1
|
Nguyen TK, Vu GM, Duong VC, Pham TL, Nguyen NT, Tran TTH, Tran MH, Nguyen DT, Vo NS, Phung HT, Hoang TH. The therapeutic landscape for COVID-19 and post-COVID-19 medications from genetic profiling of the Vietnamese population and a predictive model of drug-drug interaction for comorbid COVID-19 patients. Heliyon 2024; 10:e27043. [PMID: 38509882 PMCID: PMC10950508 DOI: 10.1016/j.heliyon.2024.e27043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Despite the raised awareness of the role of pharmacogenomic (PGx) in personalized medicines for COVID-19, data for COVID-19 drugs is extremely scarce and not even a publication on this topic for post-COVID-19 medications to date. In the current study, we investigated the genetic variations associated with COVID-19 and post-COVID-19 therapies by using whole genome sequencing data of the 1000 Vietnamese Genomes Project (1KVG) in comparison with other populations retrieved from the 1000 Genomes Project Phase 3 (1KGP3) and the Genome Aggregation Database (gnomAD). Moreover, we also evaluated the risk of drug interactions in comorbid COVID-19 and post-COVID-19 patients based on pharmacogenomic profiles of drugs using a computational approach. For COVID-19 therapies, variants related to the response of two causal treatment agents (tolicizumab and ritonavir) and antithrombotic drugs are common in the Vietnamese cohort. Regarding post-COVID-19, drugs for mental manipulations possess the highest number of clinical annotated variants carried by Vietnamese individuals. Among the superpopulations, East Asian populations shared the most similar genetic structure with the Vietnamese population, whereas the African population showed the most difference. Comorbid patients are at an increased drug-drug interaction (DDI) risk when suffering from COVID-19 and after recovering as well due to a large number of potential DDIs which have been identified. Our results presented the population-specific understanding of the pharmacogenomic aspect of COVID-19 and post-COVID-19 therapy to optimize therapeutic outcomes and promote personalized medicine strategy. We also partly clarified the higher risk in COVID-19 patients with underlying conditions by assessing the potential drug interactions.
Collapse
Affiliation(s)
| | - Giang Minh Vu
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Vinh Chi Duong
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | | | | | - Trang Thi Ha Tran
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Mai Hoang Tran
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Duong Thuy Nguyen
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Nam S. Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Huong Thanh Phung
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Tham Hong Hoang
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| |
Collapse
|
2
|
Jmel H, Sarno S, Giuliani C, Boukhalfa W, Abdelhak S, Luiselli D, Kefi R. Genetic diversity of variants involved in drug response among Tunisian and Italian populations toward personalized medicine. Sci Rep 2024; 14:5842. [PMID: 38462643 PMCID: PMC10925599 DOI: 10.1038/s41598-024-55239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Adverse drug reactions (ADR) represent a significant contributor to morbidity and mortality, imposing a substantial financial burden. Genetic ancestry plays a crucial role in drug response. The aim of this study is to characterize the genetic variability of selected pharmacogenes involved with ADR in Tunisians and Italians, with a comparative analysis against global populations. A cohort of 135 healthy Tunisians and 737 Italians were genotyped using a SNP array. Variants located in 25 Very Important Pharmacogenes implicated in ADR were extracted from the genotyping data. Distribution analysis of common variants in Tunisian and Italian populations in comparison to 24 publicly available worldwide populations was performed using PLINK and R software. Results from Principle Component and ADMIXTURE analyses showed a high genetic similarity among Mediterranean populations, distinguishing them from Sub-Saharan African and Asian populations. The Fst comparative analysis identified 27 variants exhibiting significant differentiation between the studied populations. Among these variants, four SNPs rs622342, rs3846662, rs7294, rs5215 located in SLC22A1, HMGCR, VKORC1 and KCNJ11 genes respectively, are reported to be associated with ethnic variability in drug responses. In conclusion, correlating the frequencies of genotype risk variants with their associated ADRs would enhance drug outcomes and the implementation of personalized medicine in the studied populations.
Collapse
Affiliation(s)
- Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Genetic Typing DNA Service Pasteur Institute, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Donata Luiselli
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage (DBC), University of Bologna, Ravenna, Italy
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia.
- University of Tunis El Manar, Tunis, Tunisia.
- Genetic Typing DNA Service Pasteur Institute, Institut Pasteur de Tunis, Tunis, Tunisia.
| |
Collapse
|
3
|
Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, Silva I, Magalhães P, Schmidt S, Vale N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024; 16:332. [PMID: 38543226 PMCID: PMC10975777 DOI: 10.3390/pharmaceutics16030332] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 11/12/2024] Open
Abstract
The landscape of medical treatments is undergoing a transformative shift. Precision medicine has ushered in a revolutionary era in healthcare by individualizing diagnostics and treatments according to each patient's uniquely evolving health status. This groundbreaking method of tailoring disease prevention and treatment considers individual variations in genes, environments, and lifestyles. The goal of precision medicine is to target the "five rights": the right patient, the right drug, the right time, the right dose, and the right route. In this pursuit, in silico techniques have emerged as an anchor, driving precision medicine forward and making this a realistic and promising avenue for personalized therapies. With the advancements in high-throughput DNA sequencing technologies, genomic data, including genetic variants and their interactions with each other and the environment, can be incorporated into clinical decision-making. Pharmacometrics, gathering pharmacokinetic (PK) and pharmacodynamic (PD) data, and mathematical models further contribute to drug optimization, drug behavior prediction, and drug-drug interaction identification. Digital health, wearables, and computational tools offer continuous monitoring and real-time data collection, enabling treatment adjustments. Furthermore, the incorporation of extensive datasets in computational tools, such as electronic health records (EHRs) and omics data, is also another pathway to acquire meaningful information in this field. Although they are fairly new, machine learning (ML) algorithms and artificial intelligence (AI) techniques are also resources researchers use to analyze big data and develop predictive models. This review explores the interplay of these multiple in silico approaches in advancing precision medicine and fostering individual healthcare. Despite intrinsic challenges, such as ethical considerations, data protection, and the need for more comprehensive research, this marks a new era of patient-centered healthcare. Innovative in silico techniques hold the potential to reshape the future of medicine for generations to come.
Collapse
Affiliation(s)
- Lara Marques
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Pereira
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Abigail Silva
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Joana Santos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Leonor Saldanha
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Isabel Silva
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paulo Magalhães
- Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3 Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Office 465, Orlando, FL 328227-7400, USA;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Niarakis A, Ostaszewski M, Mazein A, Kuperstein I, Kutmon M, Gillespie ME, Funahashi A, Acencio ML, Hemedan A, Aichem M, Klein K, Czauderna T, Burtscher F, Yamada TG, Hiki Y, Hiroi NF, Hu F, Pham N, Ehrhart F, Willighagen EL, Valdeolivas A, Dugourd A, Messina F, Esteban-Medina M, Peña-Chilet M, Rian K, Soliman S, Aghamiri SS, Puniya BL, Naldi A, Helikar T, Singh V, Fernández MF, Bermudez V, Tsirvouli E, Montagud A, Noël V, Ponce-de-Leon M, Maier D, Bauch A, Gyori BM, Bachman JA, Luna A, Piñero J, Furlong LI, Balaur I, Rougny A, Jarosz Y, Overall RW, Phair R, Perfetto L, Matthews L, Rex DAB, Orlic-Milacic M, Gomez LCM, De Meulder B, Ravel JM, Jassal B, Satagopam V, Wu G, Golebiewski M, Gawron P, Calzone L, Beckmann JS, Evelo CT, D’Eustachio P, Schreiber F, Saez-Rodriguez J, Dopazo J, Kuiper M, Valencia A, Wolkenhauer O, Kitano H, Barillot E, Auffray C, Balling R, Schneider R. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol 2024; 14:1282859. [PMID: 38414974 PMCID: PMC10897000 DOI: 10.3389/fimmu.2023.1282859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Collapse
Affiliation(s)
- Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Inna Kuperstein
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Marc E. Gillespie
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- St. John’s University, Queens, NY, United States
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ahmed Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Aichem
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Tobias Czauderna
- Faculty of Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Felicia Burtscher
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Yusuke Hiki
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Kanagawa, Japan
| | - Noriko F. Hiroi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Kanagawa, Japan
- Keio University School of Medicine, Tokyo, Japan
| | - Finterly Hu
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Nhung Pham
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases’ Lazzaro Spallanzani’ - IRCCS, Rome, Italy
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
| | - Maria Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
| | - Kinza Rian
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
| | - Sylvain Soliman
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aurélien Naldi
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Vidisha Singh
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
| | | | - Viviam Bermudez
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
| | - Vincent Noël
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | | | | | - Benjamin M. Gyori
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - John A. Bachman
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - Augustin Luna
- Computational Biology Branch, National Library of Medicine, Bethesda, MD, United States
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Janet Piñero
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura I. Furlong
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Adrien Rougny
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Tokyo, Japan
- Com. Bio Big Data Open Innovation Lab. (CBBD-OIL), AIST, Aomi, Tokyo, Japan
| | - Yohan Jarosz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rupert W. Overall
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Robert Phair
- Integrative Bioinformatics, Inc., Mountain View, CA, United States
| | - Livia Perfetto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Lisa Matthews
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | | | | | - Luis Cristobal Monraz Gomez
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Jean Marie Ravel
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Bijay Jassal
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Guanming Wu
- Oregon Health Sciences University, Portland, OR, United States
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurence Calzone
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Peter D’Eustachio
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton, Victoria, VIC, Australia
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, Spain
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
- I.C.R.E.A., Pg. Lluís Companys 23, Barcelona, Spain
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany
- Leibniz Institute for Food Systems Biology, at the Technical University Munich, Munich, Germany
| | | | - Emmanuel Barillot
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Rudi Balling
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | |
Collapse
|
5
|
Yang YF, Singh S. Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID. Int J Mol Sci 2023; 24:15471. [PMID: 37895148 PMCID: PMC10607042 DOI: 10.3390/ijms242015471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
COVID-19 pandemic has caused widespread panic and fear among the global population. As such, repurposing drugs are being used as viable therapeutic options due to the limited effective treatments for Long COVID symptoms. Ivermectin is one of the emerging repurposed drugs that has been shown effective to have antiviral effects in clinical trials. In addition, antioxidant compounds are also gaining attention due to their capabilities of reducing inflammation and severity of symptoms. Due to the absence of knowledge in pharmacogenomics and modes of actions in the human body for these compounds, this study aims to provide a pharmacogenomic profile for the combination of ivermectin and six selected antioxidants (epigallocatechin gallate (EGCG), curcumin, sesamin, anthocyanins, quercetin, and N-acetylcysteine (NAC)) as potentially effective regimens for long COVID symptoms. Results showed that there were 12 interacting genes found among the ivermectin, 6 antioxidants, and COVID-19. For network pharmacology, the 12 common interacting genes/proteins had the highest associations with Pertussis pathway, AGE-RAGE signaling pathway in diabetic complications, and colorectal cancer in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Disease analyses also revealed that the top three relevant diseases with COVID-19 infections were diabetes mellitus, ischemia, reperfusion injury. We also identified 6 potential target microRNAs (miRNAs) of the 12 commonly curated genes used as molecular biomarkers for COVID-19 treatments. The established pharmacogenomic network, disease analyses, and identified miRNAs could facilitate developments of effective regimens for chronic sequelae of COVID-19 especially in this post-pandemic era. However, further studies and clinical trials are needed to substantiate the effectiveness and dosages for COVID-19 treatments.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Sher Singh
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Lim SYM, Al Bishtawi B, Lim W. Role of Cytochrome P450 2C9 in COVID-19 Treatment: Current Status and Future Directions. Eur J Drug Metab Pharmacokinet 2023; 48:221-240. [PMID: 37093458 PMCID: PMC10123480 DOI: 10.1007/s13318-023-00826-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| | - Basel Al Bishtawi
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350, Kuching, Malaysia
| |
Collapse
|
7
|
Ng WH, Tang PCH, Mahalingam S, Liu X. Repurposing of drugs targeting the cytokine storm induced by SARS-CoV-2. Br J Pharmacol 2023; 180:133-143. [PMID: 36394425 PMCID: PMC10953344 DOI: 10.1111/bph.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
A cytokine storm is one of the leading causes of acute respiratory distress syndrome (ARDS) and sepsis-associated multiple organ failure in many respiratory viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths worldwide, resulting in an urgent need for effective therapeutic interventions. Repurposing immunosuppressive drugs that target cytokines with immunomodulatory properties is a promising approach to counteract SARS-CoV-2-induced ARDS at the infective and post-infective stages. In this minireview, we examine drugs targeting IL-1β, IL-4/IL-13, IL-6 and TNF-α tested in COVID-19 patients.
Collapse
Affiliation(s)
- Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute QueenslandGriffith UniversityGold CoastQLDAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastQLDAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastQLDAustralia
| | - Patrick Chun Hean Tang
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute QueenslandGriffith UniversityGold CoastQLDAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastQLDAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastQLDAustralia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute QueenslandGriffith UniversityGold CoastQLDAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastQLDAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastQLDAustralia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute QueenslandGriffith UniversityGold CoastQLDAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastQLDAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastQLDAustralia
| |
Collapse
|
8
|
Al-Taie A, Büyük AŞ, Sardas S. Considerations into pharmacogenomics of COVID-19 pharmacotherapy: Hope, hype and reality. Pulm Pharmacol Ther 2022; 77:102172. [PMID: 36265833 PMCID: PMC9576910 DOI: 10.1016/j.pupt.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
COVID-19 medicines, such as molnupiravir are beginning to emerge for public health and clinical practice. On the other hand, drugs display marked variability in their efficacy and safety. Hence, COVID-19 medicines, as with all drugs, will be subject to the age-old maxim "one size prescription does not fit all". In this context, pharmacogenomics is the study of genome-by-drug interactions and offers insights on mechanisms of patient-to-patient and between-population variations in drug efficacy and safety. Pharmacogenomics information is crucial to tailoring the patients' prescriptions to achieve COVID-19 preventive and therapeutic interventions that take into account the host biology, patients' genome, and variable environmental exposures that collectively influence drug efficacy and safety. This expert review critically evaluates and summarizes the pharmacogenomics and personalized medicine aspects of the emerging COVID-19 drugs, and other selected drug interventions deployed to date. Here, we aim to sort out the hope, hype, and reality and suggest that there are veritable prospects to advance COVID-19 medicines for public health benefits, provided that pharmacogenomics is considered and implemented adequately. Pharmacogenomics is an integral part of rational and evidence-based medical practice. Scientists, health care professionals, pharmacists, pharmacovigilance practitioners, and importantly, patients stand to benefit by expanding the current pandemic response toolbox by the science of pharmacogenomics, and its applications in COVID-19 medicines and clinical trials.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Turkey.
| | - Ayşe Şeyma Büyük
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Semra Sardas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| |
Collapse
|
9
|
Maghsoudi S, Taghavi Shahraki B, Rameh F, Nazarabi M, Fatahi Y, Akhavan O, Rabiee M, Mostafavi E, Lima EC, Saeb MR, Rabiee N. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chem Biol Drug Des 2022; 100:699-721. [PMID: 36002440 PMCID: PMC9539342 DOI: 10.1111/cbdd.14136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Faculty of Medicine, Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegManitobaCanada
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba (CHRIM), University of ManitobaWinnipegManitobaCanada
| | | | | | - Masoomeh Nazarabi
- Faculty of Organic Chemistry, Department of ChemistryUniversity of KashanKashanIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Eder C. Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS)Porto AlegreBrazil
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
| |
Collapse
|
10
|
Al-Mahayri ZN. Pharmacogenomics at the post-pandemic: If not now, then when? Front Pharmacol 2022; 13:1013527. [PMID: 36225567 PMCID: PMC9549401 DOI: 10.3389/fphar.2022.1013527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zeina N. Al-Mahayri
- Department of Genetics andGenomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Zhang Q, Melchert PW, Markowitz JS. In vitro evaluation of the impact of Covid-19 therapeutic agents on the hydrolysis of the antiviral prodrug remdesivir. Chem Biol Interact 2022; 365:110097. [PMID: 35964681 PMCID: PMC9367181 DOI: 10.1016/j.cbi.2022.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Remdesivir (RDV, Veklury®) is an FDA-approved prodrug for the treatment of hospitalized patients with COVID-19. Recent in vitro studies have indicated that human carboxylesterase 1 (CES1) is the major metabolic enzyme catalyzing RDV activation. COVID-19 treatment for hospitalized patients typically also involves a number of antibiotics and anti-inflammatory drugs. Further, individuals who are carriers of a CES1 variant (polymorphism in exon 4 codon 143 [G143E]) may experience impairment in their ability to metabolize therapeutic agents which are CES1 substrates. The present study assessed the potential influence of nine therapeutic agents (hydroxychloroquine, ivermectin, erythromycin, clarithromycin, roxithromycin, trimethoprim, ciprofloxacin, vancomycin, and dexamethasone) commonly used in treating COVID-19 and 5 known CES1 inhibitors on the metabolism of RDV. Additionally, we further analyzed the mechanism of inhibition of cannabidiol (CBD), as well as the impact of the G143E polymorphism on RDV metabolism. An in vitro S9 fraction incubation method and in vitro to in vivo pharmacokinetic scaling were utilized. None of the nine therapeutic agents evaluated produced significant inhibition of RDV hydrolysis; CBD was found to inhibit RDV hydrolysis by a mixed type of competitive and noncompetitive partial inhibition mechanism. In vitro to in vivo modeling suggested a possible reduction of RDV clearance and increase of AUC when coadministration with CBD. The same scaling method also suggested a potentially lower clearance and higher AUC in the presence of the G143E variant. In conclusion, a potential CES1-mediated DDI between RDV and the nine assessed medications appears unlikely. However, a potential CES1-mediated DDI between RDV and CBD may be possible with sufficient exposure to the cannabinoid. Patients carrying the CES1 G143E variant may exhibit a slower biotransformation and clearance of RDV. Further clinical studies would be required to evaluate and characterize the clinical significance of a CBD-RDV interaction.
Collapse
Affiliation(s)
- Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA
| | - Philip W Melchert
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA; Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Franczyk B, Rysz J, Miłoński J, Konecki T, Rysz-Górzyńska M, Gluba-Brzózka A. Will the Use of Pharmacogenetics Improve Treatment Efficiency in COVID-19? Pharmaceuticals (Basel) 2022; 15:739. [PMID: 35745658 PMCID: PMC9230944 DOI: 10.3390/ph15060739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic is associated with a global health crisis and the greatest challenge for scientists and doctors. The virus causes severe acute respiratory syndrome with an outcome that is fatal in more vulnerable populations. Due to the need to find an efficient treatment in a short time, there were several drugs that were repurposed or repositioned for COVID-19. There are many types of available COVID-19 therapies, including antiviral agents (remdesivir, lopinavir/ritonavir, oseltamivir), antibiotics (azithromycin), antiparasitics (chloroquine, hydroxychloroquine, ivermectin), and corticosteroids (dexamethasone). A combination of antivirals with various mechanisms of action may be more efficient. However, the use of some of these medicines can be related to the occurrence of adverse effects. Some promising drug candidates have been found to be ineffective in clinical trials. The knowledge of pharmacogenetic issues, which translate into variability in drug conversion from prodrug into drug, metabolism as well as transport, could help to predict treatment efficiency and the occurrence of adverse effects in patients. However, many drugs used for the treatment of COVID-19 have not undergone pharmacogenetic studies, perhaps as a result of the lack of time.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Jarosław Miłoński
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Tomasz Konecki
- Department of Urology, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
14
|
Ceccarelli M, Marino A, Pulvirenti S, Coco V, Busà B, Nunnari G, Cacopardo BS. Bacterial and Fungal Co-Infections and Superinfections in a Cohort of COVID-19 Patients: Real-Life Data from an Italian Third Level Hospital. Infect Dis Rep 2022; 14:372-382. [PMID: 35645220 PMCID: PMC9149992 DOI: 10.3390/idr14030041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
The use of immune suppressive drugs combined with the natural immune suppression caused by SARS-CoV-2 can lead to a surge of secondary bacterial and fungal infections. The aim of this study was to estimate the incidence of superinfections in hospitalized subjects with COVID-19. We carried out an observational retrospective single center cohort study. We enrolled patients admitted at the “Garibaldi” hospital for ≥72 h, with a confirmed diagnosis of COVID-19. All patients were routinely investigated for bacterial, viral, and fungal pathogens. A total of 589 adults with COVID-19 were included. A total of 88 infections were documented in different sites among 74 patients (12.6%). As for the etiology, 84 isolates were bacterial (95.5%), while only 4 were fungal (4.5%). A total of 51 episodes of hospital-acquired infections (HAI) were found in 43 patients, with a bacterial etiology in 47 cases (92.2%). Community-acquired infections (CAIs) are more frequently caused by Streptococcus pneumoniae, while HAIs are mostly associated with Pseudomonas aeruginosa. A high rate of CAIs and HAIs due to the use of high-dose corticosteroids and long hospital stays can be suspected. COVID-19 patients should be routinely evaluated for infection and colonization. More data about antimicrobial resistance and its correlation with antibiotic misuse in COVID-19 patients are required.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Catania, I-95122 Catania, Italy;
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Unit of Infectious Diseases, University of Messina, I-98124 Messina, Italy
- Unit of Infectious Diseases, ARNAS “Garibaldi”, “Nesima” Hospital, I-95122 Catania, Italy; (A.M.); (S.P.)
| | - Andrea Marino
- Unit of Infectious Diseases, ARNAS “Garibaldi”, “Nesima” Hospital, I-95122 Catania, Italy; (A.M.); (S.P.)
- Department of Biomedical and Biotechnological Sciences, Unit of Infectious Diseases, University of Catania, I-95123 Catania, Italy
| | - Sarah Pulvirenti
- Unit of Infectious Diseases, ARNAS “Garibaldi”, “Nesima” Hospital, I-95122 Catania, Italy; (A.M.); (S.P.)
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, I-98124 Messina, Italy;
| | - Viviana Coco
- Unit of Hospital Pharmacy, ARNAS “Garibaldi”, “Garibaldi” Hospital, I-95124 Catania, Italy; (V.C.); (B.B.)
| | - Barbara Busà
- Unit of Hospital Pharmacy, ARNAS “Garibaldi”, “Garibaldi” Hospital, I-95124 Catania, Italy; (V.C.); (B.B.)
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, I-98124 Messina, Italy;
| | - Bruno Santi Cacopardo
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Catania, I-95122 Catania, Italy;
- Unit of Infectious Diseases, ARNAS “Garibaldi”, “Nesima” Hospital, I-95122 Catania, Italy; (A.M.); (S.P.)
- Correspondence: ; Tel.: +39-095-759-8664
| |
Collapse
|
15
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
18
|
Robles NR, Fici F, Valladares J, Grassi G. Antiretroviral Treatment and Antihypertensive Therapy. Curr Pharm Des 2021; 27:4116-4124. [PMID: 34784859 DOI: 10.2174/1381612827666210810090805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
The presence of hypertension among the population with human immunodeficiency virus (HIV) has become a new threat to the health and well-being of people living with this disease, in particular, among those who received antiretroviral therapy. The estimated prevalence of high blood pressure in HIV-infected patients is significantly higher than the rate observed in HIV-uninfected subjects. The approach to the HIV-positive patient requires the assessment of individual cardiovascular risk and its consideration when designing the individualized target. On the other hand, the numerous pharmacological interactions of antiretroviral (ARV) drugs are essential elements to take into account. Serum levels of any kind of antihypertensive drugs may be influenced by the coadministration of protease inhibitors, non-nucleoside reverse transcriptase inhibitor, or other antiretroviral. Similarly, plasma concentrations of antiretroviral drugs can be increased by the concomitant use of calcium channel blockers or diuretics. In this regard, the treatment of high blood pressure in HIV patients should be preferentially based on ACE inhibitors or thiazide/thiazide-like diuretics or their combination.
Collapse
Affiliation(s)
- Nicolás R Robles
- Servicio de Nefrologia, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Francesco Fici
- Cardiovascular Risk Chair, University of Salamanca School of Medicine, Salamanca, Spain
| | - Julian Valladares
- Servicio de Nefrologia, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Guido Grassi
- Clinica Medica, Universita Milano-Bicocca, Milan, Spain
| |
Collapse
|
19
|
Şardaş S, Özdemir V. Pharmacogenomics for Clinical Trials of COVID-19 Medicines: Why Is This Important Now? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:679-680. [PMID: 34699259 DOI: 10.1089/omi.2021.0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Semra Şardaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Vural Özdemir
- OMICS: A Journal of Integrative Biology, New Rochelle, New York, USA
| |
Collapse
|
20
|
Cheng Y, Li Q, Yang X, Ding H, Chen W, Dai R, Zhang C. Analysis of Very Important Pharmacogenomics Variants in the Chinese Lahu Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1275-1289. [PMID: 34629888 PMCID: PMC8493477 DOI: 10.2147/pgpm.s324410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Background Genetic polymorphism, obviously, has a potential clinical role in determining differences in drug efficacy; however, there are no reports about the pharmacogenomic information of the Lahu population. Therefore, our research aimed to screen the genotypic frequencies of the very important pharmacogenomics (VIP) mutations and determined the differences between Lahu and the other 11 populations. Methods Agena MassARRAY (AgenaMassARRAY) single nucleotide polymorphism (SNP) genotyping technique was used to detect 81 VIP mutations of pharmacogenomics genes in Lahu, and their genotypic frequencies were compared with the other major 11 populations. Chi-square tests were used to identify different loci among these populations. Finally, the genetic structure and pairwise Fst values of Lahu and the other 11 populations were analyzed. Results We found that the distribution of allele frequencies within different pharmacogenes in Lahu showed significantly different with other populations. Additionally, the pairwise F-statistics (Fst) values and genetic structure revealed the variants in the Lahu population as well were mostly related to the Han Chinese in Beijing, China (CHB) and the Japanese population in Tokyo, Japan (JPT) genetically. Conclusion This study will provide a theoretical basis for safe drug use and help to establish the appropriate individualized treatment strategies in the Lahu population.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Blood Transfusion, First People's Hospital of Yunnan, Kunming City, 650021, Yunnan Province, People's Republic of China
| | - Qi Li
- Department of Blood Transfusion, First People's Hospital of Yunnan, Kunming City, 650021, Yunnan Province, People's Republic of China
| | - Xin Yang
- Department of Blood Transfusion, First People's Hospital of Yunnan, Kunming City, 650021, Yunnan Province, People's Republic of China
| | - Heng Ding
- Blood Station of Honghe State Center, Honghe Prefecture City, 661100, Yunnan Province, People's Republic of China
| | - Wanlu Chen
- Department of Blood Transfusion, First People's Hospital of Yunnan, Kunming City, 650021, Yunnan Province, People's Republic of China
| | - Run Dai
- Department of Blood Transfusion, First People's Hospital of Yunnan, Kunming City, 650021, Yunnan Province, People's Republic of China
| | - Chan Zhang
- Department of Blood Transfusion, First People's Hospital of Yunnan, Kunming City, 650021, Yunnan Province, People's Republic of China
| |
Collapse
|
21
|
Abstract
SARS-CoV-2, a recently emerged zoonotic virus, has resulted in unstoppable high morbidity and mortality rates worldwide. However, due to a limited knowledge of the dynamics of the SARS-CoV-2 infection, it has been observed that the current COVID-19 therapy has led to some clinical repercussions. We discuss the adverse effects of drugs for COVID-19 primarily based on some clinical trials. As therapeutic efficacy and toxicity of therapy may vary due to different, genetic determinants, sex, age and the ethnic background of test subjects, hence biomarker-based personalized therapy could be more appropriate. We will share our thoughts on the current landscape of personalized therapy as a roadmap to fight against SARS-CoV-2 or another emerging pathogen.
Collapse
Affiliation(s)
- Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
- Department of Immunology, Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester NY 55902, USA
| | - Farha Naz
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
22
|
Autophagy and Mitophagy-Related Pathways at the Crossroads of Genetic Pathways Involved in Familial Sarcoidosis and Host-Pathogen Interactions Induced by Coronaviruses. Cells 2021; 10:cells10081995. [PMID: 34440765 PMCID: PMC8393644 DOI: 10.3390/cells10081995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.
Collapse
|
23
|
Sahana S, Sivadas A, Mangla M, Jain A, Bhoyar RC, Pandhare K, Mishra A, Sharma D, Imran M, Senthivel V, Divakar MK, Rophina M, Jolly B, Batra A, Sharma S, Siwach S, Jadhao AG, Palande NV, Jha GN, Ashrafi N, Mishra PK, Vidhya AK, Jain S, Dash D, Kumar NS, Vanlallawma A, Sarma RJ, Chhakchhuak L, Kalyanaraman S, Mahadevan R, Kandasamy S, Devi P, Rajagopal RE, Ramya JE, Devi PN, Bajaj A, Gupta V, Mathew S, Goswami S, Prakash S, Joshi K, Kumla M, Sreedevi S, Gajjar D, Soraisham R, Yadav R, Devi YS, Gupta A, Mukerji M, Ramalingam S, Binukumar BK, Sivasubbu S, Scaria V. Pharmacogenomic landscape of COVID-19 therapies from Indian population genomes. Pharmacogenomics 2021; 22:603-618. [PMID: 34142560 PMCID: PMC8216321 DOI: 10.2217/pgs-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Numerous drugs are being widely prescribed for COVID-19 treatment without any direct evidence for the drug safety/efficacy in patients across diverse ethnic populations. Materials & methods: We analyzed whole genomes of 1029 Indian individuals (IndiGen) to understand the extent of drug–gene (pharmacogenetic), drug–drug and drug–drug–gene interactions associated with COVID-19 therapy in the Indian population. Results: We identified 30 clinically significant pharmacogenetic variants and 73 predicted deleterious pharmacogenetic variants. COVID-19-associated pharmacogenes were substantially overlapped with those of metabolic disorder therapeutics. CYP3A4, ABCB1 and ALB are the most shared pharmacogenes. Fifteen COVID-19 therapeutics were predicted as likely drug–drug interaction candidates when used with four CYP inhibitor drugs. Conclusion: Our findings provide actionable insights for future validation studies and improved clinical decisions for COVID-19 therapy in Indians.
Collapse
Affiliation(s)
- S Sahana
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Ambily Sivadas
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Mohit Mangla
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Abhinav Jain
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Kavita Pandhare
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Anushree Mishra
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Disha Sharma
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mercy Rophina
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Bani Jolly
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Arushi Batra
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sumit Sharma
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Sanjay Siwach
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Arun G Jadhao
- Department of Zoology, RTM Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Nikhil V Palande
- Department of Zoology, Shri Mathuradas Mohota College of Science, Nagpur, Maharashtra, 440009, India
| | - Ganga Nath Jha
- Department of Anthropology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Nishat Ashrafi
- Department of Anthropology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Prashant Kumar Mishra
- Department of Biotechnology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - A K Vidhya
- Department of Biochemistry, Dr. Kongu Science & Art College, Erode, Tamil Nadu, 638107, India
| | - Suman Jain
- Thalassemia & Sickle cell Society, Hyderabad, Telangana, 500052, India
| | - Debasis Dash
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | | | - Andrew Vanlallawma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Ranjan Jyoti Sarma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | | | - Radha Mahadevan
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Sunitha Kandasamy
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Pabitha Devi
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | | | - J Ezhil Ramya
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - P Nirmala Devi
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Anjali Bajaj
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vishu Gupta
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Samatha Mathew
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sangam Goswami
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Savinitha Prakash
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Kandarp Joshi
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Meya Kumla
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - S Sreedevi
- Department of Microbiology, St. Pious X Degree & PG College for Women, Hyderabad, Telangana, 500076, India
| | - Devarshi Gajjar
- Department of Microbiology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ronibala Soraisham
- Department of Dermatology, Venereology & Leprology, Regional Institute of Medical Sciences, Imphal, Manipur, 795004, India
| | - Rohit Yadav
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Yumnam Silla Devi
- CSIR- North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Aayush Gupta
- Department of Dermatology, Dr. D.Y. Patil Medical College, Pune, Maharashtra, 411018, India
| | - Mitali Mukerji
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sivaprakash Ramalingam
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - B K Binukumar
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
24
|
Qu C, Fuhler GM, Pan Y. Could Histamine H1 Receptor Antagonists Be Used for Treating COVID-19? Int J Mol Sci 2021; 22:5672. [PMID: 34073529 PMCID: PMC8199351 DOI: 10.3390/ijms22115672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has rapidly become a pandemic worldwide, causing extensive and long-term health issues. There is an urgent need to identify therapies that limit SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Unbalanced lung inflammation is a common feature in severe COVID-19 patients; therefore, reducing lung inflammation can undoubtedly benefit the clinical manifestations. Histamine H1 receptor (H1 receptor) antagonists are widely prescribed medications to treat allergic diseases, while recently it has emerged that they show significant promise as anti-SARS-CoV-2 agents. Here, we briefly summarize the novel use of H1 receptor antagonists in combating SARS-CoV-2 infection. We also describe the potential antiviral mechanisms of H1 receptor antagonists on SARS-CoV-2. Finally, the opportunities and challenges of the use of H1 receptor antagonists in managing COVID-19 are discussed.
Collapse
Affiliation(s)
- Changbo Qu
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|