1
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity during expression of goal-directed vs. habit-like cue-induced cocaine seeking. ADDICTION NEUROSCIENCE 2024; 11:100149. [PMID: 38957402 PMCID: PMC11218864 DOI: 10.1016/j.addicn.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking that is goal-directed but not habit-like. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry in rats trained to self-administer cocaine paired with an audiovisual cue to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habit-like cue-induced cocaine seeking and how it is impacted by cue extinction. After minimal fixed-ratio training, rats showed enhanced DMS and DLS calcium responses to cue-reinforced compared to unreinforced lever presses. After rats were trained on goal-promoting fixed ratio schedules or habit-promoting second-order schedules of reinforcement, different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses emerged. Rats trained on habit-promoting second-order schedules showed reduced DMS calcium responses and enhanced DLS dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habit-like behavior and the DLS are unaffected.
Collapse
Affiliation(s)
- Brooke N. Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Sierra J. Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Mary M. Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| |
Collapse
|
2
|
Shkreli L, Thoroddsen T, Kobelt M, Martens MA, Browning M, Harmer CJ, Cowen P, Reinecke A. Acute Angiotensin II Receptor Blockade Facilitates Parahippocampal Processing During Memory Encoding in High-Trait-Anxious Individuals. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100286. [PMID: 38323154 PMCID: PMC10844816 DOI: 10.1016/j.bpsgos.2023.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
Background Angiotensin II receptor blockers (ARBs) have been associated with preventing posttraumatic stress disorder symptom development and improving memory. However, the underlying neural mechanisms are poorly understood. This study investigated ARB effects on memory encoding and hippocampal functioning that have previously been implicated in posttraumatic stress disorder development. Methods In a double-blind randomized design, 40 high-trait-anxious participants (33 women) received the ARB losartan (50 mg) or placebo. At drug peak level, participants encoded images of animals and landscapes before undergoing functional magnetic resonance imaging, where they viewed the encoded familiar images and unseen novel images to be memorized and classified as animals/landscapes. Memory recognition was assessed 1 hour after functional magnetic resonance imaging. To analyze neural effects, whole-brain analysis, hippocampus region-of-interest analysis, and exploratory multivariate pattern similarity analysis were employed. Results ARBs facilitated parahippocampal processing. In the whole-brain analysis, losartan enhanced brain activity for familiar images in the parahippocampal gyrus (PHC), anterior cingulate cortex, and caudate. For novel images, losartan enhanced brain activity in the PHC only. Pattern similarity analysis showed that losartan increased neural stability in the PHC when processing novel and familiar images. However, there were no drug effects on memory recognition or hippocampal activation. Conclusions Given that the hippocampus receives major input from the PHC, our findings suggest that ARBs may modulate higher-order visual processing through parahippocampal involvement, potentially preserving intact memory input. Future research needs to directly investigate whether this effect may underlie the preventive effects of ARBs in the development of posttraumatic stress disorder.
Collapse
Affiliation(s)
- Lorika Shkreli
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | | | - Malte Kobelt
- Institute of Cognitive Neuroscience, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Phil Cowen
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Andrea Reinecke
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
3
|
Xu T, Chen Z, Zhou X, Wang L, Zhou F, Yao D, Zhou B, Becker B. The central renin-angiotensin system: A genetic pathway, functional decoding, and selective target engagement characterization in humans. Proc Natl Acad Sci U S A 2024; 121:e2306936121. [PMID: 38349873 PMCID: PMC10895353 DOI: 10.1073/pnas.2306936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing400037, People’s Republic of China
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Dezhong Yao
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong999077, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong999077, People’s Republic of China
| |
Collapse
|
4
|
Abubakar M, Saleem A, Hajjaj M, Faiz H, Pragya A, Jamil R, Salim SS, Lateef IK, Singla D, Ramar R, Damara I, Shahid L. Sex-specific differences in risk factors, comorbidities, diagnostic challenges, optimal management, and prognostic outcomes of heart failure with preserved ejection fraction: A comprehensive literature review. Heart Fail Rev 2024; 29:235-256. [PMID: 37996694 DOI: 10.1007/s10741-023-10369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Due to hormonal variations, heart failure with preserved ejection fraction (HFpEF) remains prevalent in women and affects almost half of the heart failure (HF) patients. Given the yearly death rate of 10-30% and the unavailability of medications targeting HFpEF, the need arises for a better understanding of the fundamental mechanisms of this syndrome. This comprehensive review explores sex-specific differences in traditional risk factors; female-specific factors that may impact HFpEF development and response to therapy, including variations in hormone levels that may occur pre- and post-menopausal or during pregnancy; and disparities in comorbidities, clinical presentation, and diagnostic challenges. Lastly, the review addresses prognostic outcomes, noting that women with HFpEF have a poor quality of life but a higher survival rate. It also discusses novel biomarkers and precision medicine, emphasizing their potential to improve early detection and personalized treatment.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, 6 Birdwood Road, Jinnah Town, Lahore, Punjab, 54000, Pakistan.
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Haseeb Faiz
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Aastha Pragya
- Department of Internal Medicine, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Rosheen Jamil
- Department of Internal Medicine, Mayo Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | | | - Deepak Singla
- Department of Internal Medicine, Government Medical College, Patiala, Punjab, India
| | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Ivan Damara
- Department of Internal Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Laraib Shahid
- Department of Dermatology, Lahore General Hospital, Lahore, Punjab, Pakistan
| |
Collapse
|
5
|
Wang T, Xiong T, Yang Y, Chen X, Ma Z, Zuo B, Ning D, Zhou B, Song R, Liu X, Wang D. Estradiol-mediated small GTP-binding protein GDP dissociation stimulator induction contributes to sex differences in resilience to ferroptosis in takotsubo syndrome. Redox Biol 2023; 68:102961. [PMID: 38007983 PMCID: PMC10719533 DOI: 10.1016/j.redox.2023.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Declining beneficial cardiovascular actions of estradiol (E2) have been associated with disproportionate susceptibility to takotsubo syndrome (TTS) in postmenopausal women. However, the underlying mechanisms between E2 and this marked disproportion remain unclear. SmgGDS (small GTP-binding protein GDP dissociation stimulator), as a key modulator of cardiovascular disease, plays protective roles in reducing oxidative stress and exerts pleiotropic effects of statins. Whether SmgGDS levels are influenced by E2 status and the effect of SmgGDS on sex differences in TTS are poorly understood. METHODS Clinical data were reviewed from TTS inpatients. Echocardiography, immunofluorescence, and immunohistochemistry were performed together with expression analysis to uncover phenotypic and mechanism changes in sex differences in TTS-like wild-type (WT) and SmgGDS± mice. HL-1 cardiomyocytes were used to further examine and validate molecular mechanisms. RESULTS In 14 TTS inpatients, TTS had a higher incidence in postmenopausal women as compared to premenopausal women and men. In murine TTS, female WT mice exhibited higher cardiac SmgGDS levels than male WT mice. Ovariectomy reduced SmgGDS expression in female WT mice similar to that observed in male mice, whereas E2 replacement in these ovariectomized (OVX) female mice reversed this effect. The physiological importance of this sex-specific E2-mediated SmgGDS response is underscored by the disparity in cardiac adaptation to isoproterenol (ISO) stimulation between both sexes of WT mice. E2-mediated SmgGDS induction conferred female protection against TTS-like acute cardiac injury involving ferritinophagy-mediated ferroptosis. No such cardioprotection was observed in male WT mice and OVX female. A causal role for SmgGDS in this sex-specific cardioprotective adaptation was indicated, inasmuch as SmgGDS deficiency abolished E2-modulated cardioprotection against ferritinophagy and aggravates TTS progression in both sexes. Consistently, knockdown of SmgGDS in HL-1 cardiomyocytes exacerbated ferroptosis in a ferritinophagy-dependent manner and abrogated the protective role of E2 against ferritinophagy. Mechanistically, our findings revealed that SmgGDS regulated E2-dependent cardioprotective effects via AMPK/mTOR signaling pathway. SmgGDS deficiency abolished E2-conferred protection against ferritinophagy through activating AMPK/mTOR pathway, while treatment with recombinant SmgGDS in HL-1 cells significantly mitigated this pathway-associated ferritinophagy activity. CONCLUSIONS These results demonstrate that SmgGDS is a central mediator of E2-conferred female cardioprotection against ferritinophagy-mediated ferroptosis in TTS.
Collapse
Affiliation(s)
- Ti Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China; Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | - Ting Xiong
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Xiwei Chen
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Ziwei Ma
- Clinical Medical College, Dalian Medical University, Dalian, Liaoning, China
| | - Bangyun Zuo
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Dong Ning
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Beibei Zhou
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuesong Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China.
| |
Collapse
|
6
|
Ortiz-Nazario E, Denton-Ortiz CM, Soto-Escobar LDM, Mateo-Mayol Z, Colon-Romero M, Hernandez-Lopez A, Porter JT. Sex-dependent effects of angiotensin II type 1 receptor blocker on molecular and behavioral changes induced by single prolonged stress. Behav Brain Res 2023; 454:114639. [PMID: 37652238 PMCID: PMC10530531 DOI: 10.1016/j.bbr.2023.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that not only entails alterations in fear behavior and anxiety but also includes neuroendocrine dysfunctions involving the hypothalamic pituitary adrenal (HPA) axis and the renin-angiotensin system. Recent preclinical studies demonstrate that activation of the angiotensin type 1 receptor (AT1R) in the paraventricular region of the hypothalamus (PVR) promotes anxiety-like behaviors and enables microglia proliferation. An increase in microglia and anxiety-like behavior also occurs in the PTSD animal model single-prolonged stress (SPS). In the present study, we tested whether AT1Rs contribute to the effects of SPS on behavior and microglia in brain structures important for HPA axis regulation and fear behavior. To test this, male and female animals were exposed to SPS and then given the oral AT1R antagonist candesartan beginning one week later. Candesartan did not alter auditory fear conditioning or extinction in SPS-exposed male or female animals. However, we found that the male animals exposed to SPS showed increased anxiety-like behavior, which was reversed by candesartan. In contrast, neither SPS nor candesartan altered anxiety-like behavior in the female animals. At the molecular level, SPS increased the cellular expression of AT1Rs in the PVR of male animals and candesartan reversed this effect, whereas AT1Rs in the PVR of females were unaltered by either SPS or candesartan. Iba1-expressing microglia increased in the PVR after SPS exposure and was reversed by candesartan in both sexes suggesting that SPS stimulates AT1Rs to increase microglia in the PVR. Collectively, these results suggest that the contribution of AT1Rs to the molecular and behavioral effects of SPS is sex-dependent.
Collapse
Affiliation(s)
- Emily Ortiz-Nazario
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Puerto Rico, Pontifical Catholic University of Puerto Rico, Ponce 00732, Puerto Rico
| | - Carla M Denton-Ortiz
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Puerto Rico, Pontifical Catholic University of Puerto Rico, Ponce 00732, Puerto Rico
| | - Lawry D M Soto-Escobar
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Puerto Rico, Pontifical Catholic University of Puerto Rico, Ponce 00732, Puerto Rico
| | - Zaira Mateo-Mayol
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Puerto Rico, Pontifical Catholic University of Puerto Rico, Ponce 00732, Puerto Rico
| | - Maria Colon-Romero
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Puerto Rico, Pontifical Catholic University of Puerto Rico, Ponce 00732, Puerto Rico
| | - Anixa Hernandez-Lopez
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Puerto Rico, Pontifical Catholic University of Puerto Rico, Ponce 00732, Puerto Rico
| | - James T Porter
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Puerto Rico, Pontifical Catholic University of Puerto Rico, Ponce 00732, Puerto Rico.
| |
Collapse
|
7
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
8
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity mediate expression of goal-directed vs. habit-like cue-induced cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550364. [PMID: 37546826 PMCID: PMC10402009 DOI: 10.1101/2023.07.24.550364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking when drug seeking is goal-directed but not habitual. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habitual cue-induced cocaine seeking and how it is impacted by cue extinction. Rats trained to self-administer cocaine paired with an audiovisual cue on schedules of reinforcement that promote goal-directed or habitual cocaine seeking had different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium and dopamine responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habitual behavior and the DLS are unaffected.
Collapse
|
9
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
10
|
Liu H, Xue Y, Chen L. Angiotensin II increases the firing activity of pallidal neurons and participates in motor control in rats. Metab Brain Dis 2023; 38:573-587. [PMID: 36454502 DOI: 10.1007/s11011-022-01127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
The globus pallidus has emerged as a crucial node in the basal ganglia motor control circuit under both healthy and parkinsonian states. Previous studies have shown that angiotensin II (Ang II) and angiotensin subtype 1 receptor (AT1R) are closely related to Parkinson's disease (PD). Recent morphological study revealed the expression of AT1R in the globus pallidus of mice. To investigate the functions of Ang II/AT1R on the globus pallidus neurons of both normal and parkinsonian rats, electrophysiological recordings and behavioral tests were performed in the present study. Electrophysiological recordings showed that exogenous and endogenous Ang II mainly excited the globus pallidus neurons through AT1R. Behavioral tests further demonstrated that unilateral microinjection of Ang II into the globus pallidus induced significantly contralateral-biased swing in elevated body swing test (EBST), and bilateral microinjection of Ang II into the globus pallidus alleviated catalepsy and akinesia caused by haloperidol. AT1R was involved in Ang II-induced behavioral effects. Immunostaining showed that AT1R was expressed in the globus pallidus of rats. On the basis of the present findings, we concluded that pallidal Ang II/AT1R alleviated parkinsonian motor deficits through activating globus pallidus neurons, which will provide a rationale for further investigations into the potential of Ang II in the treatment of motor disorders originating from the basal ganglia.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology 2023; 222:109298. [PMID: 36328063 PMCID: PMC11267399 DOI: 10.1016/j.neuropharm.2022.109298] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how that variability contributes to the neurobiology of affective disorders. This article is part of the Special Issue on 'Fear, anxiety and PTSD'.
Collapse
Affiliation(s)
- Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
12
|
Graham BM. The impact of hormonal contraceptives on anxiety treatments: From preclinical models to clinical settings. Front Neuroendocrinol 2022; 67:101030. [PMID: 35995079 DOI: 10.1016/j.yfrne.2022.101030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Exposure therapy is a central component of the first-line treatment for anxiety disorders, a common mental health condition that is twice as prevalent in women relative to men. A key underlying mechanism of exposure therapy is fear extinction, which is an active learning process supported by a neural circuitry that is highly regulated by ovarian hormones. This review synthesises research examining the impact of hormonal contraceptives on laboratory fear extinction tasks in female rats and women, and on exposure therapy in women with anxiety disorders. The evidence indicates that hormonal contraceptives have a detrimental impact on fear extinction and exposure therapy that is consistent across species, and from laboratory to clinical settings. Candidate pathways by which hormonal contraceptives impede fear extinction and exposure therapy include suppression of endogenous ovarian hormones and glucocorticoids, and downregulation of signalling pathways that support extinction learning. Key areas of focus for future research are discussed.
Collapse
Affiliation(s)
- Bronwyn M Graham
- School of Psychology, The University of New South Wales Australia, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Seligowski AV, Webber TK, Marvar PJ, Ressler KJ, Philip NS. Involvement of the brain-heart axis in the link between PTSD and cardiovascular disease. Depress Anxiety 2022; 39:663-674. [PMID: 35708302 PMCID: PMC9588548 DOI: 10.1002/da.23271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) has long been associated with a heightened risk of cardiovascular disease (CVD). A number of mechanisms have been implicated to underlie this brain-heart axis relationship, such as altered functioning of the autonomic nervous system and increased systemic inflammation. While neural alterations have repeatedly been observed in PTSD, they are rarely considered in the PTSD-CVD link. The brain-heart axis is a pathway connecting frontal and limbic brain regions to the brainstem and periphery via the autonomic nervous system and it may be a promising model for understanding CVD risk in PTSD given its overlap with PTSD neural deficits. We first provide a summary of the primary mechanisms implicated in the association between PTSD and CVD. We then review the brain-heart axis and its relevance to PTSD, as well as findings from PTSD trials demonstrating that a number of PTSD treatments have effects on areas of the brain-heart axis. Finally, we discuss sex considerations in the PTSD-CVD link. A critical next step in this study is to determine if PTSD treatments that affect the brain-heart axis (e.g., brain stimulation that improves autonomic function) also reduce the risk of CVD.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | | | | | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, of Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
15
|
Angiotensin antagonist inhibits preferential negative memory encoding via decreasing hippocampus activation and its coupling with amygdala. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:970-978. [DOI: 10.1016/j.bpsc.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
|
16
|
Wu H, Sun Q, Yuan S, Wang J, Li F, Gao H, Chen X, Yang R, Xu J. AT1 Receptors: Their Actions from Hypertension to Cognitive Impairment. Cardiovasc Toxicol 2022; 22:311-325. [PMID: 35211833 PMCID: PMC8868040 DOI: 10.1007/s12012-022-09730-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Hypertension is one of the most prevalent cardiovascular disorders worldwide, affecting 1.13 billion people, or 14% of the global population. Hypertension is the single biggest risk factor for cerebrovascular dysfunction. According to the American Heart Association, high blood pressure (BP), especially in middle-aged individuals (~ 40 to 60 years old), is associated with an increased risk of dementia, later in life. Alzheimer’s disease and cerebrovascular disease are the two leading causes of dementia, accounting for around 80% of the total cases and usually combining mixed pathologies from both. Little is known regarding how hypertension affects cognitive function, so the impact of its treatment on cognitive impairment has been difficult to assess. The brain renin-angiotensin system (RAS) is essential for BP regulation and overactivity of this system has been established to precede the development and maintenance of hypertension. Angiotensin II (Ang-II), the main peptide within this system, induces vasoconstriction and impairs neuro-vascular coupling by acting on brain Ang-II type 1 receptors (AT1R). In this review, we systemically analyzed the association between RAS and biological mechanisms of cognitive impairment, from the perspective of AT1R located in the central nervous system. Additionally, the possible contribution of brain AT1R to global cognition decline in COVID-19 cases will be discussed as well.
Collapse
Affiliation(s)
- Hanxue Wu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Qi Sun
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shenglan Yuan
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Jiawei Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Fanni Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongli Gao
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rui Yang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
17
|
Kakehi R, Hori H, Yoshida F, Itoh M, Lin M, Niwa M, Narita M, Ino K, Imai R, Sasayama D, Kamo T, Kunugi H, Kim Y. Hypothalamic-pituitary-adrenal axis and renin-angiotensin-aldosterone system in adulthood PTSD and childhood maltreatment history. Front Psychiatry 2022; 13:967779. [PMID: 36699501 PMCID: PMC9869036 DOI: 10.3389/fpsyt.2022.967779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Accumulated evidence shows that psychological trauma and posttraumatic stress disorder (PTSD) are associated with dysfunction in the hypothalamic-pituitary-adrenal (HPA) axis. Besides the HPA axis hormones, recent evidence suggests that the renin-angiotensin-aldosterone (RAA) system and genetic factors may be involved in trauma/PTSD as well as in HPA axis regulation. This study attempted to better understand the HPA axis function in relation to PTSD and childhood maltreatment by simultaneously examining RAA system and genetic polymorphisms of candidate genes. Here we studied 69 civilian women with PTSD and 107 healthy control women without DSM-IV-based traumatic experience. Childhood maltreatment history was assessed with the Childhood Trauma Questionnaire. PTSD severity was assessed with the Posttraumatic Diagnostic Scale. Functional disability was assessed with the Sheehan Disability Scale. HPA axis was examined by measuring blood levels of cortisol, adrenocorticotropic hormone, and dehydroepiandrosterone-sulphate (DHEA-S). RAA system was examined by measuring blood renin and aldosterone levels. The FKBP5 rs1360780 and CACNA1C rs1006737 polymorphisms were genotyped. No significant differences were seen between patients and controls in any of the five hormone levels. DHEA-S levels were significantly negatively correlated with overall PTSD severity (p = 0.003) and functional disability (p = 0.008). A two-way analysis of variance with diagnostic groups and genotypes as fixed factors revealed that patients with the rs1006737 A-allele had significantly lower DHEA-S levels than patients with the GG genotype (p = 0.002) and controls with the A-allele (p = 0.006). Childhood maltreatment history was not significantly correlated with any of the five hormone levels. These results were generally unchanged after controlling for the potentially confounding effect of age, depression, and anxiety. Our findings suggest that lower DHEA-S levels could indicate more severe subtype of PTSD, the association of which might be partly modified by the CACNA1C polymorphism.
Collapse
Affiliation(s)
- Ryoko Kakehi
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Nursing, Wayō Women's University, Chiba, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Madoka Niwa
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Megumi Narita
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Keiko Ino
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Risa Imai
- Risa Irinaka Mental Clinic, Nagoya, Japan
| | - Daimei Sasayama
- Department of Psychiatry, Shinshu University School of Medicine, Nagano, Japan
| | - Toshiko Kamo
- Wakamatsu-cho Mental and Skin Clinic, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| |
Collapse
|
18
|
Yang F, Zhao YJ, Chen SJ, Li YR, Yang PY, Qi JY, Wang XS, Wang M, Li XB, Feng B, Wu YM, Liu SB, Zhang K. Disrupting Cannabinoid Receptor Interacting Protein 1 Rescues Cognitive Flexibility in Long-Term Estrogen-Deprived Female Mice. Brain Res Bull 2022; 181:77-86. [DOI: 10.1016/j.brainresbull.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/02/2022]
|
19
|
Lehner M, Skórzewska A, Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development-The Role of Neuropeptides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:314. [PMID: 35010574 PMCID: PMC8750761 DOI: 10.3390/ijerph19010314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by re-experiencing a traumatic event, avoidance, negative alterations in cognitions and mood, hyperarousal, and severe functional impairment. Women have a two times higher risk of developing PTSD than men. The neurobiological basis for the sex-specific predisposition to PTSD might be related to differences in the functions of stress-responsive systems due to the interaction between gonadal hormones and stress peptides such as corticotropin-releasing factor (CRF), orexin, oxytocin, and neuropeptide Y. Additionally, in phases where estrogens levels are low, the risk of developing or exacerbating PTSD is higher. Most studies have revealed several essential sex differences in CRF function. They include genetic factors, e.g., the CRF promoter contains estrogen response elements. Importantly, sex-related differences are responsible for different predispositions to PTSD and diverse treatment responses. Fear extinction (the process responsible for the effectiveness of behavioral therapy for PTSD) in women during periods of high endogenous estradiol levels (the primary form of estrogens) is reportedly more effective than in periods of low endogenous estradiol. In this review, we present the roles of selected neuropeptides in the sex-related predisposition to PTSD development.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Aleksandra Wisłowska-Stanek
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
20
|
Stein MB, Jain S, Simon NM, West JC, Marvar PJ, Bui E, He F, Benedek DM, Cassano P, Griffith JL, Howlett J, Malgaroli M, Melaragno A, Seligowski AV, Shu IW, Song S, Szuhany K, Taylor CT, Ressler KJ. Randomized, Placebo-Controlled Trial of the Angiotensin Receptor Antagonist Losartan for Posttraumatic Stress Disorder. Biol Psychiatry 2021; 90:473-481. [PMID: 34275593 DOI: 10.1016/j.biopsych.2021.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Evidence-based pharmacological treatments for posttraumatic stress disorder (PTSD) are few and of limited efficacy. Previous work suggests that angiotensin type 1 receptor inhibition facilitates fear inhibition and extinction, important for recovery from PTSD. This study tests the efficacy of the angiotensin type 1 receptor antagonist losartan, an antihypertensive drug, repurposed for the treatment of PTSD. METHODS A randomized controlled trial was conducted for 10 weeks in 149 men and women meeting DSM-5 PTSD criteria. Losartan (vs. placebo) was flexibly titrated from 25 to 100 mg/day by week 6 and held at highest tolerated dose until week 10. Primary outcome was the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) change score at 10 weeks from baseline. A key secondary outcome was change in CAPS-5 associated with a single nucleotide polymorphism of the ACE gene. Additional secondary outcomes included changes in the PTSD Checklist for DSM-5 and the Patient Health Questionnaire-9, and proportion of responders with a Clinical Global Impressions-Improvement scale of "much improved" or "very much improved." RESULTS Both groups had robust improvement in PTSD symptoms, but there was no significant difference on the primary end point, CAPS-5 measured as week 10 change from baseline, between losartan and placebo (mean change difference, 0.9, 95% confidence interval, -3.2 to 5.0). There was no significant difference in the proportion of Clinical Global Impressions-Improvement scale responders for losartan (58.6%) versus placebo (57.9%), no significant differences in changes in PTSD Checklist for DSM-5 or Patient Health Questionnaire-9, and no association between ACE genotype and CAPS-5 improvement on losartan. CONCLUSIONS At these doses and durations, there was no significant benefit of losartan compared with placebo for the treatment of PTSD. We discuss implications for failure to determine the benefit of a repurposed drug with strong a priori expectations of success based on preclinical and epidemiological data.
Collapse
Affiliation(s)
- Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| | - Sonia Jain
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - Naomi M Simon
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - James C West
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Feng He
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - David M Benedek
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Jonathan Howlett
- Department of Psychiatry, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Matteo Malgaroli
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - Andrew Melaragno
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Antonia V Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts
| | - I-Wei Shu
- Department of Psychiatry, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Suzan Song
- George Washington University, Washington, DC
| | - Kristin Szuhany
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - Charles T Taylor
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
21
|
Failure of Losartan in a Clinical Trial for Posttraumatic Stress Disorder: Lack of Efficacy or Spotlight on the Power of Placebo? Biol Psychiatry 2021; 90:432-433. [PMID: 34503672 DOI: 10.1016/j.biopsych.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
|
22
|
Mehranfard D, Linares A, Chabbra A, Campos G, de Souza AMA, Ji H, West C, Sandberg K, Speth RC. Preliminary study of ovariectomy and chronic losartan-induced alterations in brain AT 1 receptors. Brain Res 2021; 1766:147520. [PMID: 33991491 DOI: 10.1016/j.brainres.2021.147520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022]
Abstract
Women who undergo oophorectomy prior to the age of natural menopause have a higher risk of neurological and psychological impairment. Treatment with the angiotensin receptor blocker (ARB) losartan for 10 weeks following ovariectomy of Long-Evans rats at 3 months of age reduced the ovariectomy-induced cognitive decrements. Following completion of the behavioral experiments, (Campos et al., 2019), the brains were harvested for preliminary receptor autoradiographic studies of AT1 receptor (AT1R) binding in selected brain regions using quantitative densitometric analysis of autoradiograms of 125I-sarcosine1, isoleucine8 angiotensin II binding. Four of the brain regions (amygdala, ventral subiculum, piriform cortex, and cingulate cortex) are associated with cognitive and emotional behavior while one (lateral hypothalamus) is associated with homeostasis. The density of AT1R varied by region: ventral subiculum > amygdala and cingulate cortex, and piriform cortex > cingulate cortex. Losartan treatment decreased AT1R binding in the ventral subiculum of sham and ovariectomized rats by 41.6%, and 46% in the piriform cortex of the sham rats, but tended to increase AT1R binding in the piriform cortex and cingulate cortex 77% and 107%, respectively, in the ovariectomized rats. AT1R binding did not differ significantly between intact male and sham-vehicle female rats among surveyed brain regions. These results suggest that losartan-induced changes in brain AT1R expression may contribute to the reduced anxiety-like behavior and memory impairments seen in ovariectomized rats, but replication of these observations will be needed to determine the extent to which brain AT1R changes mediate the adverse behavioral effects of ovariectomy.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Andrea Linares
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Alesa Chabbra
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Glenda Campos
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Aline M A de Souza
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC, United States
| | - Hong Ji
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC, United States
| | - Crystal West
- Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Kathryn Sandberg
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States; Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, United States.
| |
Collapse
|
23
|
Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. J Neurosci 2021; 41:901-910. [PMID: 33472824 DOI: 10.1523/jneurosci.1647-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.
Collapse
|
24
|
Swiercz AP, Iyer L, Yu Z, Edwards A, Prashant NM, Nguyen BN, Horvath A, Marvar PJ. Evaluation of an angiotensin Type 1 receptor blocker on the reconsolidation of fear memory. Transl Psychiatry 2020; 10:363. [PMID: 33110066 PMCID: PMC7591922 DOI: 10.1038/s41398-020-01043-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Inhibition of the angiotensin type 1 receptor (AT1R) has been shown to decrease fear responses in both humans and rodents. These effects are attributed to modulation of extinction learning, however the contribution of AT1R to alternative memory processes remains unclear. Using classic Pavlovian conditioning combined with radiotelemetry and whole-genome RNA sequencing, we evaluated the effects of the AT1R antagonist losartan on fear memory reconsolidation. Following the retrieval of conditioned auditory fear memory, animals were given a single intraperitoneal injection of losartan or saline. In response to the conditioned stimulus (CS), losartan-treated animals exhibited significantly less freezing at 24 h and 1 week; an effect that was dependent upon memory reactivation and independent of conditioned cardiovascular reactivity. Using an unbiased whole-genome RNA sequencing approach, transcriptomic analysis of the basolateral amygdala (BLA) identified losartan-dependent differences in gene expression during the reconsolidation phase. These findings demonstrate that post-retrieval losartan modifies behavioral and transcriptomic markers of conditioned fear memory, supporting an important regulatory role for this receptor in reconsolidation and as a potential pharmacotherapeutic target for maladaptive fear disorders such as PTSD.
Collapse
Affiliation(s)
- Adam P. Swiercz
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Laxmi Iyer
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Zhe Yu
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Allison Edwards
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - N. M. Prashant
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Bryan N. Nguyen
- grid.253615.60000 0004 1936 9510Computational Biology Institute, George Washington University, Washington, DC 20052 USA
| | - Anelia Horvath
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Paul J. Marvar
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA ,grid.253615.60000 0004 1936 9510Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC 20052 USA
| |
Collapse
|
25
|
Day HLL, Stevenson CW. The neurobiological basis of sex differences in learned fear and its inhibition. Eur J Neurosci 2020; 52:2466-2486. [PMID: 31631413 PMCID: PMC7496972 DOI: 10.1111/ejn.14602] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Learning that certain cues or environments predict threat enhances survival by promoting appropriate fear and the resulting defensive responses. Adapting to changing stimulus contingencies by learning that such cues no longer predict threat, or distinguishing between these threat-related and other innocuous stimuli, also enhances survival by limiting fear responding in an appropriate manner to conserve resources. Importantly, a failure to inhibit fear in response to harmless stimuli is a feature of certain anxiety and trauma-related disorders, which are also associated with dysfunction of the neural circuitry underlying learned fear and its inhibition. Interestingly, these disorders are up to twice as common in women, compared to men. Despite this striking sex difference in disease prevalence, the neurobiological factors involved remain poorly understood. This is due in part to the majority of relevant preclinical studies having neglected to include female subjects alongside males, which has greatly hindered progress in this field. However, more recent studies have begun to redress this imbalance and emerging evidence indicates that there are significant sex differences in the inhibition of learned fear and associated neural circuit function. This paper provides a narrative review on sex differences in learned fear and its inhibition through extinction and discrimination, along with the key gonadal hormone and brain mechanisms involved. Understanding the endocrine and neural basis of sex differences in learned fear inhibition may lead to novel insights on the neurobiological mechanisms underlying the enhanced vulnerability to develop anxiety-related disorders that are observed in women.
Collapse
Affiliation(s)
- Harriet L. L. Day
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Present address:
RenaSci LtdBioCity, Pennyfoot StreetNottinghamNG1 1GFUK
| | | |
Collapse
|
26
|
Tang S, Graham BM. Hormonal, reproductive, and behavioural predictors of fear extinction recall in female rats. Horm Behav 2020; 121:104693. [PMID: 31981581 DOI: 10.1016/j.yhbeh.2020.104693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 01/09/2023]
Abstract
The prevalence, severity and chronicity of anxiety disorders is significantly higher in women compared to men. Exposure therapy, the gold-standard treatment for anxiety disorders, can be modelled in the laboratory through Pavlovian fear extinction. Understanding the factors that influence fear extinction in females may aid in optimising the treatment of anxiety disorders in this population. The aim of the current study was therefore to explore the hormonal, reproductive and behavioural predictors of fear extinction recall in female rats by analysing data from nine published experiments that examined fear extinction in female rats. A hierarchical multiple regression analysis revealed that estrous cycle effects on extinction recall may be modulated by reproductive status. While the estrous phase in which nulliparous (virgin) rats undergo extinction training was predictive of extinction recall, no relationship between estrous phase and extinction recall was found among primiparous (one prior reproductive experience) rats. Moreover, estrous cycle predicted the relationship between early extinction and extinction recall in nulliparous rats, but not primiparous rats. Although reproductive status did not predict extinction recall, primiparous rats exhibited poor extinction recall relative to nulliparous rats extinguished during proestrus, and better extinction recall than nulliparous rats extinguished during metestrus. A faster rate of extinction, and lower fear responses at the end of extinction training were predictive of lower levels of CS-elicited fear during extinction recall in both nulliparous and primiparous female rats, while the length of extinction training was not predictive of extinction recall. The potential theoretical and clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Samantha Tang
- School of Psychology, UNSW Sydney, NSW 2052, Australia.
| | | |
Collapse
|
27
|
Hammoud MZ, Foa EB, Milad MR. Oestradiol, threat conditioning and extinction, post-traumatic stress disorder, and prolonged exposure therapy: A common link. J Neuroendocrinol 2020; 32:e12800. [PMID: 31595559 DOI: 10.1111/jne.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The accumulating evidence regarding the impact of estradiol on learning and memory synergized studies to examine its influence on enhancing animal's ability to quell fear and anxiety. In this review, we first provide a foundational platform regarding the impact of oestradiol on cellular mechanisms of learning and memory and we review recent advances from rodent and human data showing that oestrogen enhances extinction learning across species. We then propose clinical application to these data. We discuss the potential role of oestradiol variance on the aetiology, maintenance and treatment for post-traumatic stress disorder. Specifically, we argue that the use of oestradiol as an adjunct to prolonged exposure (PE) therapy for PTSD may provide a new treatment approach for enhancing the efficacy of PE in women with PTSD. This could advance our understanding of the mechanisms of PTSD and help tailor sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Mira Z Hammoud
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Edna B Foa
- Department of Psychiatry, Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Angiotensin II Type 2 Receptor-Expressing Neurons in the Central Amygdala Influence Fear-Related Behavior. Biol Psychiatry 2019; 86:899-909. [PMID: 31420088 DOI: 10.1016/j.biopsych.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The renin-angiotensin system has been implicated in posttraumatic stress disorder; however, the mechanisms responsible for this connection and the therapeutic potential of targeting the renin-angiotensin system in posttraumatic stress disorder remain unknown. Using an angiotensin receptor bacterial artificial chromosome (BAC) and enhanced green fluorescent protein (eGFP) reporter mouse, combined with neuroanatomical, pharmacological, and behavioral approaches, we examined the role of angiotensin II type 2 receptor (AT2R) in fear-related behavior. METHODS Dual immunohistochemistry with retrograde labeling was used to characterize AT2R-eGFP+ cells in the amygdala of the AT2R-eGFP-BAC reporter mouse. Pavlovian fear conditioning and behavioral pharmacological analyses were used to demonstrate the effects of AT2R activation on fear memory in male C57BL/6 mice. RESULTS AT2R-eGFP+ neurons in the amygdala were predominantly expressed in the medial amygdala and the medial division of the central amygdala (CeM), with little AT2R-eGFP expression in the basolateral amygdala or lateral division of the central amygdala. Characterization of AT2R-eGFP+ neurons in the CeM demonstrated distinct localization to gamma-aminobutyric acidergic projection neurons. Mice receiving acute intra-central amygdala injections of the selective AT2R agonist compound 21 prior to tests for cued or contextual fear expression displayed less freezing. Retrograde labeling of AT2R-eGFP+ neurons projecting to the periaqueductal gray revealed AT2R-eGFP+ neuronal projections from the CeM to the periaqueductal gray, a key brain structure mediating fear-related freezing. CONCLUSIONS These findings suggest that CeM AT2R-expressing neurons can modulate central amygdala outputs that play a role in fear expression, providing new evidence for a novel angiotensinergic circuit in the regulation of fear.
Collapse
|
29
|
Zhou F, Geng Y, Xin F, Li J, Feng P, Liu C, Zhao W, Feng T, Guastella AJ, Ebstein RP, Kendrick KM, Becker B. Human Extinction Learning Is Accelerated by an Angiotensin Antagonist via Ventromedial Prefrontal Cortex and Its Connections With Basolateral Amygdala. Biol Psychiatry 2019; 86:910-920. [PMID: 31471037 DOI: 10.1016/j.biopsych.2019.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deficient extinction learning and threat adaptation in the ventromedial prefrontal cortex (vmPFC)-amygdala circuitry strongly impede the efficacy of exposure-based interventions in anxiety disorders. Recent animal models suggest a regulatory role of the renin-angiotensin system in both these processes. Against this background, the present randomized placebo-controlled pharmacologic functional magnetic resonance imaging experiment aimed at determining the extinction enhancing potential of the angiotensin II type 1 receptor antagonist losartan (LT) in humans. METHODS Seventy healthy male subjects underwent Pavlovian threat conditioning and received single-dose LT (50 mg) or placebo administration before extinction. Psychophysiological threat reactivity (skin conductance response) and neural activity during extinction served as primary outcomes. Psychophysiological interaction, voxelwise mediation, and novel multivariate pattern classification analyses were used to determine the underlying neural mechanisms. RESULTS LT significantly accelerated the decline of the psychophysiological threat response during within-session extinction learning. On the neural level, the acceleration was accompanied and critically mediated by threat-specific enhancement of vmPFC activation. Furthermore, LT enhanced vmPFC-basolateral amygdala coupling and attenuated the neural threat expression, particularly in the vmPFC, during early extinction. CONCLUSIONS Overall the results indicate that LT facilitates within-session threat memory extinction by augmenting threat-specific encoding in the vmPFC and its regulatory control over the amygdala. The findings document a pivotal role of angiotensin regulation of extinction learning in humans and suggest that adjunct LT administration has the potential to facilitate the efficacy of exposure-based interventions in anxiety disorders.
Collapse
Affiliation(s)
- Feng Zhou
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yayuan Geng
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Xin
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Pan Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Congcong Liu
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Adam J Guastella
- Autism Clinic for Translational Research, Brain and Mind Centre, Central Clinical School, Faculty of Medicine, University of Sydney, Camperdown, Australia; Youth Mental Health Unit, Brain and Mind Centre, Central Clinical School, Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - Richard P Ebstein
- China Center for Behavior Economics and Finance, Southwestern University of Finance and Economics, Chengdu, China
| | - Keith M Kendrick
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
30
|
Bui E, King F, Melaragno A. Pharmacotherapy of anxiety disorders in the 21st century: A call for novel approaches. Gen Psychiatr 2019; 32:e100136. [PMID: 31922087 PMCID: PMC6936967 DOI: 10.1136/gpsych-2019-100136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
While limited advances have occurred in the past 30 years in the pharmacological management of anxiety and stress-related disorders, novel molecular pathways both within and without the monoamine systems are currently under investigation and offer promising new avenues for more effective future treatments. Enhancing psychotherapy approaches with pharmacological compounds offers the potential to not only transform the standard of care of these conditions, but more broadly would introduce a paradigm shift in the way medications and their role in psychiatric care are conceptualised. Although further human trials and more translational research are sorely needed, continuing to pursue innovative mechanisms and treatments is hoped to yield substantial results in the coming decades and a departure from the reliance on chemical agents of the 20th century.
Collapse
Affiliation(s)
- Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Franklin King
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Andrew Melaragno
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
31
|
Renin-angiotensin system in osteoarthritis: A new potential therapy. Int Immunopharmacol 2019; 75:105796. [PMID: 31408841 DOI: 10.1016/j.intimp.2019.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is one of the most common chronic joint diseases. However, the mechanism remains unclear. The traditional renin-angiotensin system (RAS) is an important system for regulating homeostasis and controlling balance. In recent years, RAS-related components have played an important role in the occurrence of OA. The purpose of this review is to summarize the research results of RAS-related components that are associated with OA. This study systematically searched e-medical databases such as PubMed, Embase, Medline, and Web of Science. The search targets included English publications describing the effects of RAS-related components in OA, including the role of renin, angiotensin-converting enzyme (ACE), Angiotensin II (Ang II), and angiotensin receptor (ATR). Additionally, this study summarizes the potential pathways for RAS-related components to intervene in OA. This study found that RAS-related components including renin, ACE, Ang II, AT1R and AT2R are involved in inflammation and chondrocyte hypertrophy in OA. RAS is involved in signaling pathways including the NF-κB, JNK, VEGFR/Tie-2, and the Axna2/Axna2R axis ones, which may be potential targets for the treatment of OA. Although there are few studies on RAS in the field of OA, the pathogenic effect of RAS-related components is still an important topic in OA treatment, and great progress may be made in this aspect in future studies.
Collapse
|