1
|
Graf S, Dörl G, Milz C, Kathofer M, Stöhrmann P, Gomola D, Briem E, Schlosser G, Mayerweg A, Semmelweis-Tomits J, Hoti A, Eggerstorfer B, Schmidt C, Crone J, Rujescu D, Spies M, Lanzenberger R, Spurny-Dworak B. Morphological correlates of anxiety-related experiences during a ketamine infusion. World J Biol Psychiatry 2024; 25:537-546. [PMID: 39394769 DOI: 10.1080/15622975.2024.2402261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVES Ketamine exerts rapid antidepressant effects by enhancing neuroplasticity, particularly in the amygdala and hippocampus-regions involved in fear processing and learning. While the role of ketamine's dissociative effects in its antidepressant response is debated, anxiety experienced during infusion has been negatively correlated with treatment outcomes. METHODS In this single-blind, placebo-controlled study, a subset of 17 healthy volunteers (6 males, 23.12 ± 1.9 years) received intravenously a placebo in the first and 0.5 mg/kg racemic ketamine in the second session. Anxiety-related experiences were assessed by the 5D-ASC score obtained post-infusion, structural magnetic resonance imaging scans were acquired 4 h post-infusion. An anxiety-score was obtained from the 5D-ASC. Relation between post-placebo amygdala volume, hippocampal volume, and its subfields with the anxiety-score were assessed using linear regression models. RESULTS Results showed a statistically significant negative relation between hippocampal head volume and the anxiety score (β = -0.733, p = 0.006), with trending negative association for each subfield's head and the score. CONCLUSION These findings suggest that anxiety-related experiences during ketamine infusion may be mediated by the hippocampus, with smaller hippocampal volumes leading to more anxiety-related experiences. Thus, hippocampal subfield volumes may be used as a predictor for anxiety-related events during ketamine use and might predict treatment outcome in future approaches.
Collapse
Affiliation(s)
- S Graf
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - G Dörl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - C Milz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - M Kathofer
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - P Stöhrmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - D Gomola
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - E Briem
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - G Schlosser
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - A Mayerweg
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - J Semmelweis-Tomits
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - A Hoti
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - B Eggerstorfer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - C Schmidt
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - J Crone
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Faculty of Psychology, University of Vienna, Vienna, Austria
| | - D Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Gokalp D, Unal G. The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats. Psychopharmacology (Berl) 2024; 241:1399-1415. [PMID: 38459971 PMCID: PMC11199271 DOI: 10.1007/s00213-024-06571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
RATIONALE Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.
Collapse
Affiliation(s)
- Dilan Gokalp
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
3
|
Boese M, Berman RY, Qiu J, Spencer HF, Radford KD, Choi KH. Effects of Mild Closed-Head Injury and Subanesthetic Ketamine Infusion on Microglia, Axonal Injury, and Synaptic Density in Sprague-Dawley Rats. Int J Mol Sci 2024; 25:4287. [PMID: 38673871 PMCID: PMC11050690 DOI: 10.3390/ijms25084287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.
Collapse
Affiliation(s)
- Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Jennifer Qiu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA;
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Kwang H. Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA;
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
- Department of Psychiatry, F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Caffino L, Mottarlini F, Piva A, Rizzi B, Fumagalli F, Chiamulera C. Temporal dynamics of BDNF signaling recruitment in the rat prefrontal cortex and hippocampus following a single infusion of a translational dose of ketamine. Neuropharmacology 2024; 242:109767. [PMID: 37858883 DOI: 10.1016/j.neuropharm.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/25/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Despite several decades of investigations, the mechanisms underlying the rapid action of ketamine as antidepressant are still far from being completely understood. Several studies indicated Brain-Derived Neurotrophic Factor (BDNF) as critical for the fast antidepressant action of ketamine, due to its contribution in early and rapid synaptic adaptations. However, previous reports have been essentially based on ketamine dosing modes that differ from the clinical route of administration (slow intravenous infusion). In this report, we investigated the effects of a ketamine dosing mode in male Sprague-Dawley rats showed to be translational to the clinically effective mode in patients. We focused on the first 24 h after infusion to finely dissect potential differences in the contribution of BDNF signaling pathway in prefrontal cortex and hippocampus, two brain regions involved in the antidepressant effects of ketamine. Our data show that the slow ketamine infusion activates the BDNF-mTOR-S6 pathway in prefrontal cortex as early as 2 h and remains on until at least 6 h after the infusion. At the 12 h timepoint, this pathway is turned off in prefrontal cortex while it becomes activated in hippocampus. Interestingly, this pathway appears to be activated in both brain regions at 24 h through a BDNF-independent mechanism adding complexity to the early action of ketamine. We have captured previously unknown dynamics of the early effects of ketamine showing rapid activation/deactivation of BDNF and its downstream signaling in prefrontal cortex and hippocampus, following a precise temporal profile.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy.
| |
Collapse
|
5
|
Chaib S, Bouillot C, Bouvard S, Vidal B, Zimmer L, Levigoureux E. Single subanesthetic dose of ketamine produces delayed impact on brain [ 18F]FDG PET imaging and metabolic connectivity in rats. Front Neurosci 2023; 17:1213941. [PMID: 37521685 PMCID: PMC10372660 DOI: 10.3389/fnins.2023.1213941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Ketamine, a glutamate NMDA receptor antagonist, is suggested to act very rapidly and durably on the depressive symptoms including treatment-resistant patients but its mechanisms of action remain unclear. There is a requirement for non-invasive biomarkers, such as imaging techniques, which hold promise in monitoring and elucidating its therapeutic impact. Methods We explored the glucose metabolism with [18F]FDG positron emission tomography (PET) in ten male rats in a longitudinal study designed to compare imaging patterns immediately after acute subanaesthetic ketamine injection (i.p. 10 mg/kg) with its sustained effects, 5 days later. Changes in [18F]FDG uptake following ketamine administration were estimated using a voxel-based analysis with SPM12 software, and a region of interest (ROI) analysis. A metabolic connectivity analysis was also conducted to estimate the immediate and delayed effects of ketamine on the inter-individual metabolic covariance between the ROIs. Results No significant difference was observed in brain glucose metabolism immediately following acute subanaesthetic ketamine injection. However, a significant decrease of glucose uptake appeared 5 days later, reflecting a sustained and delayed effect of ketamine in the frontal and the cingulate cortex. An increase in the raphe, caudate and cerebellum was also measured. Moreover, metabolic connectivity analyses revealed a significant decrease between the hippocampus and the thalamus at day 5 compared to the baseline. Discussion This study showed that the differences in metabolic profiles appeared belatedly, 5 days after ketamine administration, particularly in the cortical regions. Finally, this methodology will help to characterize the effects of future molecules for the treatment of treatment resistant depression.
Collapse
Affiliation(s)
- Sarah Chaib
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | | | - Sandrine Bouvard
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
| | - Benjamin Vidal
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- CERMEP-Imaging Platform, Bron, France
| | - Elise Levigoureux
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
7
|
Chen Y, Li S, Liang X, Zhang J. Differential Alterations to the Metabolic Connectivity of the Cortical and Subcortical Regions in Rat Brain During Ketamine-Induced Unconsciousness. Anesth Analg 2022; 135:1106-1114. [PMID: 35007212 DOI: 10.1213/ane.0000000000005869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ketamine anesthesia increased glucose metabolism in most brain regions compared to another intravenous anesthetic propofol. However, whether the changes in cerebral metabolic networks induced by ketamine share the same mechanism with propofol remains to be explored. The purpose of the present study was to identify specific features of metabolic network in rat brains during ketamine-induced subanesthesia state and anesthesia state compared to awake state. METHODS We acquired fluorodeoxyglucose positron emission tomography (FDG-PET) images in 20 healthy adult Sprague-Dawley rats that were intravenously administrated saline and ketamine to achieve different conscious states: awake (normal saline), subanesthesia (30 mg kg -1 h -1 ), and anesthesia (160 mg kg -1 h -1 ). Based on the FDG-PET data, the alterations in cerebral glucose metabolism and metabolic topography were investigated by graph-theory analysis. RESULTS The baseline metabolism in rat brains was found significantly increased during ketamine-induced subanesthesia and anesthesia. The graph-theory analysis manifested a reduction in metabolism connectivity and network global/local efficiency across cortical regions and an increase across subcortical regions during ketamine-induced anesthesia (nonparametric permutation test: global efficiency between awake and anesthesia, cortex: P = .016, subcortex: P = .015; global efficiency between subanesthesia and anesthesia, subcortex: P = .012). CONCLUSIONS Ketamine broadly increased brain metabolism alongside decreased metabolic connectivity and network efficiency of cortex network. Modulation of these cortical metabolic networks may be a candidate mechanism underlying general anesthesia-induced loss of consciousness.
Collapse
Affiliation(s)
- Yali Chen
- From the Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Siyang Li
- School of Life Science and Technology.,Institute of Space Environment and Materiel Science, Harbin Institute of Technology, Harbin, China
| | - Xia Liang
- School of Life Science and Technology.,Institute of Space Environment and Materiel Science, Harbin Institute of Technology, Harbin, China
| | - Jun Zhang
- From the Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Birnie MT, Eapen AV, Kershaw YM, Lodge D, Collingridge GL, Conway‐Campbell BL, Lightman SL. Time of day influences stress hormone response to ketamine. J Neuroendocrinol 2022; 34:e13194. [PMID: 36056546 PMCID: PMC9787621 DOI: 10.1111/jne.13194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
Over 50% of depressed patients show hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Conventional therapy takes weeks to months to improve symptoms. Ketamine has rapid onset antidepressant effects. Yet its action on HPA axis activity is poorly understood. Here, we measured the corticosterone (CORT) response to ketamine administered at different times of day in the Wistar-Kyoto (WKY) rat. In male rats, blood was collected every 10 min for 28 h using an automated blood sampling system. Ketamine (5/10/25 mg · kg) was infused through a subcutaneous cannula at two time points-during the active and inactive period. CORT levels in blood were measured in response to ketamine using a radioimmunoassay. WKY rats displayed robust circadian secretion of corticosterone and was not overly different to Sprague Dawley rats. Ketamine (all doses) significantly increased CORT response at both infusion times. However, a dose dependent effect and marked increase over baseline was observed when ketamine was administered during the inactive phase. Ketamine has a robust and rapid effect on HPA axis function. The timing of ketamine injection may prove crucial for glucocorticoid-mediated action in depression.
Collapse
Affiliation(s)
- Matthew T. Birnie
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - Alen V. Eapen
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - David Lodge
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Graham L. Collingridge
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Becky L. Conway‐Campbell
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| |
Collapse
|
9
|
Gasparyan A, Navarro D, Navarrete F, Manzanares J. Pharmacological strategies for post-traumatic stress disorder (PTSD): From animal to clinical studies. Neuropharmacology 2022; 218:109211. [PMID: 35973598 DOI: 10.1016/j.neuropharm.2022.109211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a disabling psychiatric condition with a critical familiar, personal, and social impact. Patients diagnosed with PTSD show various symptoms, including anxiety, depression, psychotic episodes, and sleep disturbances, complicating their therapeutic management. Only sertraline and paroxetine, two selective serotonin reuptake inhibitors, are approved by different international agencies to treat PTSD. In addition, these drugs are generally combined with psychotherapy to achieve positive results. However, these pharmacological strategies present limited efficacy. Nearly half of the PTSD patients do not experience remission of symptoms, possibly due to the high prevalence of psychiatric comorbidities. Therefore, in clinical practice, other off-label medications are common, even though the effectiveness of these drugs needs to be further investigated. In this line, antipsychotics, antiepileptics, adrenergic blockers, benzodiazepines, and other emerging pharmacological agents have aroused interest as potential therapeutic tools to improve some specific symptoms of PTSD. Thus, this review is focused on the most widely used drugs for the pharmacological treatment of PTSD with a translational approach, including clinical and preclinical studies, to emphasize the need to develop safer and more effective medications.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
10
|
Paredes D, Knippenberg AR, Bulin SE, Keppler LJ, Morilak DA. Adjunct treatment with ketamine enhances the therapeutic effects of extinction learning after chronic unpredictable stress. Neurobiol Stress 2022; 19:100468. [PMID: 35865972 PMCID: PMC9293662 DOI: 10.1016/j.ynstr.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness characterized by dysfunction in the medial prefrontal cortex (mPFC). Although both pharmacological and cognitive behavioral interventions have shown some promise at alleviating symptoms, high attrition and persistence of treatment-resistant symptoms pose significant challenges that remain unresolved. Specifically, prolonged exposure therapy, a gold standard intervention to treat PTSD, has high dropout rates resulting in many patients receiving less than a fully effective course of treatment. Administering pharmacological treatments together with behavioral psychotherapies like prolonged exposure may offer an important avenue for enhancing therapeutic efficacy sooner, thus reducing the duration of treatment and mitigating the impact of attrition. In this study, using extinction learning as a rat model of exposure therapy, we hypothesized that administering ketamine as an adjunct treatment together with extinction will enhance the efficacy of extinction in reversing stress-induced deficits in set shifting, a measure of cognitive flexibility. Results showed that combining a sub-effective dose of ketamine with a shortened, sub-effective extinction protocol fully reversed stress-induced cognitive set-shifting deficits in both male and female rats. These effects may be due to shared molecular mechanisms between extinction and ketamine, such as increased neuronal plasticity in common circuitry (e.g., hippocampus-mPFC), or increased BDNF signaling. This work suggests that fast-acting drugs, such as ketamine, can be effectively used in combination with behavioral interventions to reduce treatment duration and potentially mitigate the impact of attrition. Future work is needed to delineate other pharmacotherapies that may complement the effects of extinction via shared or independent mechanisms.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Anna R. Knippenberg
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Lydia J. Keppler
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David A. Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Corresponding author. Department of Pharmacology, Mail Code 7764 University of Texas Health Science Center, San Antonio 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
11
|
Spencer HF, Berman RY, Boese M, Zhang M, Kim SY, Radford KD, Choi KH. Effects of an intravenous ketamine infusion on inflammatory cytokine levels in male and female Sprague-Dawley rats. J Neuroinflammation 2022; 19:75. [PMID: 35379262 PMCID: PMC8981848 DOI: 10.1186/s12974-022-02434-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/20/2022] [Indexed: 12/29/2022] Open
Abstract
Background Ketamine, a multimodal dissociative anesthetic drug, is widely used as an analgesic following traumatic injury. Although ketamine may produce anti-inflammatory effects when administered after injury, the immunomodulatory properties of intravenous (IV) ketamine in a non-inflammatory condition are unclear. In addition, most preclinical studies use an intraperitoneal (IP) injection of ketamine, which limits its clinical translation as patients usually receive an IV ketamine infusion after injury. Methods Here, we administered sub-anesthetic doses of a single IV ketamine infusion (0, 10, or 40 mg/kg) to male and female Sprague–Dawley rats over a 2-h period. We collected blood samples at 2- and 4-h post-ketamine infusion to determine plasma inflammatory cytokine levels using multiplex immunoassays. Results The 10 mg/kg ketamine infusion reduced spontaneous locomotor activity in male and female rats, while the 40 mg/kg infusion stimulated activity in female, but not male, rats. The IV ketamine infusion produced dose-dependent and sex-specific effects on plasma inflammatory cytokine levels. A ketamine infusion reduced KC/GRO and tumor necrosis factor alpha (TNF-α) levels in both male and female rats, interleukin-6 (IL-6) levels in female rats, and interleukin-10 (IL-10) levels in male rats. However, most cytokine levels returned to control levels at 4-h post-infusion, except for IL-6 levels in male rats and TNF-α levels in female rats, indicating a different trajectory of certain cytokine changes over time following ketamine administration. Conclusions The current findings suggest that sub-anesthetic doses of an IV ketamine infusion may produce sex-related differences in the effects on peripheral inflammatory markers in rodents, and further research is warranted to determine potential therapeutic effects of an IV ketamine infusion in an inflammatory condition.
Collapse
Affiliation(s)
- Haley F Spencer
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Rina Y Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Michael Zhang
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Sharon Y Kim
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwang H Choi
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
12
|
Abstract
INTRODUCTION First-line treatment for obsessive-compulsive disorder (OCD) includes exposure and response prevention behavioral therapy and serotonin reuptake inhibitors, particularly in combination. New and more effective treatments are needed, give that recent studies suggest that glutamatergic neurotransmission contributes to the pathophysiology of the disorder. In these circumstances, ketamine, as a potent N-methyl-D-aspartate receptor antagonist and glutamate modulator, offers alternative possibilities for OCD treatment. METHODS This systematic review aims to investigate the effects of ketamine in OCD, following the Preferred Reporting Items for Systematic Review and Meta-analyses Protocols (PRISMA-P). Searches were carried out using the PubMed/MEDLINE, Embase, and PsycINFO databases. RESULTS Nine articles were included, of which three were randomized controlled trials, three case reports, two open-label trials, and one a retrospective chart review. Reported data have shown a potential for fast onset of action and good tolerability of ketamine for OCD, even though the principal studies used only single-session racemic ketamine treatments, administered intravenously, and the results have been erratic. In addition, none of the available evidence demonstrates whether racemic ketamine, S-ketamine, or R-ketamine has the best efficacy in controlling OCD symptoms, and only sparse evidence suggests that a combination of ketamine and psychotherapy could benefit patients with OCD. CONCLUSION In order to advance clinical practice regarding the use of ketamine in treating OCD, future randomized, double-blind, placebo-controlled trials are required. These trials need to use larger samples to explore ketamine and its enantiomers, with different methods of administration, multiple sessions, and appropriate washout periods.
Collapse
|
13
|
Radford KD, Berman RY, Jaiswal S, Kim SY, Zhang M, Spencer HF, Choi KH. Enhanced Fear Memories and Altered Brain Glucose Metabolism ( 18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23031922. [PMID: 35163844 PMCID: PMC8836808 DOI: 10.3390/ijms23031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although women and men are equally likely to receive ketamine following traumatic injury, little is known regarding sex-related differences in the impact of ketamine on traumatic memory. We previously reported that subanesthetic doses of an intravenous (IV) ketamine infusion following fear conditioning impaired fear extinction and altered regional brain glucose metabolism (BGluM) in male rats. Here, we investigated the effects of IV ketamine infusion on fear memory, stress hormone levels, and BGluM in female rats. Adult female Sprague–Dawley rats received a single IV ketamine infusion (0, 2, 10, or 20 mg/kg, over a 2-h period) following auditory fear conditioning (three pairings of tone and footshock). Levels of plasma stress hormones, corticosterone (CORT) and progesterone, were measured after the ketamine infusion. Two days after ketamine infusion, fear memory retrieval, extinction, and renewal were tested over a three-day period. The effects of IV ketamine infusion on BGluM were determined using 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG-PET) and computed tomography (CT). The 2 and 10 mg/kg ketamine infusions reduced locomotor activity, while 20 mg/kg infusion produced reduction (first hour) followed by stimulation (second hour) of activity. The 10 and 20 mg/kg ketamine infusions significantly elevated plasma CORT and progesterone levels. All three doses enhanced fear memory retrieval, impaired fear extinction, and enhanced cued fear renewal in female rats. Ketamine infusion produced dose-dependent effects on BGluM in fear- and stress-sensitive brain regions of female rats. The current findings indicate that subanesthetic doses of IV ketamine produce robust effects on the hypothalamic–pituitary–adrenal (HPA) axis and brain energy utilization that may contribute to enhanced fear memory observed in female rats.
Collapse
Affiliation(s)
- Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Shalini Jaiswal
- Biomedical Research Imaging Core (BRIC), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Sharon Y. Kim
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Michael Zhang
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Kwang H. Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
- Department of Psychiatry, F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-2682
| |
Collapse
|
14
|
Logue J, Schoepfer K, Guerrero AB, Zhou Y, Kabbaj M. Sex-specific effects of social isolation stress and ketamine on hippocampal plasticity. Neurosci Lett 2022; 766:136301. [PMID: 34688854 PMCID: PMC8639811 DOI: 10.1016/j.neulet.2021.136301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Chronic social isolation stress (SIS) induces lasting negative effects on the brain, including memory deficits, cognitive impairments, and mood alterations such as depression and anxiety. All these symptoms, at least in part, reflect reduced hippocampal function. In both clinical and preclinical studies, subanesthetic doses of the NMDA receptor antagonist, ketamine (KET), was shown to have rapid and lasting antidepressant effects. Animal studies have shown that biological sex and levels of gonadal hormones alter the behavioral effects of KET, with ovarian hormones increasing sensitivity to the antidepressant-like effects of KET. Since the hippocampus plays a key role in mediating some of the effects of SIS, and considering that KET at low doses has been shown to rescue some of the behavioral deficits of isolation rearing this study aimed to assess the effects of isolation stress on pre- and post-synaptic hippocampal functions in male and female rats reared in SIS, as well as determine whether some of the physiological deficits can be rescued with a single injection of sub-anesthetic doses of KET. To do this, Sprague-Dawley rats were raised from weaning in either social isolation or with same-sex cage mate for 5 to 7 weeks. Male and female rats in either diestrus of proestrus received a single injection of KET (0, 2.5, or 5.0 mg/kg) three hours prior to termination and collection of acute hippocampal slices for ex vivo electrophysiological field potential recordings. Long-term potentiation (LTP) and paired pulse facilitation (PPF) outputs were assessed in a canonical CA3-CA1 dorsal hippocampal circuit. Our data show that SIS inhibits hippocampal LTP without affecting PPF in male rats, an effect that was rescued by KET. In female rats, isolation stress did not alter LTP, but did reduce PPF - especially when females were tested in diestrus-, an effect that was rescued by KET at the highest dose. Our data thus suggest sex differences in the contribution of pre-and postsynaptic hippocampal compartments in response to stress and KET.
Collapse
Affiliation(s)
- Jordan Logue
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Kristin Schoepfer
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Alfonso Brea Guerrero
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Zhou
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Mohamed Kabbaj
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
15
|
Fan JF, Tang ZH, Wang SY, Lei S, Zhang B, Tian SW. Ketamine enhances novel object recognition memory reconsolidation via the BDNF/TrkB pathway in mice. Physiol Behav 2021; 242:113626. [PMID: 34673052 DOI: 10.1016/j.physbeh.2021.113626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
In addition to the antidepressant properties of ketamine at subanesthetic doses, studies have revealed ketamine's influence on memory acquisition, consolidation, and reconsolidation. The effects of acute low-dose ketamine administration on conditioned memory have been investigated extensively in rodents through conditioned fear memory and morphine-induced conditioned place preference. In contrast to conditioned memory, the novel object recognition (NOR) task assesses the natural format of memory by exploiting the rodents' natural preference for novelty. Acute low-dose ketamine administration impairs NOR acquisition and consolidation, but its influence on reconsolidation remains unclear. We investigated the issue as well as the involvement of BDNF/TrkB pathway in this process by administering ketamine (i.p., 10 mg/kg, immediately or 6 h after reactivation, or without reactivation) and ANA-12 (i.p., 0.5 mg/kg, 5 min after ketamine/vehicle administration). ANA-12 is a selective antagonist for the BDNF TrkB receptor. Ketamine administration, immediately after (rather than without) reactivation, significantly increased the NOR preference index, thus suggesting an enhanced memory reconsolidation rather than consolidation. Ketamine exerted no significant effect when administered 6 h after reactivation, thereby suggesting 6 h to be an effective time window. ANA-12 administration significantly reduced the ketamine-induced NOR preference index increase, thus suggesting that the blockage of ketamine improves NOR reconsolidation. However, this blockage had no significant effect on the ketamine-induced hippocampal BDNF level increase. In conclusion, acute low-dose ketamine administration improves NOR memory reconsolidation by increasing hippocampal BDNF levels and subsequent BDNF binding to the TrkB receptor.
Collapse
Affiliation(s)
- Jian-Feng Fan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China
| | - Zhen-Hui Tang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China
| | - Shi-Yi Wang
- Pharmacy School of Guilin Medical University, Guilin Medical University, Guilin Guangxi, 541199, China
| | - Si Lei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China
| | - Bo Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; School of Public Health, Guilin Medical University, Guilin Guangxi, 541199, China.
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; School of Public Health, Guilin Medical University, Guilin Guangxi, 541199, China; Pharmacy School of Guilin Medical University, Guilin Medical University, Guilin Guangxi, 541199, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China.
| |
Collapse
|
16
|
Chen R, Capitão LP, Cowen PJ, Harmer CJ. Effect of the NMDA receptor partial agonist, d-cycloserine, on emotional processing and autobiographical memory. Psychol Med 2021; 51:2657-2665. [PMID: 32375905 DOI: 10.1017/s0033291720001221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Studies suggest that d-cycloserine (DCS) may have antidepressant potential through its interaction with the glycine site of the N-methyl-D-aspartate receptor; however, clinical evidence of DCS's efficacy as a treatment for depression is limited. Other evidence suggests that DCS affects emotional learning which may also be relevant for the treatment of depression and anxiety. The aim of the present investigation was to assess the effect of DCS on emotional processing in healthy volunteers and to further characterise its effects on emotional and autobiographical memory. METHODS Forty healthy volunteers were randomly allocated to a single dose of 250 mg DCS or placebo in a double-blind design. Three hours later, participants performed an Emotional Test Battery [including Facial Expression Recognition Task (FERT), Emotional Categorisation Task (ECAT), Emotional Recall Task (EREC), Facial Dot-Probe Task (FDOT) and Emotional Recognition Memory Task (EMEM)] and an Autobiographical Memory Test (AMT). Also, participants performed the FERT, EREC and AMT tasks again after 24 h in order to assess longer lasting effects of a single dose of DCS. RESULTS DCS did not significantly affect the FERT, EMEM and FDOT performance but significantly increased emotional memory and classification for positive words v. negative words. Also, DCS enhanced the retrieval of more specific autobiographical memories, and this effect persisted at 24 h. CONCLUSIONS These findings support the suggestion that low-dose DCS increases specific autobiographical memory retrieval and positive emotional memory. Such effects make it an intriguing agent for further investigation in clinical depression, which is characterised by decreased autobiographical memory specificity and increased negative bias in memory recall. It also underscores the potential role of DCS as an adjunct to cognitive behavioural therapy in depression.
Collapse
Affiliation(s)
- Runsen Chen
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Liliana P Capitão
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Perez-Caballero L, Soto-Montenegro ML, Desco M, Mico JA, Berrocoso E. Sustained escitalopram administration affects glucose metabolism in the rat brain. Eur Neuropsychopharmacol 2021; 51:1-6. [PMID: 34022746 DOI: 10.1016/j.euroneuro.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022]
Abstract
Escitalopram is a selective serotonin reuptake inhibitor (SSRIs) antidepressant, drug that is currently used as first-line agents for the treatment of depression and it is also used in the treatment of other psychiatric disorders. The main goal of this study was to identify which brain areas are affected by escitalopram administration. This study was carried out on male Wistar rats that received escitalopram daily over 14 days and that were studied by 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG)-PET on the last day of treatment. Computed tomography (CT) images were acquired immediately before each PET scan and the main effects of drug administration were elucidated by Statistical Parametric Mapping. The results obtained indicated that repeated exposure to escitalopram increased metabolic activity in the retrosplenial and posterior cingulate cortices, while it decreased such activity in the ventral hippocampus, cerebellum, brainstem and midbrain regions, including the raphe nuclei and ventral tegmental area. Therefore, repeated exposure to escitalopram alters the activity of several brain areas closely related to the serotonergic system, and previously identified as key regions in the antidepressant effect induced by SSRIs. Furthermore, some of the changes found, such as the dampened metabolism in the ventral tegmental area, are similar to changes that have been described after treating with other fast-acting antidepressant approaches.
Collapse
Affiliation(s)
- L Perez-Caballero
- Neuropsychopharmacology & Psychobiology Research Group, Area of Psychobiology, Department of Psychology, University of Cádiz, Cádiz, Spain; CIBER for Mental Health (CIBERSAM), Madrid, Spain
| | - M L Soto-Montenegro
- CIBER for Mental Health (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - M Desco
- CIBER for Mental Health (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - J A Mico
- CIBER for Mental Health (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Pharmacology and Psychiatry, University of Cádiz, Cádiz, Spain
| | - E Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Area of Psychobiology, Department of Psychology, University of Cádiz, Cádiz, Spain; CIBER for Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
18
|
Kim K, Choi HY, Pak K, Jeon H. Changes in brain glucose metabolism following traumatic optic neuropathy in rats. ALL LIFE 2021. [DOI: 10.1080/26895293.2020.1861110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Keunyoung Kim
- Department of Nuclear Medicine, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hee-young Choi
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Ophthalmology, Pusan National University Hospital, Busan, South Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hyeshin Jeon
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Ophthalmology, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
19
|
Joo YH, Kim YK, Choi IG, Kim HJ, Son YD, Kim HK, Cumming P, Kim JH. In vivo glucose metabolism and glutamate levels in mGluR5 knockout mice: a multimodal neuroimaging study using [ 18F]FDG microPET and MRS. EJNMMI Res 2020; 10:116. [PMID: 33006705 PMCID: PMC7532251 DOI: 10.1186/s13550-020-00716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Perturbed functional coupling between the metabotropic glutamate receptor-5 (mGluR5) and N-methyl-d-aspartate (NMDA) receptor-mediated excitatory glutamatergic neurotransmission may contribute to the pathophysiology of psychiatric disorders such as schizophrenia. We aimed to establish the functional interaction between mGluR5 and NMDA receptors in brain of mice with genetic ablation of the mGluR5. Methods We first measured the brain glutamate levels with magnetic resonance spectroscopy (MRS) in mGluR5 knockout (KO) and wild-type (WT) mice. Then, we assessed brain glucose metabolism with [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography before and after the acute administration of an NMDA antagonist, MK-801 (0.5 mg/kg), in the same mGluR5 KO and WT mice. Results Between-group comparisons showed no significant differences in [18F]FDG standardized uptake values (SUVs) in brain of mGluR5 KO and WT mice at baseline, but widespread reductions in mGluR5 KO mice compared to WT mice after MK-801 administration (p < 0.05). The baseline glutamate levels did not differ significantly between the two groups. However, there were significant negative correlations between baseline prefrontal glutamate levels and regional [18F]FDG SUVs in mGluR5 KO mice (p < 0.05), but no such correlations in WT mice. Fisher’s Z-transformation analysis revealed significant between-group differences in these correlations (p < 0.05). Conclusions This is the first multimodal neuroimaging study in mGluR5 KO mice and the first report on the association between cerebral glucose metabolism and glutamate levels in living rodents. The results indicate that mGluR5 KO mice respond to NMDA antagonism with reduced cerebral glucose metabolism, suggesting that mGluR5 transmission normally moderates the net effects of NMDA receptor antagonism on neuronal activity. The negative correlation between glutamate levels and glucose metabolism in mGluR5 KO mice at baseline may suggest an unmasking of an inhibitory component of the glutamatergic regulation of neuronal energy metabolism.
Collapse
Affiliation(s)
- Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Yun-Kwan Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - In-Gyu Choi
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Hyeon-Jin Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Paul Cumming
- Institute of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea. .,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea. .,Department of Psychiatry, Research Center for Psychiatry and Behavioral Sciences, Neuroscience Research Institute, Gachon University College of Medicine, Gil Medical Center, Gachon University, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea.
| |
Collapse
|
20
|
Choi KH, Berman RY, Zhang M, Spencer HF, Radford KD. Effects of Ketamine on Rodent Fear Memory. Int J Mol Sci 2020; 21:ijms21197173. [PMID: 32998470 PMCID: PMC7582895 DOI: 10.3390/ijms21197173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Ketamine, a multimodal anesthetic drug, has become increasingly popular in the treatment of pain following traumatic injury as well as treatment-resistant major depressive disorders. However, the psychological impact of this dissociative medication on the development of stress-related disorders such as post-traumatic stress disorder (PTSD) remains controversial. To address these concerns, preclinical studies have investigated the effects of ketamine administration on fear memory and stress-related behaviors in laboratory animals. Despite a well-documented line of research examining the effects of ketamine on fear memory, there is a lack of literature reviews on this important topic. Therefore, this review article summarizes the current preclinical literature on ketamine and fear memory with a particular emphasis on the route, dose, and timing of ketamine administration in rodent fear conditioning studies. Additionally, this review describes the molecular mechanisms by which ketamine may impact fear memory and stress-related behaviors. Overall, findings from previous studies are inconsistent in that fear memory may be increased, decreased, or unaltered following ketamine administration in rodents. These conflicting results can be explained by factors such as the route, dose, and timing of ketamine administration; the interaction between ketamine and stress; and individual variability in the rodent response to ketamine. This review also recommends that future preclinical studies utilize a clinically relevant route of administration and account for biological sex differences to improve translation between preclinical and clinical investigations.
Collapse
Affiliation(s)
- Kwang H. Choi
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; (K.H.C.); (R.Y.B.); (M.Z.)
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Rina Y. Berman
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; (K.H.C.); (R.Y.B.); (M.Z.)
| | - Michael Zhang
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; (K.H.C.); (R.Y.B.); (M.Z.)
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
21
|
Radford KD, Berman RY, Zhang M, Wu TJ, Choi KH. Sex-related differences in intravenous ketamine effects on dissociative stereotypy and antinociception in male and female rats. Pharmacol Biochem Behav 2020; 199:173042. [PMID: 32976859 DOI: 10.1016/j.pbb.2020.173042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Ketamine, a multimodal dissociative anesthetic drug, is widely used to treat various conditions including acute pain and treatment-resistant depression. We previously reported that subanesthetic doses of intravenous (i.v.) ketamine produced transient dissociative stereotypy and antinociception in male rats. However, sex-related differences in the effects of i.v. ketamine on these measures are not well characterized. Adult male and female Sprague-Dawley rats (10 weeks old) received an i.v. bolus saline or ketamine (2 and 5 mg/kg), and dissociative stereotypy (head weaving, ataxia, and circling) and natural behaviors (horizontal activity, rearing, and grooming) were quantified over a 10-min period. Ten minutes after the behavioral observation, antinociception was measured using a tail flick test. The i.v. ketamine administration increased head weaving, ataxia, circling, and horizontal activity while decreasing rearing and grooming behaviors in male and female rats. Following 5 mg/kg ketamine administration, ataxia was greater in female rats, while head weaving was greater in male rats. Among the female rats, head weaving was greater in the low estrogen group (diestrus phase) as compared to the high estrogen group (proestrus/estrus phase). Ketamine doses (2 and 5 mg/kg) produced antinociception in male and female rats, and female rats were more sensitive to the antinociceptive effects of 2 mg/kg ketamine. The current findings suggest that i.v. ketamine administration, a clinically relevant route of administration, may produce sex-related differences in dissociative behaviors and analgesia between males and females.
Collapse
Affiliation(s)
- Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Rina Y Berman
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael Zhang
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
| | - T John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kwang H Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
22
|
|
23
|
Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, Nugent AC, Kadriu B, Yuan P, Gould TD, Park LT, Zarate CA. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology 2020; 45:1398-1404. [PMID: 32252062 PMCID: PMC7297997 DOI: 10.1038/s41386-020-0663-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
A single, subanesthetic dose of (R,S)-ketamine (ketamine) exerts rapid and robust antidepressant effects. Several groups previously reported that (2S,6S;2R,6R)-hydroxynorketamine (HNK) had antidepressant effects in rodents, and that (2R,6R)-HNK increased cortical electroencephalographic gamma power. This exploratory study examined the relationship between ketamine metabolites, clinical response, psychotomimetic symptoms, and gamma power changes in 34 individuals (ages 18-65) with treatment-resistant depression (TRD) who received a single ketamine infusion (0.5 mg/kg) over 40 min. Plasma concentrations of ketamine, norketamine, and HNKs were measured at 40, 80, 120, and 230 min and at 1, 2, and 3 days post-infusion. Linear mixed models evaluated ketamine metabolites as mediators of antidepressant and psychotomimetic effects and their relationship to resting-state whole-brain magnetoencephalography (MEG) gamma power 6-9 h post-infusion. Three salient findings emerged. First, ketamine concentration positively predicted distal antidepressant response at Day 11 post-infusion, and an inverse relationship was observed between (2S,6S;2R,6R)-HNK concentration and antidepressant response at 3 and 7 days post-infusion. Norketamine concentration was not associated with antidepressant response. Second, ketamine, norketamine, and (2S,6S;2R,6R)-HNK concentrations at 40 min were positively associated with contemporaneous psychotomimetic symptoms; post-hoc analysis revealed that ketamine was the predominant contributor. Third, increased (2S,6S;2R,6R)-HNK maximum observed concentration (Cmax) was associated with increased MEG gamma power. While contrary to preclinical observations and our a priori hypotheses, these exploratory results replicate those of a recently published study documenting a relationship between higher (2S,6S;2R,6R)-HNK concentrations and weaker antidepressant response in humans and provide further rationale for studying gamma power changes as potential biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Cristan A Farmer
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jessica R Gilbert
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jomy George
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Lilian Adeojo
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Lovett
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Allison C Nugent
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Lawrence T Park
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
|
25
|
Feder A, Rutter SB, Schiller D, Charney DS. The emergence of ketamine as a novel treatment for posttraumatic stress disorder. RAPID ACTING ANTIDEPRESSANTS 2020; 89:261-286. [DOI: 10.1016/bs.apha.2020.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Radford KD, Spencer HF, Zhang M, Berman RY, Girasek QL, Choi KH. Association between intravenous ketamine-induced stress hormone levels and long-term fear memory renewal in Sprague-Dawley rats. Behav Brain Res 2019; 378:112259. [PMID: 31560919 DOI: 10.1016/j.bbr.2019.112259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Ketamine is a multimodal dissociative anesthetic and analgesic that is widely used after traumatic injury. We previously reported that an analgesic dose of intravenous (IV) ketamine infusion (10 mg/kg, 2-h) after fear conditioning enhanced short-term fear memory in rats. Here, we investigated the effects of the same dose of an IV ketamine infusion on plasma stress hormone levels and long-term fear memory in rats. Adult male Sprague-Dawley rats (9-week-old with an average weight of 308 g upon arrival) received a ketamine infusion (0 or 10 mg/kg, 2-h) immediately after auditory fear conditioning (three auditory tone and footshock [0.6 mA, 1-s] pairings) on Day 0. After the infusion, a blood sample was collected from a jugular vein catheter for corticosterone and progesterone assays, and each animal was tested on tail flick to measure thermal antinociception. One week later, animals were tested on fear extinction acquisition (Day 7), fear extinction retrieval (Day 8), and fear renewal (Day 9). The IV ketamine infusion, compared to the saline infusion, reduced locomotor activity (sedation), increased tail flick latency (antinociception), and elevated plasma corticosterone and progesterone levels. The ketamine infusion did not alter long-term fear memory extinction or fear renewal. However, elevated corticosterone and progesterone levels resulting from the ketamine infusion were correlated with sedation, antinociception, and long-term fear memory renewal. These results suggest that individual differences in sensitivity to acute ketamine may predict vulnerability to develop fear-related disorders.
Collapse
Affiliation(s)
- Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Haley F Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael Zhang
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Rina Y Berman
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Quinn L Girasek
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Kwang H Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA; Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
27
|
Neves LT, Neves PFR, Paz LV, Zancan M, Milanesi BB, Lazzari GZ, da Silva RB, de Oliveira MMBP, Venturin GT, Greggio S, da Costa JC, Rasia-Filho AA, Mestriner RG, Xavier LL. Increases in dendritic spine density in BLA without metabolic changes in a rodent model of PTSD. Brain Struct Funct 2019; 224:2857-2870. [PMID: 31440907 DOI: 10.1007/s00429-019-01943-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Abstract
Imaging studies have shown abnormal amygdala function in patients with posttraumatic stress disorder (PTSD). In addition, alterations in synaptic plasticity have been associated with psychiatric disorders and previous reports have indicated alterations in the amygdala morphology, especially in basolateral (BLA) neurons, are associated with stress-related disorders. Since, some individuals exposed to a traumatic event develop PTSD, the goals of this study were to evaluate the early effects of PTSD on amygdala glucose metabolism and analyze the possible BLA dendritic spine plasticity in animals with different levels of behavioral response. We employed the inescapable footshock protocol as an experimental model of PTSD and the animals were classified according to the duration of their freezing behavior into distinct groups: "extreme behavioral response" (EBR) and "minimal behavioral response". We evaluated the amygdala glucose metabolism at baseline (before the stress protocol) and immediately after the situational reminder using the microPET and the radiopharmaceutical 18F-FDG. The BLA dendritic spines were analyzed according to their number, density, shape and morphometric parameters. Our results show the EBR animals exhibited longer freezing behavior and increased proximal dendritic spines density in the BLA neurons. Neither the amygdaloid glucose metabolism, the types of dendritic spines nor their morphometric parameters showed statistically significant differences. The extreme behavior response induced by this PTSD protocol produces an early increase in BLA spine density, which is unassociated with either additional changes in the shape of spines or metabolic changes in the whole amygdala of Wistar rats.
Collapse
Affiliation(s)
- Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lisiê Valéria Paz
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Zancan
- Departamento de Ciências Básicas/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Bueno Milanesi
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Gabriele Zenato Lazzari
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Rafaela Barboza da Silva
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Marina Mena Barreto Peres de Oliveira
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Gianina Teribele Venturin
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Greggio
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaderson Costa da Costa
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alberto A Rasia-Filho
- Departamento de Ciências Básicas/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
28
|
Zhang M, Radford KD, Driscoll M, Purnomo S, Kim J, Choi KH. Effects of subanesthetic intravenous ketamine infusion on neuroplasticity-related proteins in the prefrontal cortex, amygdala, and hippocampus of Sprague-Dawley rats. IBRO Rep 2019; 6:87-94. [PMID: 30723838 PMCID: PMC6350099 DOI: 10.1016/j.ibror.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Ketamine, a multimodal dissociative anesthetic, is a powerful analgesic administered following trauma due to its hemodynamic and respiratory stability. However, ketamine can cause hallucination and dissociation which may adversely impact traumatic memory after an injury. The effects of ketamine on proteins implicated in neural plasticity are unclear due to different doses, routes, and timing of drug administration in previous studies. Here, we investigated the effects of a single intravenous (IV) ketamine infusion on protein levels in three brain regions of rats. Adult male Sprague-Dawley rats with indwelling IV catheters underwent an auditory fear conditioning (three pairings of tone and mild footshock 0.8 mA, 0.5 s) and received a high dose of IV ketamine (0 or 40 mg/kg/2 h) infusion (Experiment 1). In a follow-up study, animals received a low dose of IV ketamine (0 or 10 mg/kg/2 h) infusion (Experiment 2). Two hours after the infusion, brain tissue from the medial prefrontal cortex (mPFC), hippocampus, and amygdala were collected for western blot analyses. Protein levels of a transcription factor (c-Fos), brain-derived neurotrophic factor (BDNF), and phosphorylated extracellular signal-regulated kinase (pERK) were quantified in these regions. The 40 mg/kg ketamine infusion increased c-Fos levels in the mPFC and amygdala as well as pERK levels in the mPFC and hippocampus. The 10 mg/kg ketamine infusion increased BDNF levels in the amygdala, but decreased pERK levels in the mPFC and hippocampus. These findings suggest that a clinically relevant route of ketamine administration produces dose-dependent and brain region-specific effects on proteins involved in neuroplasticity.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Mercedes Driscoll
- National Capital Consortium Psychiatry Residency Program, Walter Reed National Military Medical Center, Bethesda, MD 20814, United States
| | - Salsabila Purnomo
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Jean Kim
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Kwang H. Choi
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| |
Collapse
|
29
|
Torrisi SA, Leggio GM, Drago F, Salomone S. Therapeutic Challenges of Post-traumatic Stress Disorder: Focus on the Dopaminergic System. Front Pharmacol 2019; 10:404. [PMID: 31057408 PMCID: PMC6478703 DOI: 10.3389/fphar.2019.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness developed by vulnerable individuals exposed to life-threatening events. The pharmacological unresponsiveness displayed by the vast majority of PTSD patients has raised considerable interest in understanding the poorly known pathophysiological mechanisms underlying this disorder. Most studies in the field focused, so far, on noradrenergic mechanisms, because of their well-established role in either tuning arousal or in encoding emotional memories. However, less attention has been paid to other neural systems. Manipulations of the dopaminergic system alter behavioral responses to stressful situations and recent findings suggest that dopaminergic dysfunction might play an overriding role in the pathophysiology of PTSD. In the present review, dopaminergic mechanisms relevant for the pathogenesis of PTSD, as well as potential dopaminergic-based pharmacotherapies are discussed in the context of addressing the unmet medical need for new and effective drugs for treatment of PTSD.
Collapse
Affiliation(s)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|