1
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
2
|
Krispil-Alon M, Jovasevic V, Radulovic J, Richter-Levin G. Sex-specific roles of hippocampal microRNAs in stress vulnerability and resilience. Transl Psychiatry 2022; 12:503. [PMID: 36473835 PMCID: PMC9726879 DOI: 10.1038/s41398-022-02267-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Contrary to intuition, most individuals are resilient to psychological trauma and only a minority is vulnerable. Men and women are known to respond differently to trauma exposure, however, mechanisms underlying the relationship between sex differences and trauma resilience and vulnerability are not yet fully understood. Taking advantage of the Behavioral Profiling approach, which enables differentiating between 'affected' and 'unaffected' individuals, we examined sex-associated differences in stress exposure effects on hippocampal expression of selected stress-related GABA-A receptor targeting miRNAs. Levels of the miRNA-144 and miRNA-33 were measured in male and female affected (vulnerable, e.g., higher freezing time) and unaffected (resilient) rats. In male rats, increased levels of miRNA-144 and miRNA-33 were observed in the dorsal dentate gyrus (dDG) and ventral dentate gyrus (vDG) respectively, of stress-exposed but unaffected animals. In females, we observed an increased expression of miRNA-144 and miRNA-33 in the ventral cornu ammonis 1 (vCA1) of affected animals. Accordingly, we inhibited miRNAs expression selectively in hippocampal subregions using oligonucleotides containing locked nucleic acid bases, to examine the miRNAs' causal contribution to either vulnerability or resilience to stress in each sex. Inhibition of miRNA-144 in dDG and miRNA-33 in vDG in males resulted in an increased prevalence of vulnerable animals, while inhibition of miRNA-144 and miRNA-33 in vCA1 in females increased the proportion of resilient animals. The current findings reveal a critical sex-associated difference in the role of miRNAs in stress vulnerability and resilience. This novel understanding of sex-associated epigenetic involvement in the mechanism of stress-related psychopathologies may help improve gender-specific diagnosis and effective treatment.
Collapse
Affiliation(s)
- Maayan Krispil-Alon
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, Haifa, Israel
| | - Vladimir Jovasevic
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jelena Radulovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
- Psychology Department, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Hao K, Wang H, Zhang Y, Xie X, Huang H, Chen C, Xu S, Xu R, Shu C, Liu Z, Zhou Y, Reynolds GP, Wang G. Nicotinamide reverses deficits in puberty-born neurons and cognitive function after maternal separation. J Neuroinflammation 2022; 19:232. [PMID: 36131290 PMCID: PMC9494869 DOI: 10.1186/s12974-022-02591-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 09/04/2022] [Indexed: 01/09/2023] Open
Abstract
Background Early life stress (ELS) is associated with the development of schizophrenia later in life. The hippocampus develops significantly during childhood and is extremely reactive to stress. In rodent models, ELS can induce neuroinflammation, hippocampal neuronal loss, and schizophrenia-like behavior. While nicotinamide (NAM) can inhibit microglial inflammation, it is unknown whether NAM treatment during adolescence reduces hippocampal neuronal loss and abnormal behaviors induced by ELS. Methods Twenty-four hours of maternal separation (MS) of Wistar rat pups on post-natal day (PND)9 was used as an ELS. On PND35, animals received a single intraperitoneal injection of BrdU to label dividing neurons and were given NAM from PND35 to PND65. Behavioral testing was performed. Western blotting and immunofluorescence staining were used to detect nicotinamide adenine dinucleotide (NAD+)/Sirtuin3 (Sirt3)/superoxide dismutase 2 (SOD2) pathway-related proteins. Results Compared with controls, only MS animals in the adult stage (PND56–65) but not the adolescent stage (PND31–40) exhibited pre-pulse inhibition deficits and cognitive impairments mimicking schizophrenia symptoms. MS decreased the survival and activity of puberty-born neurons and hippocampal NAD+ and Sirt3 expression in adulthood. These observations were related to an increase in acetylated SOD2, microglial activation, and significant increases in pro-inflammatory IL-1β, TNF-α, and IL-6 expression. All the effects of MS at PND9 were reversed by administering NAM in adolescence (PND35–65). Conclusions MS may lead to schizophrenia-like phenotypes and persistent hippocampal abnormalities. NAM may be a safe and effective treatment in adolescence to restore normal hippocampal function and prevent or ameliorate schizophrenia-like behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02591-y.
Collapse
Affiliation(s)
- Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China. .,Department of Psychiatry, Zhongxiang Hospital of Renmin Hospital of Wuhan University, Zhongxiang, 431900, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Shilin Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China. .,Hubei Institute of Neurology and Psychiatry Research, Wuhan, 430060, China.
| |
Collapse
|
4
|
Hakamata Y, Suzuki Y, Kobashikawa H, Hori H. Neurobiology of early life adversity: A systematic review of meta-analyses towards an integrative account of its neurobiological trajectories to mental disorders. Front Neuroendocrinol 2022; 65:100994. [PMID: 35331780 DOI: 10.1016/j.yfrne.2022.100994] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
Abstract
Adverse childhood experiences (ACEs) may leave long-lasting neurobiological scars, increasing the risk of developing mental disorders in later life. However, no review has comprehensively integrated existing evidence across the fields: hypothalamic-pituitary-adrenal axis, immune/inflammatory system, neuroimaging, and genetics/epigenetics. We thus systematically reviewed previous meta-analyses towards an integrative account of ACE-related neurobiological alterations. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, a total of 27 meta-analyses until October 2021 were identified. This review found that individuals with ACEs possess blunted cortisol response to psychosocial stressors, low-grade inflammation evinced by increased C-reactive protein levels, exaggerated amygdalar response to emotionally negative information, and diminished hippocampal gray matter volume. Importantly, these alterations were consistently observed in those with and without psychiatric diagnosis. These findings were integrated and discussed in a schematic model of ACE-related neurobiological alterations. Future longitudinal research based on multidisciplinary approach is imperative for ACE-related mental disorders' prevention and treatment.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan.
| | - Yuhki Suzuki
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hajime Kobashikawa
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
5
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
6
|
Harris EP, McGovern AJ, Melo TG, Barron A, Nola YM, O'Leary OF. Juvenile Stress Exerts Sex-independent Effects on Anxiety, Antidepressant-like Behaviours and Dopaminergic Innervation of the Prelimbic Cortex in Adulthood and Does Not Alter Hippocampal Neurogenesis. Behav Brain Res 2021; 421:113725. [PMID: 34929235 DOI: 10.1016/j.bbr.2021.113725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Stress, particularly during childhood, is a major risk factor for the development of depression. Depression is twice as prevalent in women compared to men, which suggests that that biological sex also contributes to depression susceptibility. However, the neurobiology underpinning sex differences in the long-term consequences of childhood stress remains unknown. Thus, the aim of this study was to determine whether stress applied during the prepubertal juvenile period (postnatal day 27-29) in rats induces sex-specific changes in anxiety-like behaviour, anhedonia, and antidepressant-like behaviour in adulthood in males and females. The impact of juvenile stress on two systems in the brain associated with these behaviours and that develop during the juvenile period, the mesocorticolimbic dopaminergic system and hippocampal neurogenesis, were also investigated. Juvenile stress altered escape-oriented behaviours in the forced swim test in both sexes, decreased latency to drink a palatable substance in a novel environment in the novelty-induced hypophagia test in both sexes, and decreased open field supported rearing behavior in females. These behavioural changes were accompanied by stress-induced increases in tyrosine hydroxylase immunoreactivity in the prefrontal cortex of both sexes, but not other regions of the mesocorticolimbic dopaminergic system. Juvenile stress did not impact anhedonia in adulthood as measured by the saccharin preference test and had no effect hippocampal neurogenesis across the longitudinal axis of the hippocampus. These results suggest that juvenile stress has long-lasting impacts on antidepressant-like and reward-seeking behaviour in adulthood and these changes may be due to alterations to catecholaminergic innervation of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Erin P Harris
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Andrew J McGovern
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Thieza G Melo
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Yvonne M Nola
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
7
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
8
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
9
|
Santos VR, Melo IS, Pacheco ALD, Castro OWD. Life and death in the hippocampus: What's bad? Epilepsy Behav 2021; 121:106595. [PMID: 31759972 DOI: 10.1016/j.yebeh.2019.106595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
Abstract
The hippocampal formation is crucial for the generation and regulation of several brain functions, including memory and learning processes; however, it is vulnerable to neurological disorders, such as epilepsy. Temporal lobe epilepsy (TLE), the most common type of epilepsy, changes the hippocampal circuitry and excitability, under the contribution of both neuronal degeneration and abnormal neurogenesis. Classically, neurodegeneration affects sensitive areas of the hippocampus, such as dentate gyrus (DG) hilus, as well as specific fields of the Ammon's horn, CA3, and CA1. In addition, the proliferation, migration, and abnormal integration of newly generated hippocampal granular cells (GCs) into the brain characterize TLE neurogenesis. Robust studies over the years have intensely discussed the effects of death and life in the hippocampus, though there are still questions to be answered about their possible benefits and risks. Here, we review the impacts of death and life in the hippocampus, discussing its influence on TLE, providing new perspectives or insights for the implementation of new possible therapeutic targets. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Igor Santana Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | | | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
10
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
11
|
Rule L, Yang J, Watkin H, Hall J, Brydges NM. Environmental enrichment rescues survival and function of adult-born neurons following early life stress. Mol Psychiatry 2021; 26:1898-1908. [PMID: 32286496 DOI: 10.1038/s41380-020-0718-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Adverse experiences early in life are associated with the development of psychiatric illnesses. The hippocampus is likely to play pivotal role in generating these effects: it undergoes significant development during childhood and is extremely reactive to stress. In rodent models, stress in the pre-pubertal period impairs adult hippocampal neurogenesis (AHN) and behaviours which rely on this process. In normal adult animals, environmental enrichment (EE) is a potent promoter of AHN and hippocampal function. Whether exposure to EE during adolescence can restore normal hippocampal function and AHN following pre-pubertal stress (PPS) is unknown. We investigated EE as a treatment for reduced AHN and hippocampal function following PPS in a rodent model. Stress was administered between post-natal days (PND) 25-27, EE from PND 35 to early adulthood, when behavioural testing and assessment of AHN took place. PPS enhanced fear reactions to a conditioned stimulus (CS) following a trace fear protocol and reduced the survival of 4-week-old adult-born neurons throughout the adult hippocampus. Furthermore, we show that fewer adult-born neurons were active during recall of the CS stimulus following PPS. All effects were reversed by EE. Our results demonstrate lasting effects of PPS on the hippocampus and highlight the utility of EE during adolescence for restoring normal hippocampal function. EE during adolescence is a promising method of enhancing impaired hippocampal function resulting from early life stress, and due to multiple benefits (low cost, few side effects, widespread availability) should be more thoroughly explored as a treatment option in human sufferers of childhood adversity.
Collapse
Affiliation(s)
- Lowenna Rule
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jessica Yang
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Holly Watkin
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Nichola Marie Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
12
|
Ghalandari-Shamami M, Nourizade S, Barati M, Yousefi B, Pashayi M, Ali Vafaei A, Kokhaei P, Rashidy-Pour A. Exercise and crocin prevent adolescent-stress induced impairment of spatial navigation and dendritic retraction in the hippocampal CA3 area in adult male rats. Brain Res 2021; 1754:147274. [PMID: 33422526 DOI: 10.1016/j.brainres.2020.147274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
Adolescent chronic stress has been shown to induce functional, biochemical and morphological modifications of the hippocampus, leading to stress-related disorders in adulthood. The present study investigated the effects of exercise, crocin and their combination on spatial learning and memory impairment and dendritic retraction of the CA3 pyramidal neurons induced by chronic adolescent stress in adult male rats. Rats were exposed to restraint stress 2 h/day for 10 days during postnatal days (PNDs) 30-40. Following this period, separate groups of animals were treated with crocin (25 and 50 mg/kg), exposed to running wheel, and or received the combined treatment during PNDs 41-55. Following the interventions, plasma levels of corticosterone, spatial learning and memory, apical dendritic length of CA3 pyramidal neurons and BDNF levels in the CA3 area were assessed. Findings showed that adolescent stress significantly increased corticosterone levels and caused a tendency to reduce CA3 BDNF levels. Adolescent stress also impaired spatial learning and memory, and retracted apical dendritic length of CA3 pyramidal neurons. Crocin, voluntary exercise, and their combination recovered stress-induced spatial learning and impairment and CA3 pyramidal neurons dendritic length retraction. All treatments also reduced significantly corticosterone levels and enhanced CA3 BDNF levels in the stress groups. Finally, these treatments even increased apical dendritic length of CA3 pyramidal neurons in the non-stress groups. These findings indicate that detrimental effects of adolescent stress on cognitive function and hippocampal morphology in adulthood could be restored by early interventions with physical activity and crocin treatment during adolescent period.
Collapse
Affiliation(s)
- Mohadeseh Ghalandari-Shamami
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran; Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahla Nourizade
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behpour Yousefi
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehrnush Pashayi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Loss of α7 nicotinic acetylcholine receptors in GABAergic neurons causes sex-dependent decreases in radial glia-like cell quantity and impairments in cognitive and social behavior. Brain Struct Funct 2021; 226:365-379. [PMID: 33398432 DOI: 10.1007/s00429-020-02179-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
The dentate gyrus (DG) is a unique brain structure in that neurons can be generated postnatally and integrated within existing circuitry throughout life. The maturation process of these newly generated neurons (granule cells) is modulated by nicotinic acetylcholine receptors (nAChRs) through a variety of mechanisms such as neural stem pool proliferation, cell survival, signal modulation, and dendritic integration. Disrupted nAChR signaling has been implicated in neuropsychiatric and neurodegenerative disorders, potentially via alterations in DG neurogenesis. GABAergic interneurons are known to express nAChRs, predominantly the α7 subtype, and have been shown to shape development, integration, and circuit reorganization of DG granule cells. Therefore, we examined histological and behavioral effects of knocking out α7 nAChRs in GABAergic neurons. Deletion of α7 nAChRs resulted in a reduction of radial glia-like cells within the subgranular zone of the DG and a concomitant trend towards decreased immature neurons, specifically in male mice, as well as sex-dependent changes in several behaviors, including social recognition and spatial learning. Overall, these findings suggest α7 nAChRs expressed in GABAergic neurons play an important role in regulating the adult neural stem cell pool and behavior in a sex-dependent manner. This provides important insight into the mechanisms by which cholinergic dysfunction contributes to the cognitive and behavioral changes associated with neurodevelopmental and neurodegenerative disorders.
Collapse
|
14
|
Moon AL, Brydges NM, Wilkinson LS, Hall J, Thomas KL. Cacna1c Hemizygosity Results in Aberrant Fear Conditioning to Neutral Stimuli. Schizophr Bull 2020; 46:1231-1238. [PMID: 31910256 PMCID: PMC7505182 DOI: 10.1093/schbul/sbz127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CACNA1C, a gene that encodes an alpha-1 subunit of L-type voltage-gated calcium channels, has been strongly associated with psychiatric disorders including schizophrenia and bipolar disorder. An important objective is to understand how variation in this gene can lead to an increased risk of psychopathology. Altered associative learning has also been implicated in the pathology of psychiatric disorders, particularly in the manifestation of psychotic symptoms. In this study, we utilize auditory-cued fear memory paradigms in order to investigate whether associative learning is altered in rats hemizygous for the Cacna1c gene. Cacna1c hemizygous (Cacna1c+/-) rats and their wild-type littermates were exposed to either delay, trace, or unpaired auditory fear conditioning. All rats received a Context Recall (24 h post-conditioning) and a Cue Recall (48 h post-conditioning) to test their fear responses. In the delay condition, which results in strong conditioning to the cue in wild-type animals, Cacna1c+/- rats showed increased fear responses to the context. In the trace condition, which results in strong conditioning to the context in wild-type animals, Cacna1c+/- rats showed increased fear responses to the cue. Finally, in the unpaired condition, Cacna1c+/- rats showed increased fear responses to both context and cue. These results indicate that Cacna1c heterozygous rats show aberrantly enhanced fear responses to inappropriate cues, consistent with key models of psychosis.
Collapse
Affiliation(s)
- Anna L Moon
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Peripubertal stress following maternal immune activation sex-dependently alters depression-like behaviors in offspring. Behav Brain Res 2020; 393:112800. [DOI: 10.1016/j.bbr.2020.112800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
16
|
Murthy S, Gould E. How Early Life Adversity Influences Defensive Circuitry. Trends Neurosci 2020; 43:200-212. [PMID: 32209452 DOI: 10.1016/j.tins.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Childhood maltreatment increases the likelihood of developing anxiety disorders in humans. Early life adversity (ELA) paradigms in rodents produce lasting increases in avoidant and inhibitory responses to both immediate and nonspecific threats, collectively referred to as defensive behaviors. This approach provides an opportunity to thoroughly investigate the underlying mechanisms, an effort that is currently under way. In this review, we consider the growing literature indicating that ELA alters the rhythmic firing of neurons in brain regions associated with defensive behavior, as well as potential neuronal, glial, and extracellular matrix contributions to functional changes in this circuitry. We also consider how ELA studies in rodents may inform us about both susceptible and resilient outcomes in humans.
Collapse
Affiliation(s)
- Sahana Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
17
|
Arnetz BB, Sudan S, Arnetz JE, Yamin JB, Lumley MA, Beck JS, Stemmer PM, Burghardt P, Counts SE, Jamil H. Dysfunctional neuroplasticity in newly arrived Middle Eastern refugees in the U.S.: Association with environmental exposures and mental health symptoms. PLoS One 2020; 15:e0230030. [PMID: 32142533 PMCID: PMC7059916 DOI: 10.1371/journal.pone.0230030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Psychological war trauma among displaced refugees is an established risk factor for mental health disorders, especially post-traumatic stress disorder (PTSD). Persons with trauma-induced disorders have heightened neuroplastic restructuring of limbic brain circuits (e.g., amygdala and hippocampus), which are critical factors in the pathophysiology of PTSD. Civilians in war are exposed to both psychological trauma and environmental hazards, such as metals. Little is known about the possible mental health impact from such environmental exposures, alone or in combination with trauma. It is of special interest to determine whether war exposures contribute to dysfunctional neuroplasticity; that is, an adverse outcome from sustained stress contributing to mental health disorders. The current study examined Middle Eastern refugees in the United States to determine the relationships among pre-displacement trauma and environmental exposures, brain derived neurotrophic growth factor (BDNF) and nerve growth factor (NGF)-two neurotrophins reported to mediate neuroplasticity responses to stress-related exposures-and mental health. METHODS Middle Eastern refugees (n = 64; 33 men, 31 women) from Syria (n = 40) or Iraq (n = 24) were assessed 1 month after arrival to Michigan, US. Participants were interviewed in Arabic using a semi-structured survey to assess pre-displacement trauma and environmental exposure, PTSD, depression, anxiety, and self-rated mental health. Whole blood was collected, and concentrations of six heavy metals as well as BDNF and NGF levels were determined. Because these two neurotrophins have similar functions in neuroplasticity, we combined them to create a neuroplasticity index. Linear regression tested whether psychosocial trauma, environmental exposures and biomarkers were associated with mental health symptoms. FINDINGS The neuroplasticity index was associated with PTSD (standardized beta, β = 0.25, p < 0.05), depression (0.26, < 0.05) and anxiety (0.32, < 0.01) after controlling for pre-displacement trauma exposures. In addition, pre-displacement environmental exposure was associated with PTSD (0.28, < 0.05) and anxiety (0.32, < 0.05). Syrian refugees and female gender were associated with higher scores on depression (0.25, < 0.05; 0.30, < 0.05) and anxiety scales (0.35, < 0.01; 0.27, < 0.05), and worse on self-rated mental health (0.32, < 0.05; 0.34, < 0.05). In bivariate analysis, the neuroplasticity index was related to blood lead levels (r = 0.40; p < 0.01). CONCLUSIONS The current study confirms the adverse effects of war trauma on mental health. Higher levels of biomarkers of neuroplasticity correlated with worse mental health and higher blood lead levels. Higher neurotrophin levels in refugees might indicate dysfunctional neuroplasticity with increased consolidation of adverse war memories in the limbic system. Such a process may contribute to psychiatric symptoms. Further research is needed to clarify the pathobiological mechanisms linking war trauma and environmental exposures to adverse mental health.
Collapse
Affiliation(s)
- Bengt B. Arnetz
- Department of Family medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Sukhesh Sudan
- Department of Family medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Judith E. Arnetz
- Department of Family medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Jolin B. Yamin
- Department of Psychology, Wayne State University, Detroit, Michigan, United States of America
| | - Mark A. Lumley
- Department of Psychology, Wayne State University, Detroit, Michigan, United States of America
| | - John S. Beck
- Department of Translational Neuroscience, Grand Rapids, Michigan, United States of America
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Paul Burghardt
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan, United States of America
| | - Scott E. Counts
- Department of Family medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
- Department of Translational Neuroscience, Grand Rapids, Michigan, United States of America
| | - Hikmet Jamil
- Department of Family medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| |
Collapse
|
18
|
Abstract
Early life stress (ELS) is a risk factor in the development of psychiatric disorders. The underlying biological mechanisms governing this phenomenon are not fully understood, but dysregulation of stress responses is likely to play a key role. Males and females differ in their propensity to develop psychiatric disorders, with far higher rates of anxiety, major depressive disorder, affective disorders and post-traumatic stress disorder found in women. We hypothesized that sex differences in response to ELS may play a crucial role in differential vulnerability between the sexes. To test this, we evaluated the consequences of pre-pubertal stress (PPS) on the HPA axis in adult female and male Lister Hooded rats. PPS animals were exposed to swim, restraint and elevated platform stress on postnatal days 25-27, controls remained in their home cage. Once adult, animals were either a) sacrificed directly and brains collected or b) sacrificed 20 minutes or 1 week after a social test and trunk blood collected. In the female hippocampal formation, PPS increased expression of FKBP5 and AVPR1a. In the female prefrontal cortex, PPS resulted in increased glucocorticoid receptor expression, increased glucocorticoid:mineralocorticoid (GR:MR) receptor expression ratio and decreased AVPR1a expression. Females exposed to PPS did not show the normal rise in blood corticosterone levels following a social interaction test. In contrast, PPS did not alter the expression of oxytocin or oxytocin receptors, and no effects of PPS were seen in males. However, striking sex differences were found. Females had higher oxytocin receptor expression in the prefrontal cortex and AVPR1a and oxytocin expression in the hypothalamus, whereas males demonstrated higher expression of GR, MR, GR:MR, FKBP5 and oxytocin receptor in the hypothalamus. These results demonstrate heightened reactivity of the female HPA axis to PPS and may help explain why in humans females display an increased susceptibility to certain stress-related psychopathologies.LAY SUMMARYWomen are at greater risk of developing several psychiatric illnesses. Using a rodent model, we show that the female stress system is more reactive to the lasting effects of early life stress. This heightened reactivity of the female stress response may help explain why women are at a greater risk of developing psychiatric disorders.
Collapse
Affiliation(s)
- Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Caroline Best
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Brydges NM, Hall J, Best C, Rule L, Watkin H, Drake AJ, Lewis C, Thomas KL, Hall J. Childhood stress impairs social function through AVP-dependent mechanisms. Transl Psychiatry 2019; 9:330. [PMID: 31819033 PMCID: PMC6901493 DOI: 10.1038/s41398-019-0678-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Impaired social function is a core feature of many psychiatric illnesses. Adverse experiences during childhood increase risk for mental illness, however it is currently unclear whether stress early in life plays a direct role in the development of social difficulties. Using a rat model of pre-pubertal stress (PPS), we investigated effects on social behaviour, oxytocin and arginine vasopressin (AVP) in the periphery (plasma) and centrally in the paraventricular and supraoptic hypothalamic nuclei. We also explored social performance and AVP expression (plasma) in participants with borderline personality disorder (BPD) who experienced a high incidence of childhood stress. Social behaviour was impaired and AVP expression increased in animals experiencing PPS and participants with BPD. Behavioural deficits in animals were rescued through administration of the AVPR1a antagonist Relcovaptan (SR49059). AVP levels and recognition of negative emotions were significantly correlated in BPD participants only. In conclusion, early life stress plays a role in the precipitation of social dysfunction, and AVP mediates at least part of this effect.
Collapse
Affiliation(s)
- Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Jessica Hall
- National Centre for Mental Health, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Caroline Best
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Lowenna Rule
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Holly Watkin
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Catrin Lewis
- National Centre for Mental Health, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
20
|
Wittbrodt MT, Moazzami K, Lima BB, Alam ZS, Corry D, Hammadah M, Campanella C, Ward L, Quyyumi AA, Shah AJ, Vaccarino V, Nye JA, Bremner JD. Early childhood trauma alters neurological responses to mental stress in patients with coronary artery disease. J Affect Disord 2019; 254:49-58. [PMID: 31103906 PMCID: PMC6592739 DOI: 10.1016/j.jad.2019.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Early childhood trauma is known to independently increase adverse outcome risk in coronary artery disease (CAD) patients, although the neurological correlates are not well understood. The purpose of this study was to examine whether early childhood trauma alters neural responses to acute mental stress in CAD patients. METHODS Participants (n = 152) with CAD underwent brain imaging with High Resolution Positron Emission Tomography and radiolabeled water during control (verbal counting, neutral speaking) and mental stress (mental arithmetic, public speaking). Traumatic events in childhood were assessed with the Early Trauma Inventory (ETI-SR-SF) and participants were separated by presence (ETI+) or absence (ETI-) of early childhood trauma. Brain activity during mental stress was compared between ETI+ and ETI-. RESULTS Compared to ETI-, ETI+ experienced greater (p < 0.005) activations during mental stress within the left anterior cingulate, bilateral frontal lobe and deactivations (p < 0.005) within the left insula, left parahippocampal gyrus, right dorsal anterior cingulate, bilateral cerebellum, bilateral fusiform gyrus, left inferior temporal gyrus, and right parietal lobe. Significant (p < 0.005) positive correlations between brain activation and ETI-SR-SF scores were observed within the left hippocampus, bilateral frontal lobe, left occipital cuneus, and bilateral temporal lobe. LIMITATIONS Results in non-CAD samples may differ and ETI may be subject to recall bias. CONCLUSION Early childhood trauma exacerbated activations in stress-responsive limbic and cognitive brain areas with direct and indirect connections to the heart, potentially contributing to adverse outcomes in CAD patients.
Collapse
Affiliation(s)
- Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA,Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Bruno B. Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Zuhayr S. Alam
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Daniel Corry
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Muhammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Carolina Campanella
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Laura Ward
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Arshed A. Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA,Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA,Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA,Department of Radiology, Emory University School of Medicine,Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|