1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Li N, Li Y. Lysophosphatidic Acid (LPA) and Its Receptors in Mood Regulation: A Systematic Review of the Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:7440. [PMID: 39000547 PMCID: PMC11242315 DOI: 10.3390/ijms25137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Mood disorders affect over 300 million individuals worldwide, often characterized by their chronic and refractory nature, posing significant threats to patient life. There has been a notable increase in mood disorders among American adolescents and young adults, with a rising number of suicide attempts and fatalities, highlighting a growing association between mood disorders and suicidal outcomes. Dysregulation within the neuroimmune-endocrine system is now recognized as one of the fundamental biological mechanisms underlying mood and mood disorders. Lysophosphatidic acid (LPA), a novel mediator of mood behavior, induces anxiety-like and depression-like phenotypes through its receptors LPA1 and LPA5, regulating synaptic neurotransmission and plasticity. Consequently, LPA has garnered substantial interest in the study of mood regulation. This study aimed to elucidate the molecular mechanisms of lysophosphatidic acid and its receptors, along with LPA receptor ligands, in mood regulation and to explore their potential therapeutic efficacy in treating mood disorders. A comprehensive literature search was conducted using the PubMed and Web of Science databases, identifying 208 articles through keyword searches up to June 2024. After excluding duplicates, irrelevant publications, and those restricted by open access limitations, 21 scientific papers were included in this review. The findings indicate that LPA/LPA receptor modulation could be beneficial in treating mood disorders, suggesting that pharmacological agents or gintonin, an extract from ginseng, may serve as effective therapeutic strategies. This study opens new avenues for future research into how lysophosphatidic acid and its receptors, as well as lysophosphatidic acid receptor ligands, influence emotional behavior in animals and humans.
Collapse
Affiliation(s)
- Nan Li
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Yanchun Li
- China Institute of Sports and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
4
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
5
|
Wang S, Zhang B, Mauck J, Loor JJ, Fan W, Tian Y, Yang T, Chang Y, Xie M, Aernouts B, Yang W, Xu C. Diacylglycerol O-acyltransferase (DGAT) isoforms play a role in peridroplet mitochondrial fatty acid metabolism in bovine liver. J Dairy Sci 2024:S0022-0302(24)00897-X. [PMID: 38851581 DOI: 10.3168/jds.2024-24738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
Hepatocellular lipid accumulation characterizes fatty liver in dairy cows. Lipid droplets (LD), specialized organelles that store lipids and maintain cellular lipid homeostasis, are responsible for the ectopic storage of lipids associated with several metabolic disorders. In recent years, non-ruminant studies have reported that LD-mitochondria interactions play an important role in lipid metabolism. Due to the role of diacylglycerol acyltransferase isoforms (DGAT1 and DGAT2) in LD synthesis, we explored mechanisms of mitochondrial fatty acid transport in ketotic cows using liver biopsies and isolated primary hepatocytes. Compared with healthy cows, cows with fatty liver had massive accumulation of LD and high protein expression of the triglyceride (TAG) synthesis-related enzymes DGAT1 and DGAT2, LD synthesis-related proteins perilipin 2 (PLIN2) and perilipin 5 (PLIN5), and the mitochondrial fragmentation-related proteins dynamin-related protein 1 (DRP1) and fission 1 (FIS1). In contrast, factors associated with fatty acid oxidation, mitochondrial fusion and mitochondrial electron transport chain complex were lower compared with those in the healthy cows. In addition, transmission electron microscopy revealed significant contacts between LD-mitochondria in liver tissue from cows with fatty liver. Compared with isolated cytoplasmic mitochondria, expression of carnitine palmitoyl transferase 1A (CPT1A) and DRP1 was lower, but mitofusin 2 (MFN2) and mitochondrial electron transport chain complex was greater in isolated peridroplet mitochondria from hepatic tissue of cows with fatty liver. In vitro data indicated that exogenous free fatty acids (FFA) induced hepatocyte LD synthesis and mitochondrial dynamics consistent with in vivo results. Furthermore, DGAT2 inhibitor treatment attenuated the FFA-induced upregulation of PLIN2 and PLIN5 and rescued the impairment of mitochondrial dynamics. Inhibition of DGAT2 also restored mitochondrial membrane potential and reduced hepatocyte reactive oxygen species production. The present in vivo and in vitro results indicated there are functional differences among different types of mitochondria in the liver tissue of dairy cows with ketosis. Activity of DGAT2 may play a key role in maintaining liver mitochondrial function and lipid homeostasis in dairy cows during the transition period.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - John Mauck
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Wenwen Fan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Tian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tianjiao Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yaqi Chang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Xie
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ben Aernouts
- KU Leuven, Department of Biosystems, Biosystems Technology Cluster, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Wei Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
6
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
7
|
Michno W, Bowman A, Jha D, Minta K, Ge J, Koutarapu S, Zetterberg H, Blennow K, Lashley T, Heeren RMA, Hanrieder J. Spatial Neurolipidomics at the Single Amyloid-β Plaque Level in Postmortem Human Alzheimer's Disease Brain. ACS Chem Neurosci 2024; 15:877-888. [PMID: 38299453 PMCID: PMC10885149 DOI: 10.1021/acschemneuro.4c00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Lipid dysregulations have been critically implicated in Alzheimer's disease (AD) pathology. Chemical analysis of amyloid-β (Aβ) plaque pathology in transgenic AD mouse models has demonstrated alterations in the microenvironment in the direct proximity of Aβ plaque pathology. In mouse studies, differences in lipid patterns linked to structural polymorphism among Aβ pathology, such as diffuse, immature, and mature fibrillary aggregates, have also been reported. To date, no comprehensive analysis of neuronal lipid microenvironment changes in human AD tissue has been performed. Here, for the first time, we leverage matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) through a high-speed and spatial resolution commercial time-of-light instrument, as well as a high-mass-resolution in-house-developed orbitrap system to characterize the lipid microenvironment in postmortem human brain tissue from AD patients carrying Presenilin 1 mutations (PSEN1) that lead to familial forms of AD (fAD). Interrogation of the spatially resolved MSI data on a single Aβ plaque allowed us to verify nearly 40 sphingolipid and phospholipid species from diverse subclasses being enriched and depleted, in relation to the Aβ deposits. This included monosialo-gangliosides (GM), ceramide monohexosides (HexCer), ceramide-1-phosphates (CerP), ceramide phosphoethanolamine conjugates (PE-Cer), sulfatides (ST), as well as phosphatidylinositols (PI), phosphatidylethanolamines (PE), and phosphatidic acid (PA) species (including Lyso-forms). Indeed, many of the sphingolipid species overlap with the species previously seen in transgenic AD mouse models. Interestingly, in comparison to the animal studies, we observed an increased level of localization of PE and PI species containing arachidonic acid (AA). These findings are highly relevant, demonstrating for the first time Aβ plaque pathology-related alteration in the lipid microenvironment in humans. They provide a basis for the development of potential lipid biomarkers for AD characterization and insight into human-specific molecular pathway alterations.
Collapse
Affiliation(s)
- Wojciech Michno
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Department
of Neuroscience, Physiology and Pharmacology, University College London, London WC1E6BT, United
Kingdom
- Department
of Public Health and Caring Sciences, Uppsala
University, Uppsala 75237, Sweden
- Science
for Life Laboratory (SciLife), Uppsala University, Uppsala 75237, Sweden
| | - Andrew Bowman
- Maastricht
MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Durga Jha
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Karolina Minta
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Srinivas Koutarapu
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal 43180, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
- UK
Dementia Research Institute at UCL, London WC1E 6BT, United Kingdom
- Hong
Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 999077, China
- Wisconsin
Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University
of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal 43180, Sweden
- Paris Brain
Institute, ICM, Pitié-Salpêtrière
Hospital, Sorbonne University, Paris 75005, France
- Neurodegenerative
Disorder Research Center, Division of Life Sciences
and Medicine, Department of Neurology, Institute on Aging and Brain
Disorders, University of Science and Technology
of China and First Affiliated Hospital of USTC, Hefei 230001, P. R. China
| | - Tammaryn Lashley
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
- Queen Square Brain Bank for Neurological
Disorders, Department of
Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 1PJ, United Kingdom
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal 43180, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
- Science for Life
Laboratory (SciLife), University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
8
|
Gadara D, Berka V, Spacil Z. High-Throughput Microbore LC-MS Lipidomics to Investigate APOE Phenotypes. Anal Chem 2024; 96:59-66. [PMID: 38113351 PMCID: PMC10782415 DOI: 10.1021/acs.analchem.3c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Microflow liquid chromatography interfaced with mass spectrometry (μLC-MS/MS) is increasingly applied for high-throughput profiling of biological samples and has been proven to have an acceptable trade-off between sensitivity and reproducibility. However, lipidomics applications are scarce. We optimized a μLC-MS/MS system utilizing a 1 mm inner diameter × 100 mm column coupled to a triple quadrupole mass spectrometer to establish a sensitive, high-throughput, and robust single-shot lipidomics workflow. Compared to conventional lipidomics methods, we achieve a ∼4-fold increase in response, facilitating quantification of 351 lipid species from a single iPSC-derived cerebral organoid during a 15 min LC-MS analysis. Consecutively, we injected 303 samples over ∼75 h to prove the robustness and reproducibility of the microflow separation. As a proof of concept, μLC-MS/MS analysis of Alzheimer's disease patient-derived iPSC cerebral organoid reveals differential lipid metabolism depending on APOE phenotype (E3/3 vs E4/4). Microflow separation proves to be an environmentally friendly and cost-effective method as it reduces the consumption of harmful solvents. Also, the data demonstrate robust, in-depth, high-throughput performance to enable routine clinical or biomedical applications.
Collapse
Affiliation(s)
- Darshak Gadara
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Vratislav Berka
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Zdenek Spacil
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
9
|
Nemergut M, Marques SM, Uhrik L, Vanova T, Nezvedova M, Gadara DC, Jha D, Tulis J, Novakova V, Planas-Iglesias J, Kunka A, Legrand A, Hribkova H, Pospisilova V, Sedmik J, Raska J, Prokop Z, Damborsky J, Bohaciakova D, Spacil Z, Hernychova L, Bednar D, Marek M. Domino-like effect of C112R mutation on ApoE4 aggregation and its reduction by Alzheimer's Disease drug candidate. Mol Neurodegener 2023; 18:38. [PMID: 37280636 DOI: 10.1186/s13024-023-00620-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Apolipoprotein E (ApoE) ε4 genotype is the most prevalent risk factor for late-onset Alzheimer's Disease (AD). Although ApoE4 differs from its non-pathological ApoE3 isoform only by the C112R mutation, the molecular mechanism of its proteinopathy is unknown. METHODS Here, we reveal the molecular mechanism of ApoE4 aggregation using a combination of experimental and computational techniques, including X-ray crystallography, site-directed mutagenesis, hydrogen-deuterium mass spectrometry (HDX-MS), static light scattering and molecular dynamics simulations. Treatment of ApoE ε3/ε3 and ε4/ε4 cerebral organoids with tramiprosate was used to compare the effect of tramiprosate on ApoE4 aggregation at the cellular level. RESULTS We found that C112R substitution in ApoE4 induces long-distance (> 15 Å) conformational changes leading to the formation of a V-shaped dimeric unit that is geometrically different and more aggregation-prone than the ApoE3 structure. AD drug candidate tramiprosate and its metabolite 3-sulfopropanoic acid induce ApoE3-like conformational behavior in ApoE4 and reduce its aggregation propensity. Analysis of ApoE ε4/ε4 cerebral organoids treated with tramiprosate revealed its effect on cholesteryl esters, the storage products of excess cholesterol. CONCLUSIONS Our results connect the ApoE4 structure with its aggregation propensity, providing a new druggable target for neurodegeneration and ageing.
Collapse
Affiliation(s)
- Michal Nemergut
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Kosice, Trieda SNP 1, Kosice, 04011, Slovakia
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Tereza Vanova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | | | - Durga Jha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Tulis
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Novakova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Anthony Legrand
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Pospisilova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiri Sedmik
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Raska
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Dasa Bohaciakova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| |
Collapse
|
10
|
Zoicas I, Mühle C, Schumacher F, Kleuser B, Kornhuber J. Development of Comorbid Depression after Social Fear Conditioning in Mice and Its Effects on Brain Sphingolipid Metabolism. Cells 2023; 12:1355. [PMID: 37408189 DOI: 10.3390/cells12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Currently, there are no animal models for studying both specific social fear and social fear with comorbidities. Here, we investigated whether social fear conditioning (SFC), an animal model with face, predictive and construct validity for social anxiety disorder (SAD), leads to the development of comorbidities at a later stage over the course of the disease and how this affects the brain sphingolipid metabolism. SFC altered both the emotional behavior and the brain sphingolipid metabolism in a time-point-dependent manner. While social fear was not accompanied by changes in non-social anxiety-like and depressive-like behavior for at least two to three weeks, a comorbid depressive-like behavior developed five weeks after SFC. These different pathologies were accompanied by different alterations in the brain sphingolipid metabolism. Specific social fear was accompanied by increased activity of ceramidases in the ventral hippocampus and ventral mesencephalon and by small changes in sphingolipid levels in the dorsal hippocampus. Social fear with comorbid depression, however, altered the activity of sphingomyelinases and ceramidases as well as the sphingolipid levels and sphingolipid ratios in most of the investigated brain regions. This suggests that changes in the brain sphingolipid metabolism might be related to the short- and long-term pathophysiology of SAD.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
11
|
Leal AF, Suarez DA, Echeverri-Peña OY, Albarracín SL, Alméciga-Díaz CJ, Espejo-Mojica ÁJ. Sphingolipids and their role in health and disease in the central nervous system. Adv Biol Regul 2022; 85:100900. [PMID: 35870382 DOI: 10.1016/j.jbior.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
Abstract
Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Sonia Luz Albarracín
- Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| | - Ángela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| |
Collapse
|
12
|
Narzt MS, Kremslehner C, Golabi B, Nagelreiter IM, Malikovic J, Hussein AM, Plasenzotti R, Korz V, Lubec G, Gruber F, Lubec J. Molecular species of oxidized phospholipids in brain differentiate between learning- and memory impaired and unimpaired aged rats. Amino Acids 2022; 54:1311-1326. [PMID: 35817992 PMCID: PMC9372013 DOI: 10.1007/s00726-022-03183-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
| | | | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Roberto Plasenzotti
- Center for Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria.
| |
Collapse
|
13
|
Godoy-Corchuelo JM, Fernández-Beltrán LC, Ali Z, Gil-Moreno MJ, López-Carbonero JI, Guerrero-Sola A, Larrad-Sainz A, Matias-Guiu J, Matias-Guiu JA, Cunningham TJ, Corrochano S. Lipid Metabolic Alterations in the ALS-FTD Spectrum of Disorders. Biomedicines 2022; 10:1105. [PMID: 35625841 PMCID: PMC9138405 DOI: 10.3390/biomedicines10051105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the study of the relation between alterations in systemic lipid metabolism and neurodegenerative disorders, in particular in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). In ALS these alterations are well described and evident not only with the progression of the disease but also years before diagnosis. Still, there are some discrepancies in findings relating to the causal nature of lipid metabolic alterations, partly due to the great clinical heterogeneity in ALS. ALS presentation is within a disorder spectrum with Frontotemporal Dementia (FTD), and many patients present mixed forms of ALS and FTD, thus increasing the variability. Lipid metabolic and other systemic metabolic alterations have not been well studied in FTD, or in ALS-FTD mixed forms, as has been in pure ALS. With the recent development in lipidomics and the integration with other -omics platforms, there is now emerging data that not only facilitates the identification of biomarkers but also enables understanding of the underlying pathological mechanisms. Here, we reviewed the recent literature to compile lipid metabolic alterations in ALS, FTD, and intermediate mixed forms, with a view to appraising key commonalities or differences within the spectrum.
Collapse
Affiliation(s)
- Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Zeinab Ali
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
| | - María J. Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Juan I. López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Antonio Guerrero-Sola
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Angélica Larrad-Sainz
- Nutrition and Endocrinology Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Jordi A. Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Thomas J. Cunningham
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| |
Collapse
|
14
|
Miranda AM, Ashok A, Chan RB, Zhou B, Xu Y, McIntire LB, Area-Gomez E, Di Paolo G, Duff KE, Oliveira TG, Nuriel T. Effects of APOE4 allelic dosage on lipidomic signatures in the entorhinal cortex of aged mice. Transl Psychiatry 2022; 12:129. [PMID: 35351864 PMCID: PMC8964762 DOI: 10.1038/s41398-022-01881-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein E ε4 (APOE4) is the primary genetic risk factor for the late-onset form of Alzheimer's disease (AD). Although the reason for this association is not completely understood, researchers have uncovered numerous effects of APOE4 expression on AD-relevant brain processes, including amyloid beta (Aβ) accumulation, lipid metabolism, endosomal-lysosomal trafficking, and bioenergetics. In this study, we aimed to determine the effect of APOE4 allelic dosage on regional brain lipid composition in aged mice, as well as in cultured neurons. We performed a targeted lipidomic analysis on an AD-vulnerable brain region (entorhinal cortex; EC) and an AD-resistant brain region (primary visual cortex; PVC) from 14-15 month-old APOE3/3, APOE3/4, and APOE4/4 targeted replacement mice, as well as on neurons cultured with conditioned media from APOE3/3 or APOE4/4 astrocytes. Our results reveal that the EC possesses increased susceptibility to APOE4-associated lipid alterations compared to the PVC. In the EC, APOE4 expression showed a dominant effect in decreasing diacylglycerol (DAG) levels, and a semi-dominant, additive effect in the upregulation of multiple ceramide, glycosylated sphingolipid, and bis(monoacylglycerol)phosphate (BMP) species, lipids known to accumulate as a result of endosomal-lysosomal dysfunction. Neurons treated with conditioned media from APOE4/4 vs. APOE3/3 astrocytes showed similar alterations of DAG and BMP species to those observed in the mouse EC. Our results suggest that APOE4 expression differentially modulates regional neuronal lipid signatures, which may underlie the increased susceptibility of EC-localized neurons to AD pathology.
Collapse
Affiliation(s)
- André Miguel Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Neuroradiology Unit, Department of Imagiology, Centro Hospitalar Vila Nova Gaia/Espinho, 4434-502, Vila Nova Gaia, Portugal
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Robin Barry Chan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Bowen Zhou
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Yimeng Xu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Laura Beth McIntire
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Gilbert Di Paolo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Denali Therapeutics Inc., South San Francisco, CA, 94080, USA
| | - Karen E Duff
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- UK Dementia Research Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Department of Neuroradiology, Hospital de Braga, 4710-243, Braga, Portugal.
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
16
|
Wang QS, Yan K, Li KD, Gao LN, Wang X, Liu H, Zhang Z, Li K, Cui YL. Targeting hippocampal phospholipid and tryptophan metabolism for antidepressant-like effects of albiflorin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153735. [PMID: 34601221 DOI: 10.1016/j.phymed.2021.153735] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/31/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Current antidepressant therapy remains unsatisfactory due to its delayed clinical onset of action and the heterogeneity of depression. Targeting disturbed neurometabolic pathways could provide a novel therapeutic approach for the treatment of depression. Albiflorin is a phytomedicine isolated from the root of Peony (Paeonia albiflora Pall) with excellent clinical tolerance. Until now, the antidepressant-like activities of albiflorin in different subtypes of depression and its effects on neurometabolism are unknown. PURPOSE The objective of this study was to investigate the rapid antidepressant-like effects of albiflorin in three common animal models of depression and elucidate the pharmaco-metabolic mechanisms of its action using a multi-omics approach. RESULTS We found that albiflorin produces rapid antidepressant-like effects in chronic unpredictable mild stress (CUMS), olfactory bulbectomy (OBX), and lipopolysaccharide (LPS)-induced murine models of depression. Using a system-wide approach combining metabolomics, lipidomics, and transcriptomics, we showed that the therapeutic effects of albiflorin are highly associated with the rapid restoration of a set of common metabolic abnormities in the hippocampus across all three depression models, including phospholipid and tryptophan metabolism. Further mechanistic analysis revealed that albiflorin normalized the metabolic dysregulation in phospholipid metabolism by suppressing hippocampal cytosolic phospholipases A2 (cPLA2). Additionally, inhibition of cPLA2 overexpression by albiflorin corrects abnormal kynurenine pathway of tryptophan metabolism via the cPLA2-protein kinase B (Akt1)-indoleamine 2,3-dioxygenase 1(IDO1) regulatory loop and directs tryptophan catabolism towards more hippocampal serotonin biosynthesis. CONCLUSION Our study contributed to a better understanding of the homogeneity in the metabolic mechanisms of depression and established a proof-of-concept for rapid treatment of depression through targeting dysregulated neurometabolic pathways.
Collapse
Affiliation(s)
- Qiang-Song Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Kuo Yan
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kuang-Dai Li
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Li-Na Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zuoguang Zhang
- Beijing Wonner Biotech. Co. Ltd., Beijing, 101111, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego, San Diego, CA 92093, USA.
| | - Yuan-Lu Cui
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
17
|
Setayesh L, Ebrahimi R, Pooyan S, Yarizadeh H, Rashidbeygi E, Badrooj N, Imani H, Mirzaei K. The possible mediatory role of adipokines in the association between low carbohydrate diet and depressive symptoms among overweight and obese women. PLoS One 2021; 16:e0257275. [PMID: 34516574 PMCID: PMC8437289 DOI: 10.1371/journal.pone.0257275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previous studies showed the possible association between obesity, dietary pattern, and depressive symptoms. Due to the lack of enough data to confirm the association of obesity and depression in the Middle East, here, we aimed to explore the possible mediatory role of adipokines Galectin-3, transforming growth factor-beta (TGF-β), and endothelial plasminogen activator inhibitor (PAI-1) in the association between low carbohydrate diet (LCD) and depressive symptoms. METHODS A total of 256 women aged 17-56 years old were grouped based on their LCD score. Depression anxiety stress scales-21 (DASS-21) self-administered questionnaire was used to evaluate the three negative emotional states of stress, depressive symptoms, and anxiety. Body composition and dietary intake were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of Galectin-3, TGF-β, and PAI-1. RESULTS No significant difference was observed regarding Galectin-3, TGF-β, and PAI-1 levels between the groups with dissimilar adherence to LCD or the groups with different levels of depressive symptoms (P>0.05). However, there was a negative association between LCD score as a covariant and depressive symptoms as an independent variable (P = 0.02) and remarkably, a regression model linear analysis using Galectin-3, TGF-β, and PAI-1 as confounding variables indicated the mediatory role of these adipokines in this association (P>0.05). In other words, adipokines eliminated the significance of the relationship between adherence to LCD and depressive symptoms. CONCLUSION It seems that higher adherence to LCD is probably associated with a lower prevalence of depressive symptoms in obese adults through the mediatory role of adipokines.
Collapse
Affiliation(s)
- Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Pooyan
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Habib Yarizadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Elaheh Rashidbeygi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Negin Badrooj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
18
|
First insights into the honey bee (Apis mellifera) brain lipidome and its neonicotinoid-induced alterations associated with reduced self-grooming behavior. J Adv Res 2021; 37:75-89. [PMID: 35499051 PMCID: PMC9039751 DOI: 10.1016/j.jare.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
First bee brain characterization shows distinctive low plasmalogens and high alkyl-ether levels. PC 20:3e/15:0, PC 16:0/18:3, PA 18:0/24:1 increased by the highest dose of clothianidin. Levels of CL 18:3/18:1/14:0/22:6, TG 6:0/11:2/18:1 and eLPE 18:0e were linked to intense grooming. Membrane lipids, like PC 18:1e/20:3, ePC 8:1e/20:3, and pPE 16:1p/24:1 were up-regulated by clothianidin. Clothianidin exposure up-regulated genes linked to GPI-anchor biosynthesis pathway. Lipids can be used as biomarkers to assess the effect of neurotoxins on behaviors.
Introduction Honey bees (Apis mellifera) play key roles in food production performing complex behaviors, like self-grooming to remove parasites. However, the lipids of their central nervous system have not been examined, even though they likely play a crucial role in the performance of cognitive process to perform intricate behaviors. Lipidomics has greatly advanced our understanding of neuropathologies in mammals and could provide the same for honey bees. Objectives The objectives of this study were to characterize the brain lipidome of adult honey bees and to assess the effect of clothianidin (a neurotoxic insecticide) on the brain lipid composition, gene expression, and performance of self-grooming behavior under controlled conditions (cage experiments). Methods After seven days of exposure to oral sublethal doses of clothianidin, the bees were assessed for self-grooming behavior; their brains were dissected to analyze the lipidome using an untargeted lipidomics approach and to perform a high throughput RNAseq analysis. Results Compared to all other organisms, healthy bee brain lipidomes contain unusually high levels of alkyl-ether linked (plasmanyl) phospholipids (51.42%) and low levels of plasmalogens (plasmenyl phospholipids; 3.46%). This could make it more susceptible to the effects of toxins in the environment. A positive correlation between CL 18:3/18:1/14:0/22:6, TG 6:0/11:2/18:1, LPE 18:0e and intense self-grooming was found. Sublethal doses of a neonicotinoid altered PC 20:3e/15:0, PC 16:0/18:3, PA 18:0/24:1, and TG 18:1/18:1/18/1 levels, and affected gene expression linked to GPI-anchor biosynthesis pathway and energy metabolism that may be partially responsible for the altered lipid composition. Conclusion This study showed that lipidomics can reveal honey bee neuropathologies associated with reduced grooming behavior due to sublethal neonicotinoid exposure. The ease of use, unusual brain lipidome as well as characterized behaviors that are affected by the environment make honey bees a promising model organism for studying the neurolipidome and associations with neurobehavioral disorders.
Collapse
|
19
|
Rhein C, Zoicas I, Marx LM, Zeitler S, Hepp T, von Zimmermann C, Mühle C, Richter-Schmidinger T, Lenz B, Erim Y, Reichel M, Gulbins E, Kornhuber J. mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases upon Antidepressant Treatment. Int J Mol Sci 2021; 22:ijms22115700. [PMID: 34071826 PMCID: PMC8198802 DOI: 10.3390/ijms22115700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition with key symptoms of low mood and lack of motivation, joy, and pleasure. Recently, the acid sphingomyelinase (ASM)/ceramide system has been implicated in the pathogenesis of MDD. ASM is a lysosomal glycoprotein that catalyzes the hydrolysis of sphingomyelin, an abundant component of membranes, into the bioactive sphingolipid ceramide, which impacts signaling pathways. ASM activity is inhibited by several common antidepressant drugs. Human and murine studies have confirmed that increased ASM activity and ceramide levels are correlated with MDD. To define a molecular marker for treatment monitoring, we investigated the mRNA expression of SMPD1, which encodes ASM, in primary cell culture models, a mouse study, and a human study with untreated MDD patients before and after antidepressive treatment. Our cell culture study showed that a common antidepressant inhibited ASM activity at the enzymatic level and also at the transcriptional level. In a genetically modified mouse line with depressive-like behavior, Smpd1 mRNA expression in dorsal hippocampal tissue was significantly decreased after treatment with a common antidepressant. The large human study showed that SMPD1 mRNA expression in untreated MDD patients decreased significantly after antidepressive treatment. This translational study shows that SMPD1 mRNA expression could serve as a molecular marker for treatment and adherence monitoring of MDD.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
- Correspondence: ; Tel.: +49-9131-85-44542
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Lena M. Marx
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Tobias Hepp
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
- Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, D-68159 Mannheim, Germany
| | - Yesim Erim
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| |
Collapse
|
20
|
Lin CH, Kornhuber J, Zheng F, Alzheimer C. Tonic Control of Secretory Acid Sphingomyelinase Over Ventral Hippocampal Synaptic Transmission and Neuron Excitability. Front Cell Neurosci 2021; 15:660561. [PMID: 33897374 PMCID: PMC8062921 DOI: 10.3389/fncel.2021.660561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
The acid sphingomyelinase (ASM) converts sphingomyelin into ceramide. Recent work has advanced the ASM/ceramide system as a major player in the pathogenesis of major depressive disorder (MDD). Indeed, ASM activity is enhanced in MDD patients and antidepressant drugs like fluoxetine act as functional inhibitors of ASM. Here, we employed the specific ASM inhibitor ARC39 to explore the acute effects of the enzyme on hippocampal synaptic transmission and cell excitability in adult mouse brain slice preparations. In both field potential and whole-cell recordings, ARC39 (1-3 μM) enhanced excitatory synaptic input onto ventral hippocampal CA1 pyramidal cells. The specificity of drug action was demonstrated by its lacking effect in slices from ASM knockout mice. In control condition, ARC39 strongly reduced firing in most CA1 pyramidal cells, together with membrane hyperpolarization. Such pronounced inhibitory action of ARC39 on soma excitability was largely reversed when GABAA receptors were blocked. The idea that ARC39 recruits GABAergic inhibition to dampen cell excitability was further reinforced by the drug's ability to enhance the inhibitory synaptic drive onto pyramidal cells. In pyramidal cells that were pharmacologically isolated from synaptic input, the overall effect of ARC39 on cell firing was inhibitory, but some neurons displayed a biphasic response with a transient increase in firing, suggesting that ARC39 might alter intrinsic firing properties in a cell-specific fashion. Because ARC39 is charged at physiological pH and exerted all its effects within minutes of application, we propose that the neurophysiological actions reported here are due to the inhibition of secretory rather than lysosomal ASM. In summary, the ASM inhibitor ARC39 reveals a tonic control of the enzyme over ventral hippocampal excitability, which involves the intrinsic excitability of CA1 pyramidal cells as well as their excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
Santa-Marinha L, Castanho I, Silva RR, Bravo FV, Miranda AM, Meira T, Morais-Ribeiro R, Marques F, Xu Y, Point du Jour K, Wenk M, Chan RB, Di Paolo G, Pinto V, Oliveira TG. Phospholipase D1 Ablation Disrupts Mouse Longitudinal Hippocampal Axis Organization and Functioning. Cell Rep 2021; 30:4197-4208.e6. [PMID: 32209478 DOI: 10.1016/j.celrep.2020.02.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.
Collapse
Affiliation(s)
- Luísa Santa-Marinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Ribeiro Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisca Vaz Bravo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Miguel Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Torcato Meira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kimberly Point du Jour
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Markus Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
22
|
Abildgaard A, Kern T, Pedersen O, Hansen T, Lund S, Wegener G. A diet-induced gut microbiota component and related plasma metabolites are associated with depressive-like behaviour in rats. Eur Neuropsychopharmacol 2021; 43:10-21. [PMID: 32933808 DOI: 10.1016/j.euroneuro.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
It is well-established in preclinical studies that various probiotics may improve behaviours related to psychiatric disease. We have previously shown that probiotics protected against high-fat diet (HFD)-induced depressive-like behaviour in Flinders Sensitive Line (FSL) rats, whereas FSL rats on control (CON) diet were unaffected. Therefore, we hypothesised that a dysmetabolic component of depression may exist that involves the gut microbiota and that such component may be reflected in the plasma metabolome. The aims of the present study post hoc analyses were 1) to study the effect of probiotics on gut microbiota composition and its association with depressive-like behaviour in FSL rats, and 2) to identify plasma metabolites associated with gut microbiota and depressive-like behaviour. Forty-six FSL rats were fed CON or HFD and treated with multi-species probiotics (nine Bifidobacterium, Lactococcus and Lactobacillus species) for 12 weeks. Faecal samples were collected for 16S rRNA (VR4) gene amplicon sequencing (Illumina MiSeq), and an untargeted plasma metabolomics was performed. We found that probiotics increased the relative faecal abundance of the Bifidobacterium, Lactococcus and Lactobacillus genera in HFD-fed rats only. Also, a HFD-induced microbiota component associated with depressive-like behaviour was identified, and probiotics improved the component score. Finally, the plasma levels of 44 metabolites correlated with the depression-related microbiota component, and three such metabolites had good predictive ability for depressive-like behaviour. Potentially, our findings imply that a subtype of depression characterised by a diet-induced, pro-depressant gut microbiota may exist and that analysis of related plasma metabolites may reveal aberrant microbiota functioning related to depression.
Collapse
Affiliation(s)
- Anders Abildgaard
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Risskov, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark.
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sten Lund
- Steno Diabetes Centre, Aarhus University Hospital, Hedeager 3, Aarhus N, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
23
|
Hippocampal Sector-Specific Metabolic Profiles Reflect Endogenous Strategy for Ischemia-Reperfusion Insult Resistance. Mol Neurobiol 2020; 58:1621-1633. [PMID: 33222147 PMCID: PMC7932963 DOI: 10.1007/s12035-020-02208-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
The gerbil is a well-known model for studying cerebral ischemia. The CA1 of the hippocampus is vulnerable to 5 min of ischemia, while the CA2–4 and dentate gyrus (DG) are resistant to it. Short-lasting ischemia, a model of transient ischemic attacks in men, results in CA1 neuron death within 2–4 days of reperfusion. Untargeted metabolomics, using LC-QTOF-MS, was used to enrich the knowledge about intrinsic vulnerability and resistance of hippocampal regions and their early post-ischemic response (IR). In total, 30 significant metabolites were detected. In controls, taurine was significantly lower and guanosine monophosphate was higher in CA1, as compared to that in CA2–4,DG. LysoPG and LysoPE were more abundant in CA1, while LysoPI 18:0 was detected only in CA2–4,DG. After IR, a substantial decrease in the citric acid level in CA1, an accumulation of pipecolic acid in both regions, and opposite changes in the amount of PE and LysoPE were observed. The following metabolic pathways were identified as being differentially active in control CA1 vs. CA2–4,DG: metabolism of taurine and hypotaurine, glycerophospholipid, and purine. These results may indicate that a regulation of cell volume, altered structure of cell membranes, and energy metabolism differentiate hippocampal regions. Early post-ischemia, spatial differences in the metabolism of aminoacyl-tRNA biosynthesis, and amino acids and their metabolites with a predominance of those which upkeep their well-being in CA2–4,DG are shown. Presented results are consistent with genetic, morphological, and functional data, which may be useful in further study on endogenous mechanisms of neuroprotection and search for new targets for therapeutic interventions.
Collapse
|
24
|
Johnson A, Grove RA, Madhavan D, Boone CHT, Braga C, Kyllo H, Samson K, Simeone K, Simeone T, Helikar T, Hanson CK, Adamec J. Changes in lipid profiles of epileptic mouse model. Metabolomics 2020; 16:106. [PMID: 33021695 PMCID: PMC10614666 DOI: 10.1007/s11306-020-01729-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Approximately 1% of the world's population is impacted by epilepsy, a chronic neurological disorder characterized by seizures. One-third of epileptic patients are resistant to AEDs, or have medically refractory epilepsy (MRE). One non-invasive treatment that exists for MRE includes the ketogenic diet, a high-fat, low-carbohydrate diet. Despite the KD's success in seizure attenuation, it has a few risks and its mechanisms remain poorly understood. The KD has been shown to improve metabolism and mitochondrial function in epileptic phenotypes. Potassium channels have implications in epileptic conditions as they have dual roles as metabolic sensors and control neuronal excitation. OBJECTIVES The goal of this study was to explore changes in the lipidome in hippocampal and cortical tissue from Kv1.1-KO model of epilepsy. METHODS FT-ICR/MS analysis was utilized to examine nonpolar metabolome of cortical and hippocampal tissue isolated from a Kv1.1 channel knockout mouse model of epilepsy (n = 5) and wild-type mice (n = 5). RESULTS Distinct metabolic profiles were observed, significant (p < 0.05) features in hippocampus often being upregulated (FC ≥ 2) and the cortex being downregulated (FC ≤ 0.5). Pathway enrichment analysis shows lipid biosynthesis was affected. Partition ratio analysis revealed that the ratio of most metabolites tended to be increased in Kv1.1-/-. Metabolites in hippocampal tissue were commonly upregulated, suggesting seizure initiation in the hippocampus. Aberrant mitochondrial function is implicated by the upregulation of cardiolipin, a common component in the mitochondrial membrane. CONCLUSION Generally, our study finds that the lipidome is changed in the hippocampus and cortex in response to Kv1.1-KO indicating changes in membrane structural integrity and synaptic transmission.
Collapse
Affiliation(s)
- Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ryan A Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Deepak Madhavan
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Cory H T Boone
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Camila Braga
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Hannah Kyllo
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kaeli Samson
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Kristina Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Timothy Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Corrine K Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
25
|
Xue SS, Zhou CH, Xue F, Liu L, Cai YH, Luo JF, Wang Y, Tan QR, Wang HN, Peng ZW. The impact of repetitive transcranial magnetic stimulation and fluoxetine on the brain lipidome in a rat model of chronic unpredictable stress. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109946. [PMID: 32325156 DOI: 10.1016/j.pnpbp.2020.109946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The antidepressant effect of repetitive transcranial magnetic stimulation (rTMS) has been extensively studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of depression and may be a targeted mechanism for treatment. However, the influence of rTMS on lipid composition and the differences between these effects compared to antidepressants like fluoxetine (Flx) have never been investigated. Using a chronic unpredictable stress (CUS) model in rats, we assessed the antidepressive effects of rTMS and Flx treatments and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. Both rTMS and Flx treatments ameliorated depressive-like behaviors induced by CUS. Moreover, changes in lipid composition, especially glycerophospholipids, sphingolipids, and glycerolipids induced by CUS in the hippocampus were more robust than those observed in the PFC. CUS led to decreased levels of 20 carbon-containing fatty acyls and polyunsaturated fatty acyls in the PFC, and decreased levels of acyl carnitines (AcCa) in both the hippocampus and PFC. Notably, rTMS treatment had higher impact than Flx on composition of glycerophospholipids and sphingolipids in the hippocampus that were altered by CUS, while Flx attenuated CUS-induced changes in the PFC to a greater extent than rTMS. However, neither was able to restore fatty acyls and AcCa to baseline levels. Altogether, modulation of the brain lipidome may be involved in the antidepressant action of rTMS and Flx, and the degree to which these treatments induce changes in lipid composition within the hippocampus and PFC might explain their differential antidepressant effects.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Liu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China
| | - Yan-Hui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Feng Luo
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Jaddoa E, Masania J, Masiero E, Sgamma T, Arroo R, Sillence D, Zetterström T. Effect of antidepressant drugs on the brain sphingolipid system. J Psychopharmacol 2020; 34:716-725. [PMID: 32403969 DOI: 10.1177/0269881120915412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Major depression is a common mood disorder and the central sphingolipid system has been identified as a possible drug target of this condition. Here we investigated the action of antidepressant drugs on sphingolipid levels in rat brain regions, plasma and in cultured mouse macrophages. METHODS Two antidepressant drugs were tested: the serotonin reuptake inhibitor paroxetine and the noradrenaline reuptake inhibitor desipramine, either following acute or chronic treatments. Content of sphingosine and ceramide were analysed using LC-MS or HPLC-UV, respectively. This was from samples of brain, plasma and cultured mouse macrophages. Antidepressant-induced effects on mRNA expression for two key genes of the sphingolipid pathway, SMPD1 and ASAH1, were also measured by using quantitative real-time PCR. RESULTS Chronic but not acute administration of paroxetine or desipramine reduced sphingosine levels in the prefrontal cortex and hippocampus (only paroxetine) but not in the striatum. Ceramide levels were also measured in the hippocampus following chronic paroxetine and likewise to sphingosine this treatment reduced its levels. The corresponding collected plasma samples from chronically treated animals did not show any decrease of sphingosine compared to the corresponding controls. Both drugs failed to reduce sphingosine levels from cultured mouse macrophages. The drug-induced decrease of sphingolipids coincided with reduced mRNA expression of two enzymes of the central sphingolipid pathway, i.e. acid sphingomyelinase (SMPD1) and acid ceramidase (ASAH1). CONCLUSIONS This study supports the involvement of brain sphingolipids in the mechanism of action by antidepressant drugs and for the first time highlights their differential effects on brain versus plasma levels.
Collapse
Affiliation(s)
- Estabraq Jaddoa
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Jinit Masania
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Eva Masiero
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tiziana Sgamma
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Randolph Arroo
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Daniel Sillence
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tyra Zetterström
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
27
|
Skóra MN, Pattij T, Beroun A, Kogias G, Mielenz D, de Vries T, Radwanska K, Müller CP. Personality driven alcohol and drug abuse: New mechanisms revealed. Neurosci Biobehav Rev 2020; 116:64-73. [PMID: 32565173 DOI: 10.1016/j.neubiorev.2020.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
While the majority of the regular consumers of alcohol controls their consumption well over life span and even takes instrumentalization benefits from it, a minority, but yet high total number of users develops an alcohol addiction. It has long been known that particular personality types are more addiction prone than others. Here we review recent progress in the understanding of neurobiological pathways that determine personality and facilitate drug abuse. Novel approaches to characterize personality traits leading to addiction proneness in social settings in mice are discussed. A common genetic and neurobiological base for the behavioural traits of sensation seeking or a depressed phenotype and escalating alcohol consumption are reviewed. Furthermore, recent progress on how social and cognitive factors, including impulsivity and decision making, act at brain level to make an individual more vulnerable to alcohol abuse, are discussed. Altogether, this review provides an update on brain mechanisms underlying a broad spectrum of personality traits that make an individual more prone to alcohol and drug abuse and addiction.
Collapse
Affiliation(s)
- Maria Nalberczak Skóra
- Laboratory of Molecular Basis of Behavior, Nencki Institute, ul. L. Pasteura 3, Warsaw 02-093, Poland
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Anna Beroun
- BRAINCITY, Nencki Institute, Warsaw 02-093, Poland
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Taco de Vries
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VU University Medical Center, Amsterdam, the Netherlands; Department of Molecular and Cellular Neuroscience, CNCR, VU University, Amsterdam, The Netherlands
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute, ul. L. Pasteura 3, Warsaw 02-093, Poland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
28
|
Zoicas I, Schumacher F, Kleuser B, Reichel M, Gulbins E, Fejtova A, Kornhuber J, Rhein C. The Forebrain-Specific Overexpression of Acid Sphingomyelinase Induces Depressive-Like Symptoms in Mice. Cells 2020; 9:cells9051244. [PMID: 32443534 PMCID: PMC7290754 DOI: 10.3390/cells9051244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tgfb) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tgfb mice than in female Asm-tgfb mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tgfb mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-44542
| |
Collapse
|
29
|
Zoicas I, Mühle C, Schmidtner AK, Gulbins E, Neumann ID, Kornhuber J. Anxiety and Depression Are Related to Higher Activity of Sphingolipid Metabolizing Enzymes in the Rat Brain. Cells 2020; 9:cells9051239. [PMID: 32429522 PMCID: PMC7290887 DOI: 10.3390/cells9051239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in sphingolipid metabolism have been suggested to contribute to the pathophysiology of major depression. In this study, we investigated the activity of acid and neutral sphingomyelinases (ASM, NSM) and ceramidases (AC, NC), respectively, in twelve brain regions of female rats selectively bred for high (HAB) versus low (LAB) anxiety-like behavior. Concomitant with their highly anxious and depressive-like phenotype, HAB rats showed increased activity of ASM and NSM as well as of AC and NC in multiple brain regions associated with anxiety- and depressive-like behavior, including the lateral septum, hypothalamus, ventral hippocampus, ventral and dorsal mesencephalon. Strong correlations between anxiety-like behavior and ASM activity were found in female HAB rats in the amygdala, ventral hippocampus and dorsal mesencephalon, whereas NSM activity correlated with anxiety levels in the dorsal mesencephalon. These results provide novel information about the sphingolipid metabolism, especially about the sphingomyelinases and ceramidases, in major depression and comorbid anxiety.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
- Correspondence: ; Tel.: +49-9131-85-46005; Fax: +49-9131-85-36381
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| | - Anna K. Schmidtner
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| |
Collapse
|
30
|
Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Strzalka K, Aguilar LF. An in vitro study on the interaction of the anti-Alzheimer drug rivastigmine with human erythrocytes. Chem Biol Interact 2020; 319:109019. [PMID: 32092302 DOI: 10.1016/j.cbi.2020.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
The inhibition of the enzyme acetylcholinesterase (AChE) is a frequently used therapeutic option to treat Alzheimer's disease (AD). By decreasing the levels of acetylcholine degradation in the synaptic space, some cognitive functions of patients suffering from this disease are significantly improved. Rivastigmine is one of the most widely used AChE inhibitors. The objective of this work was to determine the effects of this drug on human erythrocytes, which have a type of AChE in the cell membrane. To that end, human erythrocytes and molecular models of its membrane constituted by dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. They correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. The experimental results obtained by X-ray diffraction and differential scanning calorimetry (DSC) indicated that rivastigmine molecules were able to interact with both phospholipids. Fluorescence spectroscopy results showed that rivastigmine produce a slight change in the acyl chain packing order and a weak displacement of the water molecules of the hydrophobic-hydrophilic membrane interface. On the other hand, observations by scanning electron microscopy (SEM) showed that the drug changed the normal biconcave shape of erythrocytes in stomatocytes (cup-shaped cells) and echinocytes (speculated shaped).
Collapse
Affiliation(s)
- Pablo Zambrano
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Mario Suwalsky
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Luis F Aguilar
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
31
|
Joensuu M, Wallis TP, Saber SH, Meunier FA. Phospholipases in neuronal function: A role in learning and memory? J Neurochem 2020; 153:300-333. [PMID: 31745996 DOI: 10.1111/jnc.14918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Despite the human brain being made of nearly 60% fat, the vast majority of studies on the mechanisms of neuronal communication which underpin cognition, memory and learning, primarily focus on proteins and/or (epi)genetic mechanisms. Phospholipids are the main component of all cellular membranes and function as substrates for numerous phospholipid-modifying enzymes, including phospholipases, which release free fatty acids (FFAs) and other lipid metabolites that can alter the intrinsic properties of the membranes, recruit and activate critical proteins, and act as lipid signalling molecules. Here, we will review brain specific phospholipases, their roles in membrane remodelling, neuronal function, learning and memory, as well as their disease implications. In particular, we will highlight key roles of unsaturated FFAs, particularly arachidonic acid, in neurotransmitter release, neuroinflammation and memory. In light of recent findings, we will also discuss the emerging role of phospholipase A1 and the creation of saturated FFAs in the brain.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Saber H Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
32
|
van Kruining D, Luo Q, van Echten-Deckert G, Mielke MM, Bowman A, Ellis S, Oliveira TG, Martinez-Martinez P. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev 2020; 159:232-244. [PMID: 32360155 PMCID: PMC7665829 DOI: 10.1016/j.addr.2020.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in neurodegeneration, neuroinflammation, and psychiatric disorders and an imbalance in sphingolipid levels is associated with disease. Although early diagnosis and intervention of these disorders would clearly have favorable long-term outcomes, no diagnostic tests currently exist that can accurately identify people at risk. Reliable prognostic biomarkers that are easily accessible would be beneficial to determine therapy and treatment response in clinical trials. Recent advances in lipidomic investigation methods have greatly progressed the knowledge of sphingolipids in neurodegenerative and psychiatric disorders over the past decades although more longitudinal studies are needed to understand its exact role in these disorders to be used as potential tools in the clinic. In this review, we give an overview of the current knowledge of sphingolipids in neurodegenerative and psychiatric disorders and explore recent advances in investigation methods. Finally, the potential of sphingolipid metabolism products and signaling molecules as potential biomarkers for diagnosis, prognostic, or surrogate markers of treatment response is discussed.
Collapse
Affiliation(s)
- Daan van Kruining
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Qian Luo
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gerhild van Echten-Deckert
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, Bonn, Germany
| | - Michelle M Mielke
- Department of Health Sciences Research and Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Andrew Bowman
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Shane Ellis
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), ICVS/3B's, School of Medicine, University of Minho, Braga, Portugal
| | - Pilar Martinez-Martinez
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
33
|
The Effects of Doxorubicin-based Chemotherapy and Omega-3 Supplementation on Mouse Brain Lipids. Metabolites 2019; 9:metabo9100208. [PMID: 31569490 PMCID: PMC6835930 DOI: 10.3390/metabo9100208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced cognitive impairment affects ~30% of breast cancer survivors, but the effects on how chemotherapy impacts brain lipids, and how omega-3 polyunsaturated fatty acid supplementation may confer protection, is unknown. Ovariectomized mice were randomized to two rounds of injections of doxorubicin + cyclophosphamide or vehicle after consuming a diet supplemented with 2% or 0% EPA+DHA, and sacrificed 4, 7, and 14 days after the last injection (study 1, n = 120) or sacrificed 10 days after the last injection (study 2, n = 40). Study 1 whole brain samples were extracted and analyzed by UHPLC-MS/MS to quantify specialized pro-resolving mediators (SPMs). Lipidomics analyses were performed on hippocampal extracts from study 2 to determine changes in the brain lipidome. Study 1 results: only resolvin D1 was present in all samples, but no differences in concentration were observed (P > 0.05). Study 2 results: chemotherapy was positively correlated with omega-9 fatty acids, and EPA+DHA supplementation helped to maintain levels of plasmalogens. No statistically significant chemotherapy*diet effect was observed. Results demonstrate a limited role of SPMs in the brain post-chemotherapy, but a significant alteration of hippocampal lipids previously associated with other models of cognitive impairment (i.e., Alzheimer's and Parkinson's disease).
Collapse
|
34
|
Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA 1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci 2019; 12:146. [PMID: 31244601 PMCID: PMC6580287 DOI: 10.3389/fnmol.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.
Collapse
Affiliation(s)
- Sara Tabbai
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Román Dario Moreno-Fernández
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Maria García-Fernández
- Departamento de Fisiología y Medicina Deportiva, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|