and the bacteria getting into bee products. The probiotic had positive effects, increasing the live weight of worker bees by 9.15% by the end of the apiary season compared to the control. This can improve the viability of the bees during wintering. At the last stage of the research, the honey obtained from the experimental colonies was checked for the spores of B. subtilis and B. licheniformis using melissopalynology.
Collapse
|
45
|
Savio C, Mugo-Kamiri L, Upfold JK. Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects. INSECTS 2022; 13:376. [PMID: 35447818 PMCID: PMC9025317 DOI: 10.3390/insects13040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between insects and their microbiota affect insect behaviour and evolution. When specific microorganisms are provided as a dietary supplement, insect reproduction, food conversion and growth are enhanced and health is improved in cases of nutritional deficiency or pathogen infection. The purpose of this review is to provide an overview of insect-microbiota interactions, to review the role of probiotics, their general use in insects reared for food and feed, and their interactions with the host microbiota. We review how bacterial strains have been selected for insect species reared for food and feed and discuss methods used to isolate and measure the effectiveness of a probiotic. We outline future perspectives on probiotic applications in mass-reared insects.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Laboratory of Entomology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Loretta Mugo-Kamiri
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS-University of Tours, 37200 Tours, France;
- Centre for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall TR10 9FE, UK
| | - Jennifer K. Upfold
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaildsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
46
|
Yordanova M, Evison SEF, Gill RJ, Graystock P. The threat of pesticide and disease co-exposure to managed and wild bee larvae. Int J Parasitol Parasites Wildl 2022; 17:319-326. [PMID: 35342713 PMCID: PMC8943340 DOI: 10.1016/j.ijppaw.2022.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
Abstract
Brood diseases and pesticides can reduce the survival of bee larvae, reduce bee populations, and negatively influence ecosystem biodiversity. However, major gaps persist in our knowledge regarding the routes and implications of co-exposure to these stressors in managed and wild bee brood. In this review, we evaluate the likelihood for co-exposure to brood pathogen and pesticide stressors by examining the routes of potential co-exposure and the possibility for pollen and nectar contaminated with pathogens and pesticides to become integrated into brood food. Furthermore, we highlight ways in which pesticides may increase brood disease morbidity directly, through manipulating host immunity, and indirectly through disrupting microbial communities in the guts of larvae, or compromising brood care provided by adult bees. Lastly, we quantify the brood research bias towards Apis species and discuss the implications the bias has on brood disease and pesticide risk assessment in wild bee communities. We advise that future studies should place a higher emphasis on evaluating bee brood afflictions and their interactions with commonly encountered stressors, especially in wild bee species. Brood exposure to pathogens and pesticides may occur frequently and in combination during the consumption of pollen and nectar. Brood pathogen virulence can be directly increased due to pesticide-mediated manipulation of larvae immune responses. Pesticides may indirectly increase brood disease morbidity by affecting larval gut microbial compositionand adult bee health. Research bias towards Apis species skews our understanding and management of brood disease and pesticide risks in wild bees.
Collapse
Affiliation(s)
- Monika Yordanova
- Imperial College London, Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| | - Sophie E F Evison
- School of Life Sciences, University Park, Nottingham, NG7 2TQ, United Kingdom
| | - Richard J Gill
- Imperial College London, Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| | - Peter Graystock
- Imperial College London, Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| |
Collapse
|
47
|
Bartlett LJ. Frontiers in effective control of problem parasites in beekeeping. Int J Parasitol Parasites Wildl 2022; 17:263-272. [PMID: 35309040 PMCID: PMC8924282 DOI: 10.1016/j.ijppaw.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
Demand for better control of certain parasites in managed western honey bees (Apis mellifera L.) remains apparent amongst beekeepers in both Europe and North America, and is of widespread public, scientific, and agricultural concern. Academically, interest from numerous fields including veterinary sciences has led to many exemplary reviews of the parasites of honey bees and the treatment options available. However, summaries of current research frontiers in treating both novel and long-known parasites of managed honey bees are lacking. This review complements the currently comprehensive body of literature summarizing the effectiveness of parasite control in managed honey bees by outlining where significant gaps in development, implementation, and uptake lie, including integration into IPM frameworks and separation of cultural, biological, and chemical controls. In particular, I distinguish where challenges in identifying appropriate controls exist in the lab compared to where we encounter hurdles in technology transfer due to regulatory, economic, or cultural contexts. I overview how exciting frontiers in honey bee parasite control research are clearly demonstrated by the abundance of recent publications on novel control approaches, but also caution that temperance must be levied on the applied end of the research engine in believing that what can be achieved in a laboratory research environment can be quickly and effectively marketed for deployment in the field.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
48
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
49
|
Specific Strains of Honeybee Gut Lactobacillus Stimulate Host Immune System to Protect against Pathogenic Hafnia alvei. Microbiol Spectr 2022; 10:e0189621. [PMID: 34985299 PMCID: PMC8729767 DOI: 10.1128/spectrum.01896-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Honeybee gut microbiota plays an important role in host physiology and metabolism. Recent studies have shown that the influence of the resident microorganisms in the regulation of honeybee immune system is profound, which protects against the pathogen Serratia marcescens. However, only few of the core gut members in the regulation of immune functions have been studied. Here, we explored how different bee gut bacterial species aided in the clearance of the pathogenic Hafnia alvei, which causes bee septicemia with a high mortality rate. We found that both Gilliamella apicola W8136 and Lactobacillus apis W8172 protect honeybees from the opportunistic pathogen, while two other strains from Gilliamella and Lactobacillus did not affect the invasion of H. alvei. Transcriptomic analysis revealed that gut species induced different expression profiles in the gut. Specifically, two regulator genes from the Toll pathway, PGRP-S3 recognizing Gram-positive and Spätzle that bind to the Toll protein for the downstream signal transduction, were elevated by L. apis. Correspondingly, multiple genes encoding antibacterial proteins were also stimulated by L. apis. Interestingly, we found an increased expression of apidaecin, which also exhibited a high in vitro inhibitory effect on H. alvei. To elucidate the difference of strains in the host’s immune regulation, comparative genomic analyses indicate that the S-layer proteins unique to L. apis are potentially involved in honeybee Toll signaling and the activation of antibacterial protein production. IMPORTANCE Honeybees are essential pollinators supporting global agricultural economies and food supplies. Recent honeybee decline has been linked to several factors, while pathogen infection is considered one of the most significant contributing factors. Although a limited number of bacterial pathogens have been identified, Hafnia alvei is one of the pathogens causing septicemia in adult bees. In this study, we showed that two bee gut members, Gilliamella and Lactobacillus, can clear H. alvei from invasion. Mono-colonization of specific strains can stimulate the host Toll signaling pathway and the downstream expression of AMPs. Specifically, apidaecin upregulated by the gut symbionts is more effective against the pathogen. Moreover, our genomic analysis suggests that the surface-layer proteins specific to Lactobacillus strains are an important driver of Toll signaling, highlighting the variation of bee gut strains in regulating the host immune system.
Collapse
|
50
|
Use of Lactobacillus plantarum in Preventing Clinical Cases of American and European Foulbrood in Central Italy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
American and European Foulbrood (AFB and EFB) are considered the most contagious infectious diseases affecting honeybees worldwide. New sustainable strategies need to be implemented for their prevention and control, and probiotics may represent one solution to investigate. In our study, we evaluated the efficacy of one strain of Lactobacillus plantarum (L. plantarum) isolated from northern Italy, orally administered to the bees for AFB and EFB prevention. From March to September 2014, a total of 979 honeybee colonies (9.6% of Viterbo province—Central Italy) were taken under observation from 22 apiaries. Overall prevalence of AFB was 5.3% in treated colonies and 5.1% in the untreated ones. On the contrary, EFB prevalence was lower in the treated colonies (2.5%) compared to the untreated ones (4.5%). L. plantarum showed a significant effect in reducing insurgence of cases of EFB up to 35 days after the end of the treatment (p-value: 0.034). Thanks to this study we could investigate the preventive efficacy of L. plantarum in controlling AFB and EFB, and obtain official data on their clinical prevalence in Central Italy.
Collapse
|