1
|
Joodi SA, Ibrahim WW, Khattab MM. Drugs repurposing in the experimental models of Alzheimer's disease. Inflammopharmacology 2025:10.1007/s10787-024-01608-7. [PMID: 39752040 DOI: 10.1007/s10787-024-01608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy. Additionally, we demonstrated the different repurposed drugs in the experimental models of AD including the anti-inflammatory, anti-hypertensive, anti-diabetic, antiepileptic, antidepressant and anticancer drugs. Further, we showed the pipeline and FDA approved drugs for AD. The repurposed drugs have a promising therapeutic activity against AD, confirming the value of the drugs repurposing technique to elucidate curative therapy for AD.
Collapse
Affiliation(s)
- Sheer A Joodi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Chakkittukandiyil A, Sajini DV, Rymbai E, Sugumar D, Mathew J, Arumugam S, Ramachandran V, Selvaraj D. Synthesis and evaluation of novel ethyl ferulate derivatives as potent Keap1 inhibitors to activate the Nrf2/ARE pathway in Parkinson's disease. Toxicol Appl Pharmacol 2025; 494:117172. [PMID: 39603427 DOI: 10.1016/j.taap.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The Kelch-like ECH-associated protein 1/Nuclear factor erythroid 2 related factor 2/Antioxidant Response Elements (Keap1/Nrf2/ARE) pathway is essential for neuronal resilience against the complex pathogenesis of Parkinson's disease (PD). Activating this pathway by covalently modifying Keap1 cysteine residues is a promising strategy for regulating neuroprotective gene expression. Our study aimed to identify phytochemicals that could irreversibly inhibit Keap1. A preliminary docking analysis revealed that ethyl ferulate could covalently bind with Cys151 of Keap1 by Michael's addition reaction. Further, we designed several ethyl ferulate derivatives with improved lipophilicity and assessed their binding affinity with Keap1. The molecules with good binding scores were synthesized and structures were confirmed through 1H NMR, 13C NMR, FT-IR, and mass spectroscopy. Neuroprotection screening was conducted in all-trans retinoic acid differentiated SH-SY5Y cells using rotenone as a disease-inducing agent. Pre-treatment with compounds C2 and C4 significantly mitigated rotenone toxicity. Additionally, C2 and C4 decreased rotenone-induced ROS production and mitochondrial membrane potential loss. C2 and C4 also induced Nrf2 nuclear translocation in SH-SY5Y cells and increased mRNA expression of heme oxygenase-1, an Nrf2-regulated antioxidant response element. In vivo, pretreatment with C2 (50, 100 mg/kg, p.o.) and C4 (50, 100 mg/kg, p.o.) protected against neurodegenerative phenotypes associated with rotenone (1.5 mg/kg, s.c.) induction in Wistar rats. Results indicate, C2 and C4 dose-dependently improved muscle rigidity, catalepsy, and cognitive deficits in rotenone-induced Wistar rats, and mitigated dopaminergic neurodegeneration in the substantia nigra. These findings highlight the potential of ethyl ferulate derivatives in modulating oxidative stress and neurodegeneration in PD via activation of Nrf2.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jinu Mathew
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Suresh Arumugam
- Department of Pharmacology, The Kaavery Pharmacy College, Mecheri, Salem, Tamil Nadu, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
3
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2024; 79:103464. [PMID: 39709790 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
5
|
Gong JH, Kim CS, Park J, Kang S, Jang Y, Kim MS, Chung HT, Joe Y, Yu R. Filbertone-Induced Nrf2 Activation Ameliorates Neuronal Damage via Increasing BDNF Expression. Neurochem Res 2024; 50:44. [PMID: 39636503 PMCID: PMC11621137 DOI: 10.1007/s11064-024-04290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson's Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including BDNF, Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP+, where it was observed to counteract PA and MPTP/MPP+-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.
Collapse
Affiliation(s)
- Jeong Heon Gong
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jeongmin Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Soeun Kang
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Yumi Jang
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hun Taeg Chung
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Yeonsoo Joe
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
| | - Rina Yu
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
6
|
AL-Hashem FH, Bashir SO, Dawood AF, Aboonq MS, Bin-Jaliah I, Al-Garni AM, Morsy MD. Vanillylacetone attenuates cadmium chloride-induced hippocampal damage and memory loss through up-regulation of nuclear factor erythroid 2-related factor 2 gene and protein expression. Neural Regen Res 2024; 19:2750-2759. [PMID: 38595292 PMCID: PMC11168521 DOI: 10.4103/1673-5374.391300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00030/figure1/v/2024-04-08T165401Z/r/image-tiff Memory loss and dementia are major public health concerns with a substantial economic burden. Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment. To investigate whether the antioxidant and anti-inflammatory compound vanillylacetone (zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride (CdCl2) administration in rats, we explored the potential involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which is known to modulate oxidative stress and inflammation. Sixty healthy male Wistar rats were divided into five groups: vehicle-treated (control), vanillylacetone, CdCl2, vanillylacetone + CdCl2, vanillylacetone + CdCl2 + brusatol (a selective pharmacological Nrf2 inhibitor) groups. Vanillylacetone effectively attenuated CdCl2-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test. Additionally, vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, intracellular cell adhesive molecules) and apoptosis biomarkers (Bax and cleaved caspase-3). The control and CdCl2-treated groups treated with vanillylacetone showed reduced generation of reactive oxygen species, decreased malondialdehyde levels, and increased superoxide dismutase and glutathione activities, along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue. All the protective effects of vanillylacetone were substantially blocked by the co-administration of brusatol (a selective Nrf2 inhibitor). Vanillylacetone mitigated hippocampal damage and memory loss induced by CdCl2, at least in part, by activating the nuclear transcription factor Nrf2. Additionally, vanillylacetone exerted its potent antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Fahaid H. AL-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Salah O. Bashir
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Moutasem S. Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Mohamed D. Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis 2024; 39:1523-1541. [PMID: 39172328 DOI: 10.1007/s11011-024-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Depression is a mental disorder characterised by persistent low mood, anhedonia and cognitive impairment that affects an estimated 3.8% of the world's population, including 5% of adults. Peganum harmala L. (P. harmala) is a medicinal plant and has been reported to be effective against Alzheimer's disease, Parkinson's disease and depression. The present study was aimed to evaluate the behavioral and pharmacological effects of P. harmala seed extract in rats exposed to chronic unpredictable mild stress (CUMS) in vivo and to investigate the mechanism of action. CUMS-exposed rats were treated with P. harmala extract (75 and 150 mg/kg, i.p.) for 2 weeks. HPLC analysis was used to determine the concentration of harmaline and harmine alkaloids in the extract. Heavy metal analysis in seeds was performed by ICP-MS. Our results showed that P. harmala at the dose of 150 mg/kg significantly reduced the depressive-like behaviors in CUMS-exposed rats, as evidenced by increased sucrose consumption in the sucrose preference test (SPT), decreased immobility time in the forced swim test (FST) and plasma corticosterone levels, increased the time spent in open arms in the elevated plus maze (EPM), and improved memory and learning in the passive avoidance test (PAT). In addition, P. harmala decreased monoamine oxidase-A (MAO-A) levels, and increased serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels in the brains of rats exposed to CUMS. P. harmala decreased the expression of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and increased the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) in rat brain. Furthermore, P. harmala improved brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression in rat brain. In conclusion, P. harmala at a dose of 150 mg/kg is more effective in preventing depressive-like behavior in CUMS-exposed rats by improving neurotransmitter levels, reducing oxidative stress, suppressing neuroinflammation and activating the BDNF/TrkB pathway, all of which are important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Yasemin Tekşen
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye.
| | - Meliha Koldemir Gündüz
- Faculty of Engineering and Natural Sciences, Department of Basic Sciences of Engineering, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Derya Berikten
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| | - Fikriye Yasemin Özatik
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Hasan Emre Aydın
- Faculty of Medicine, Department of Neurosurgery, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| |
Collapse
|
8
|
Pinho RA, Muller AP, Marqueze LF, Radak Z, Arida RM. Physical exercise-mediated neuroprotective mechanisms in Parkinson's disease, Alzheimer's disease, and epilepsy. Braz J Med Biol Res 2024; 57:e14094. [PMID: 39607205 DOI: 10.1590/1414-431x2024e14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Research suggests that physical exercise is associated with prevention and management of chronic diseases. The influence of physical exercise on brain function and metabolism and the mechanisms involved are well documented in the literature. This review provides a comprehensive overview of the potential implications of physical exercise and the molecular benefits of exercise in Parkinson's disease, Alzheimer's disease, and epilepsy. Here, we present an overview of the effects of exercise on various aspects of metabolism and brain function. To this end, we conducted an extensive literature search of the PubMed, Web of Science, and Google Scholar databases to identify articles published in the past two decades. This review delves into key aspects including the modulation of neuroinflammation, neurotrophic factors, and synaptic plasticity. Moreover, we explored the potential role of exercise in advancing therapeutic strategies for these chronic diseases. In conclusion, the review highlights the importance of regular physical exercise as a complementary non-pharmacological treatment for individuals with neurological disorders such as Alzheimer's, Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- R A Pinho
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
- Rede Nacional de Neurociência e Atividade Física, Brasil
| | - A P Muller
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - L F Marqueze
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
| | - Z Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - R M Arida
- Rede Nacional de Neurociência e Atividade Física, Brasil
- Departamento de Fisiologia, Universidade Federal de São Paulo, Botucatu, SP, Brasil
| |
Collapse
|
9
|
Lai M, Su D, Ai Z, Yang M, Zhang Z, Zhang Q, Shao W, Luo T, Zhu G, Song Y. Inhalation of Curcumae Rhizoma volatile oil attenuates depression-like behaviours via activating the Nrf2 pathway to alleviate oxidative stress and improve mitochondrial dysfunction. J Pharm Pharmacol 2024; 76:1449-1462. [PMID: 39018042 DOI: 10.1093/jpp/rgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/15/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Curcumae Rhizoma (CR) is a traditional Chinese medicine used frequently in clinics, which contains volatile components that exhibit various active effects. This study explores the effect of Curcumae Rhizoma volatile oil (CRVO) on depressive mice and its possible mechanism of action. METHODS Chemical composition of CRVO was analysed by GC-MS. DPPH and ABTS free radical scavenging assays were used to evaluate the in vitro antioxidant capacity of CRVO. A chronic unpredictable mild stress (CUMS) model was used to evaluate the antidepressant effect of CRVO. The effects of CRVO on oxidative stress in vivo were investigated using Nissl staining, ELISA and transmission electron microscopy. The Nrf2/HO-1/NQO1 signalling pathway was detected by western blotting and immunofluorescence. ML385, a Nrf2 inhibitor was used to validate the effect of Nrf2 on CUMS mice with CRVO treatment. KEY FINDINGS Phytochemical analysis showed that CRVO is rich in its characteristic components, including curzerene (31.1%), curdione (30.56%), and germacrone (12.44%). In vivo, the administration of CRVO significantly ameliorated CUMS-induced depressive-like behaviours. In addition, inhalation of CRVO significantly alleviated the oxidative stress caused by CUMS and improved neuronal damage and mitochondrial dysfunction. The results of mechanistic studies showed that the mechanism of action is related to the Nrf2/HO-1/NQO1 pathway and the antioxidant and antidepressant effects of CRVO were weakened when ML385 was used. CONCLUSIONS In summary, by regulating the Nrf2 pathway, inhalation of CRVO can reduce oxidative stress in depressed mice, thereby reducing neuronal damage and mitochondrial dysfunction to alleviate depression-like behaviours. Our study offers a prospective research foundation to meet the diversity of clinical medication.
Collapse
Affiliation(s)
- Meixizi Lai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang 330029, China
| | - Zhentao Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Qi Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Wenxiang Shao
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Tao Luo
- The First Affiliated Hospital of Nanchang University, Blood Purification Center, Nanchang 330006, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| |
Collapse
|
10
|
He L, Mo X, He L, Ma Q, Cai L, Zheng Y, Huang L, Lin X, Wu M, Ding W, Zhou C, Zhang JC, Hashimoto K, Yao W, Chen JX. The role of BDNF transcription in the antidepressant-like effects of 18β-glycyrrhetinic acid in a chronic social defeat stress model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155332. [PMID: 38851983 DOI: 10.1016/j.phymed.2023.155332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 06/10/2024]
Abstract
BACKGROUND Xiaoyaosan (XYS), a traditional Chinese medicine formulation, has been used in the treatment of depression. However, no studies have yet identified the active compounds responsible for its antidepressant effects in the brain. STUDY DESIGN We investigated the antidepressants effects of XYS and identified 18β-glycyrrhetinic acid (18β-GA) as the primary compound present in the brain following XYS injection. Furthermore, we explored the molecular mechanisms underlying the antidepressant-like effects of both XYS and 18β-GA. METHODS To investigate the antidepressant-like effects of XYS and elucidate the associated molecular mechanisms, we employed various methodologies, including cell cultures, the chronic social defeat stress (CSDS) model, behavioral tests, immunoprecipitation, quantitative PCR (qPCR) assays, Western blotting assays, luciferase assays, chromatin immunoprecipitation (ChIP) assays, immunofluorescence staining, and dendritic spine analysis. RESULTS We identified 18β-GA as the primary compound in the brain following XYS injection. In vitro, 18β-GA was found to bind with ERK (extracellular signal-regulated kinase), subsequently activating ERK kinase activity toward both c-Jun and cAMP response element binding protein (CREB). Moreover, 18β-GA activated brain-derived neurotrophic factor (BDNF) transcription by stimulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2), c-Jun, and CREB, while also inhibiting methyl CpG binding protein 2 (MeCP2) both in vitro and in vivo. Chronic intraperitoneal (i.p.) administration of 18β-GA exhibited prophylactic antidepressant-like effects in a CSDS model, primarily by activating BDNF transcription in the medial prefrontal cortex (mPFC). Interestingly, a single i.p. injection of 18β-GA produced rapid and sustained antidepressant-like effects in CSDS-susceptible mice by engaging the BDNF-tropomyosin receptor kinase B (TrkB) signaling pathway in the mPFC. CONCLUSION These findings suggest that the activation of BDNF transcription in the mPFC underlies the antidepressant-like effects of 18β-GA, a key component of XYS in the brain.
Collapse
Affiliation(s)
- Lujuan He
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Lili Cai
- Department of Mental Rehabilitation, Mental Hospital of Guangzhou Civil Affairs Bureau, Guangzhou 510632, PR China
| | - Yi Zheng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xuanyu Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wanzhao Ding
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Chan Zhou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
11
|
Abate G, Pezzotta A, Pucci M, Bortolotto V, Ribaudo G, Bonini SA, Mastinu A, Maccarinelli G, Ongaro A, Tirelli E, Zizioli D, Gianoncelli A, Memo M, Grilli M, Uberti D. The Bioactive Gamma-Oryzanol from Oryza sativa L. Promotes Neuronal Differentiation in Different In Vitro and In Vivo Models. Antioxidants (Basel) 2024; 13:969. [PMID: 39199215 PMCID: PMC11352202 DOI: 10.3390/antiox13080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Gamma-oryzanol (ORY), found in rice (Oryza sativa L.), is a mixture of ferulic acid esters with triterpene alcohols, well-known for its antioxidant and anti-inflammatory properties. Our past research demonstrated its positive impact on cognitive function in adult mice, influencing synaptic plasticity and neuroprotection. In this study, we explored whether ORY can exert neuro-differentiating effects by using different experimental models. For this purpose, chemical characterization identified four components that are most abundant in ORY. In human neuroblastoma cells, we showed ORY's ability to stimulate neurite outgrowth, upregulating the expression of GAP43, BDNF, and TrkB genes. In addition, ORY was found to guide adult mouse hippocampal neural progenitor cells (NPCs) toward a neuronal commitment. Microinjection of ORY in zebrafish Tg (-3.1 neurog1:GFP) amplified neurog1-GFP signal, islet1, and bdnf mRNA levels. Zebrafish nrf2a and nrf2b morphants (MOs) were utilized to assess ORY effects in the presence or absence of Nrf2. Notably, ORY's ability to activate bdnf was nullified in nrf2a-MO and nrf2b-MO. Furthermore, computational analysis suggested ORY's single components have different affinities for the Keap1-Kelch domain. In conclusion, although more in-depth studies are needed, our findings position ORY as a potential source of bioactive molecules with neuro-differentiating potential involving the Nrf2 pathway.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy;
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, University of Piemonte Orientale, 28100 Novara, Italy; (V.B.); (M.G.)
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Sara A. Bonini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Emanuela Tirelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, University of Piemonte Orientale, 28100 Novara, Italy; (V.B.); (M.G.)
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| |
Collapse
|
12
|
Meng J, Fang J, Bao Y, Chen H, Hu X, Wang Z, Li M, Cheng Q, Dong Y, Yang X, Zou Y, Zhao D, Tang J, Zhang W, Chen C. The biphasic role of Hspb1 on ferroptotic cell death in Parkinson's disease. Theranostics 2024; 14:4643-4666. [PMID: 39239519 PMCID: PMC11373631 DOI: 10.7150/thno.98457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/21/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Ferroptosis-driven loss of dopaminergic neurons plays a pivotal role in the pathogenesis of Parkinson's disease (PD). In PD patients, Hspb1 is commonly observed at abnormally high levels in the substantia nigra. The precise consequences of Hspb1 overexpression in PD, however, have yet to be fully elucidated. Methods: We used human iPSC-derived dopaminergic neurons and Coniferaldehyde (CFA)-an Nrf2 agonist known for its ability to cross the blood-brain barrier-to investigate the role of Hspb1 in PD. We examined the correlation between Hspb1 overexpression and Nrf2 activation and explored the transcriptional regulation of Hspb1 by Nrf2. Gene deletion techniques were employed to determine the necessity of Nrf2 and Hspb1 for CFA's neuroprotective effects. Results: Our research demonstrated that Nrf2 can upregulate the transcription of Hspb1 by directly binding to its promoter. Deletion of either Nrf2 or Hspb1 gene abolished the neuroprotective effects of CFA. The Nrf2-Hspb1 pathway, newly identified as a defense mechanism against ferroptosis, was shown to be essential for preventing neurodegeneration progression. Additionally, we discovered that prolonged overexpression of Hspb1 leads to neuronal death and that Hspb1 released from ruptured cells can trigger secondary cell death in neighboring cells, exacerbating neuroinflammatory responses. Conclusions: These findings highlight a biphasic role of Hspb1 in PD, where it initially provides neuroprotection through the Nrf2-Hspb1 pathway but ultimately contributes to neurodegeneration and inflammation when overexpressed. Understanding this dual role is crucial for developing therapeutic strategies targeting Hspb1 and Nrf2 in PD.
Collapse
Affiliation(s)
- Jieyi Meng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinyu Fang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huizhu Chen
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xiaodan Hu
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Quancheng Cheng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yaqiong Dong
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jiping Tang
- Physiology and Pharmacology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92350, USA
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
13
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Dietary sulforaphane glucosinolate mitigates depression-like behaviors in mice with hepatic ischemia/reperfusion injury: A role of the gut-liver-brain axis. J Psychiatr Res 2024; 176:129-139. [PMID: 38857554 DOI: 10.1016/j.jpsychires.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Nutrition has been increasingly recognized for its use in mental health. Depression is commonly observed in patients with chronic liver disease (CLD). Building on our recent findings of depression-like behaviors in mice with hepatic ischemia/reperfusion (HI/R) injury, mediated by the gut-liver-brain axis, this study explored the potential influence of dietary sulforaphane glucosinolate (SGS) on these behaviors. Behavioral assessments for depression-like behaviors were conducted 7 days post either sham or HI/R injury surgery. Dietary intake of SGS significantly prevented splenomegaly, systemic inflammation, depression-like behaviors, and downregulation of synaptic proteins in the prefrontal cortex (PFC) of HI/R-injured mice. Through 16S rRNA analysis and untargeted metabolomic analyses, distinct bacterial profiles and metabolites were identified between control + HI/R group and SGS + HI/R group. Correlations were observed between the relative abundance of gut microbiota and both behavioral outcomes and blood metabolites. These findings suggest that SGS intake could mitigate depression-like phenotypes in mice with HI/R injury, potentially through the gut-liver-brain axis. Additionally, SGS, found in crucial vegetables like broccoli, could offer prophylactic nutritional benefits for depression in patients with CLD.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
14
|
Jambi EJ, Alamri A, Afzal M, Al-Abbasi FA, Al-Qahtani SD, Almalki NAR, Bawadood AS, Alzarea SI, Sayyed N, Kazmi I. 6-shogaol against 3-Nitropropionic acid-induced Huntington's disease in rodents: Based on molecular docking/targeting pro-inflammatory cytokines/NF-κB-BDNF-Nrf2 pathway. PLoS One 2024; 19:e0305358. [PMID: 39008492 PMCID: PMC11249262 DOI: 10.1371/journal.pone.0305358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats. METHODS A total of thirty male Wistar rats received 6-shogaol (10 and 20 mg/kg, per oral) an hour before injection of 3-NPA (10 mg/kg i.p.) for 15 days. Behavioral tests were performed, including narrow beam walk, rotarod test, and grip strength test. Biochemical tests promoting oxidative stress were evaluated [superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and malondialdehyde (MDA)], including changes to neurotransmitters serotonin (5-HT), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), (3,4-dihydroxyphenylacetic acid (DOPAC), γ-aminobutyric acid (GABA), and 5-hydroxy indole acetic acid (5-HIAA), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukins-1β (IL-1β), IL-6, brain-derived neurotrophic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2). The 6-shogaol was docked to the active site of TNF-α (2AZ5), NF-κB (1SVC), BDNF) [1B8M], and Nrf2 [5FZN] proteins using AutoDock tools. RESULTS The 6-shogaol group significantly improved behavioral activity over the 3-NPA-injected control rats. Moreover, 3-NPA-induced significantly altered neurotransmitters, biochemical and neuroinflammatory indices, which could efficiently be reversed by 6-shogaol. The 6-shogaol showed favorable negative binding energies at -9.271 (BDNF) kcal/mol. CONCLUSIONS The present investigation demonstrated the neuroprotective effects of 6-shogaol in an experimental animal paradigm against 3-NPA-induced HD in rats. The suggested mechanism is supported by immunohistochemical analysis and western blots, although more research is necessary for definite confirmation.
Collapse
Affiliation(s)
- Ebtihaj J. Jambi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa D. Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Naif A. R. Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah Salim Bawadood
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, India
| | - Imran Kazmi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Thirupathi A, Marqueze LF, Outeiro TF, Radak Z, Pinho RA. Physical Exercise-Induced Activation of NRF2 and BDNF as a Promising Strategy for Ferroptosis Regulation in Parkinson's Disease. Neurochem Res 2024; 49:1643-1654. [PMID: 38782838 DOI: 10.1007/s11064-024-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.
Collapse
Affiliation(s)
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo A Pinho
- Faculty of Sports Science, Ningbo University, Ningbo, China.
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
16
|
Wei L, He H, Yang S, Shi Q, Wang X, Huang L, Lu J, Shen Y, Zhi K, Xiang J, Chen C, Mo J, Zheng Z, Zou Y, Yang X, Tang S, Li X, Lu C. Synergistic suppression of BDNF via epigenetic mechanism deteriorating learning and memory impairment caused by Mn and Pb co-exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116365. [PMID: 38657452 DOI: 10.1016/j.ecoenv.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1β, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.
Collapse
Affiliation(s)
- Lancheng Wei
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hongjian He
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shuting Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University) , Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Liyuan Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jianyong Lu
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yinghui Shen
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kaikai Zhi
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junni Xiang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Chengying Chen
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Jiao Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zhijian Zheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University) , Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
17
|
Dubey H, Ray A, Dubey A, Gulati K. S-Nitrosoglutathione Attenuates Oxidative Stress and Improves Retention Memory Dysfunctions in Intra-Cerebroventricular-Streptozotocin Rat Model of Sporadic Alzheimer's Disease via Activation of BDNF and Nuclear Factor Erythroid 2-Related Factor-2 Antioxidant Signaling Pathway. Neuropsychobiology 2024; 83:101-113. [PMID: 38744261 DOI: 10.1159/000538348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aβ)-40, Aβ42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aβ levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.
Collapse
Affiliation(s)
- Harikesh Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Arunabha Ray
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Departments of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Hamdard University, New Delhi, India
| | - Anamika Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Kavita Gulati
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
18
|
Pingale TD, Gupta GL. Oleanolic acid-based therapeutics ameliorate rotenone-induced motor and depressive behaviors in parkinsonian male mice via controlling neuroinflammation and activating Nrf2-BDNF-dopaminergic signaling pathways. Toxicol Mech Methods 2024; 34:335-349. [PMID: 38084769 DOI: 10.1080/15376516.2023.2288198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 04/20/2024]
Abstract
Parkinson's disease (PD) is often accompanied by depression, which may appear before motor signs. Oleanolic acid (OA), a pentacyclic triterpenoid substance, have many pharmacological properties. However, its efficacy in treating PD-related chronic unpredictable stress (CUS) is unknown. Our study used behavioral, biochemical, and immunohistochemical techniques to assess how OA affected PDrelated CUS. Rotenone (1 mg/kg i.p. for first 21 days) was used to induce Parkinsonism, and modest psychological & environmental stresses generated CUS (from day 22 to day 43) in animals. The study included daily i.p.administration of OA (5, 10, and 20 mg/kg) from day 1 to day 57 in male swiss albino mice. Animals were evaluated for behavioral, biochemical parameters, neurotransmitters, and immunohistochemical expression following the treatment. Results of the study revealed that treatment with OA at all doses alleviated the core symptoms of CUS linked to PD and improved motor and non-motor function. OA therapy significantly lowered IL-1β, TNF-α (p < 0.01, < 0.01, < 0.001), IL-6 (p < 0.05, < 0.01, < 0.001), oxidative stress (p < 0.05, < 0.01, < 0.01), and elevated norepinephrine (p < 0.05, < 0.01, < 0.01), dopamine, and serotonin (p < 0.05, < 0.01, < 0.001) levels. Moreover, OA therapy substantially reduced α-synuclein (p < 0.05, < 0.01, < 0.01) aggregation and increased BDNF (p < 0.05, < 0.01, < 0.001) & Nrf-2 (p < 0.05, < 0.01, < 0.01) levels, which boosts neuronal dopamine survival. The study's findings indicated that OA ameliorates depressive-like behavior persuaded by CUS in PD, decreases neuroinflammation, and improves neurotransmitter concentration via activating Nrf2-BDNF-dopaminergic pathway.
Collapse
Affiliation(s)
- Tanvi Dayanand Pingale
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
| | - Girdhari Lal Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur India
| |
Collapse
|
19
|
Gammoh O, Akasheh RT, Qnais E, Al-Taber S, Athamneh RY, Hafiz AA, Alqudah A, Aljabali AAA, Tambuwala MM. Unraveling the potential of vitamins C and D as adjuvants in depression treatment with escitalopram in an LPS animal model. Inflammopharmacology 2024; 32:1147-1157. [PMID: 38180676 PMCID: PMC11006785 DOI: 10.1007/s10787-023-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024]
Abstract
Depression is linked with oxidative stress and inflammation, where key players include nitric oxide (NO), nuclear factor erythroid 2-related factor 2 (Nrf2), Brain-Derived Neurotrophic Factor (BDNF), and Heme Oxidase-1 (HO-1). Augmenting the efficacy of antidepressants represents a compelling avenue of exploration. We explored the potential of vitamins C and D as adjuncts to escitalopram (Esc) in a lipopolysaccharide (LPS)-induced depression model focusing on the aforementioned biomarkers. Male Swiss albino mice were stratified into distinct groups: control, LPS, LPS + Esc, LPS + Esc + Vit C, LPS + Esc + Vit D, and LPS + Esc + Vit C + Vit D. After a 7-day treatment period, a single LPS dose (2 mg/kg), was administered, followed by comprehensive assessments of behavior and biochemical parameters. Notably, a statistically significant (p < 0.05) alleviation of depressive symptoms was discerned in the Esc + Vit C + Vit D group versus the LPS group, albeit with concomitant pronounced sedation evident in all LPS-treated groups (p < 0.05). Within the cortex, LPS reduced (p < 0.05) the expression levels of NOx, Nrf2, BDNF, and HO-1, with only HO-1 being reinstated to baseline in the LPS + Esc + Vit D and the LPS + Esc + Vit C + Vit D groups. Conversely, the hippocampal NOx, Nrf2, and HO-1 levels remained unaltered following LPS administration. Notably, the combination of Esc, Vit C, and Vit D effectively restored hippocampal BDNF levels, which had been diminished by Esc alone. In conclusion, vitamins C and D enhance the therapeutic effects of escitalopram through a mechanism independent of Nrf2. These findings underscore the imperative need for in-depth investigations.
Collapse
Affiliation(s)
- Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Al Yarmouk University, Irbid, Jordan.
| | - Rand T Akasheh
- Department of Nutrition and Dietetics, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sara Al-Taber
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Rabaa Y Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Science, Zarqa University, Zarqa, 13133, Jordan
| | - Amin A Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AI-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
20
|
Mohamed DA, Fouda K, Mabrok HB, El-Shamarka ME, Hamed IM. Sourdough bread as nutritional intervention tool for improvement of cognitive dysfunction in diabetic rats. BMC Nutr 2024; 10:53. [PMID: 38528644 DOI: 10.1186/s40795-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The current research targeted to study the impact of nutritional intervention by two sourdough breads in improvement of cognitive dysfunction in diabetic rats. METHODS Type-2 diabetes was induced in rats by Streptozotocin-Nicotinamide (STZ-NC). Diabetic rats were fed on balanced diet or balanced diet containing 20% of sourdough bread I or II for a month. Lipid profile, oxidative stress, inflammatory markers and cognitive functions were assessed in all rats. Gene expression of brain-derived neurotrophic factor (BDNF) and nuclear respiratory factor 2 (NRF-2) were assessed in hippocampal tissue, while expression of phosphoenol pyruvate carboxy kinase (PEPCK), and glucose transporter 2 (GLUT2) genes were evaluated in hepatic tissue. Chemical composition and fatty acids profile were evaluated in the prepared sourdough bread. RESULTS Sourdough bread II showed higher content of phenolic compounds, fat, fiber and carbohydrates. Fatty acids profile revealed that sourdough bread I was higher in saturated fatty acids (16.08%), while sourdough bread sample II was higher in unsaturated fatty acids (79.33%). Sourdough bread I or II feeding rats' showed significant improvement in hyperglycemia, oxidative stress markers, inflammatory markers, lipid profile, liver and kidney functions in association with improvement in cognitive function. Gene expression of BDNF and NRF2 in hippocampal tissue were increased significantly, while hepatic GLUT2 and PEPCK gene expression were down-regulated in diabetic given sourdough bread I or II. CONCLUSION Sourdough bread II was superior in all the studied parameters. The anti-diabetic effect and protection from cognitive dysfunction of sourdough bread samples may be ascribed to the occurrence of dietary fibers, phenolic compounds, and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Karem Fouda
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa E El-Shamarka
- Toxicology and Narcotics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ibrahim M Hamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
21
|
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev 2024:nuae025. [PMID: 38511504 DOI: 10.1093/nutrit/nuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CONTEXT Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention. OBJECTIVE This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models. DATA SOURCES AND EXTRACTION Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards. DATA ANALYSIS In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus. CONCLUSION This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| | - Fatemeh Hoseinpour
- Department of Occupational Therapy, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
22
|
Xiang Y, Song X, Long D. Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Arch Toxicol 2024; 98:579-615. [PMID: 38265475 PMCID: PMC10861688 DOI: 10.1007/s00204-023-03660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.
Collapse
Affiliation(s)
- Yao Xiang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
23
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
24
|
McCallum RT, Thériault RK, Manduca JD, Russell ISB, Culmer AM, Doost JS, Martino TA, Perreault ML. Nrf2 activation rescues stress-induced depression-like behaviour and inflammatory responses in male but not female rats. Biol Sex Differ 2024; 15:16. [PMID: 38350966 PMCID: PMC10863247 DOI: 10.1186/s13293-024-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a recurring affective disorder that is two times more prevalent in females than males. Evidence supports immune system dysfunction as a major contributing factor to MDD, notably in a sexually dimorphic manner. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of antioxidant signalling during inflammation, is dysregulated in many chronic inflammatory disorders; however, its role in depression and the associated sex differences have yet to be explored. Here, we investigated the sex-specific antidepressant and immunomodulatory effects of the potent Nrf2 activator dimethyl fumarate (DMF), as well as the associated gene expression profiles. METHODS Male and female rats were treated with vehicle or DMF (25 mg/kg) whilst subjected to 8 weeks of chronic unpredictable stress. The effect of DMF treatment on stress-induced depression- and anxiety-like behaviours, as well as deficits in recognition and spatial learning and memory were then assessed. Sex differences in hippocampal (HIP) microglial activation and gene expression response were also evaluated. RESULTS DMF treatment during stress exposure had antidepressant effects in male but not female rats, with no anxiolytic effects in either sex. Recognition learning and memory and spatial learning and memory were impaired in chronically stressed males and females, respectively, and DMF treatment rescued these deficits. DMF treatment also prevented stress-induced HIP microglial activation in males. Conversely, females displayed no HIP microglial activation associated with stress exposure. Last, chronic stress elicited sex-specific alterations in HIP gene expression, many of which were normalized in animals treated with DMF. Of note, most of the differentially expressed genes in males normalized by DMF were related to antioxidant, inflammatory or immune responses. CONCLUSIONS Collectively, these findings support a greater role of immune processes in males than females in a rodent model of depression. This suggests that pharmacotherapies that target Nrf2 have the potential to be an effective sex-specific treatment for depression.
Collapse
Affiliation(s)
- Ryan T McCallum
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Rachel-Karson Thériault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Joshua D Manduca
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Isaac S B Russell
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Angel M Culmer
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Tami A Martino
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
25
|
Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, Chavarría A, González-Hernández A. Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System. Arch Med Res 2024; 55:102916. [PMID: 38039802 DOI: 10.1016/j.arcmed.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.
Collapse
Affiliation(s)
| | - Rosa Ventura-Martínez
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Claudia Gómez-Acevedo
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Francisco Carrasco
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl Sampieri-Cabrera
- Phyisiology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Experimental Medicine Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
26
|
Kazmi S, Farajdokht F, Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Pasokh A, Farzipour M, Farazi N, Hamblin MR, Mahmoudi J. Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res 2023; 1821:148583. [PMID: 37717889 DOI: 10.1016/j.brainres.2023.148583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pasokh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Mohammad Farzipour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Baranova K, Nalivaeva N, Rybnikova E. Neuroadaptive Biochemical Mechanisms of Remote Ischemic Conditioning. Int J Mol Sci 2023; 24:17032. [PMID: 38069355 PMCID: PMC10707673 DOI: 10.3390/ijms242317032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined. Based on the close interplay between the effects of ischemia, especially those mediated by interaction of hypoxia-inducible factors (HIFs) and steroid hormones, the involvement of the hypothalamic-pituitary-adrenocortical system in remote ischemic conditioning is also discussed.
Collapse
Affiliation(s)
| | | | - Elena Rybnikova
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (K.B.); (N.N.)
| |
Collapse
|
28
|
Gammoh O, Qnais EY, Athamneh RY, Al-Jaidi B, Al-Tawalbeh D, Altaber S, Alqudah A, Aljabali AAA, Tambuwala MM. Unraveling the Potential of Isorhamnetin as an Adjuvant in Depression Treatment with Escitalopram. Curr Issues Mol Biol 2023; 45:7668-7679. [PMID: 37754268 PMCID: PMC10530211 DOI: 10.3390/cimb45090484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Oxidative stress and inflammation are implicated in depression. While selective serotonin reuptake inhibitors (SSRIs) like escitalopram are commonly prescribed as first-line treatments, their inconsistent efficacy and delayed onset of action necessitates the exploration of adjunctive therapies. Isorhamnetin, a flavonol, has shown antioxidant and anti-inflammatory properties that makes exploring its antidepressant effect attractive. This study aims to investigate the adjuvant potential of isorhamnetin in combination with escitalopram to enhance its antidepressant efficacy in a lipopolysaccharide (LPS)-induced depression model using Swiss albino mice. Behavioral paradigms, such as the forced swim test and open field test, were employed to assess depressive symptoms, locomotion, and sedation. Additionally, enzyme-linked immunosorbent assays were utilized to measure Nrf2, BDNF, HO-1, NO, and IL-6 levels in the prefrontal cortex and hippocampus. The results demonstrate that isorhamnetin significantly improves the antidepressant response of escitalopram, as evidenced by reduced floating time in the forced swim test. Moreover, isorhamnetin enhanced antidepressant effects of escitalopram and effectively restored depleted levels of Nrf2, BDNF, and HO-1 in the cortex caused by LPS-induced depression. Isorhamnetin shows promise in enhancing the efficacy of conventional antidepressant therapy through antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Esam Y. Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan; (E.Y.Q.); (S.A.)
| | - Rabaa Y. Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Science, Zarqa University, Zarqa 13133, Jordan;
| | - Bilal Al-Jaidi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (B.A.-J.); (D.A.-T.)
| | - Deniz Al-Tawalbeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (B.A.-J.); (D.A.-T.)
| | - Sara Altaber
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan; (E.Y.Q.); (S.A.)
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
29
|
Alamri HS, Mufti R, Sabir DK, Abuderman AA, Dawood AF, ShamsEldeen AM, Haidara MA, Isenovic ER, El-Bidawy MH. Forced Swimming-Induced Depressive-like Behavior and Anxiety Are Reduced by Chlorpheniramine via Suppression of Oxidative and Inflammatory Mediators and Activating the Nrf2-BDNF Signaling Pathway. Curr Issues Mol Biol 2023; 45:6449-6465. [PMID: 37623226 PMCID: PMC10453464 DOI: 10.3390/cimb45080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The first-generation antihistamine chlorpheniramine (CPA) is believed to have both anxiolytic and antidepressant properties. The current study sought to assess the mechanisms behind the antidepressant and anxiolytic effects of CPA therapy concerning oxidative stress, inflammation, and nuclear factor p45 for erythroid 2-Brain-derived neurotrophic factor (Nrf2-BDNF) signaling pathway in forced swimming-induced depressive-like behavior and anxiety. Eighteen male Wistar rats (180-200 gm) rats were separated into three groups (n = 6): a stressed group (acute stress) that underwent the forced swimming test (FST) and a stressed group that received pretreatment with CPA (10 mg/kg body weight) for 3 weeks (CPA + acute stress). Animals were subsequently put through the following behavioral tests after undergoing a forced swim test (FST) for 5 min: an immobility test, open field test, and elevated plus maze test. Serum cortisol levels were measured when the rats were euthanized at the end of the experiments. Brain neurotransmitters (cortisol, serotonin, and noradrenaline), oxidative stress (SOD and MDA), inflammatory (IL-6 and IL-1) biomarkers, and the Nrf2-BDNF signaling pathway in the hippocampus and cerebral cortex tissues was determined. CPA prevented stress-induced increases in cortisol levels (p < 0.0001), decreased brain neurotransmitters, and increased oxidative stress and inflammation. CPA also upregulated the Nrf2-BDNF signaling pathway. Thus, CPA mitigates depressive-like behavior and anxiety by inhibiting oxidative stress and inflammation and upregulating the Nrf2-BDNF signaling pathway in the brain tissues.
Collapse
Affiliation(s)
- Hasan S. Alamri
- Department of Internal Medicine, College of Medicine, King Khalid University, P.O. Box 641, Abha 61421, Saudi Arabia;
| | - Rana Mufti
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Deema Kamal Sabir
- Department of Medical-Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdulwahab A. Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 11942, Al-Kharj 16278, Saudi Arabia; (A.A.A.); (M.H.E.-B.)
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box. 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa M. ShamsEldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
- Department of Physiology, Faculty of Medicine, October 6 University, Cairo 11566, Egypt
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mahmoud H. El-Bidawy
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 11942, Al-Kharj 16278, Saudi Arabia; (A.A.A.); (M.H.E.-B.)
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
| |
Collapse
|
30
|
Chen T, Cheng L, Ma J, Yuan J, Pi C, Xiong L, Chen J, Liu H, Tang J, Zhong Y, Zhang X, Liu Z, Zuo Y, Shen H, Wei Y, Zhao L. Molecular mechanisms of rapid-acting antidepressants: New perspectives for developing antidepressants. Pharmacol Res 2023; 194:106837. [PMID: 37379962 DOI: 10.1016/j.phrs.2023.106837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Major depressive disorder (MDD) is a chronic relapsing psychiatric disorder. Conventional antidepressants usually require several weeks of continuous administration to exert clinically significant therapeutic effects, while about two-thirds of the patients are prone to relapse of symptoms or are completely ineffective in antidepressant treatment. The recent success of the N-methyl-D-aspartic acid (NMDA) receptor antagonist ketamine as a rapid-acting antidepressant has propelled extensive research on the action mechanism of antidepressants, especially in relation to its role in synaptic targets. Studies have revealed that the mechanism of antidepressant action of ketamine is not limited to antagonism of postsynaptic NMDA receptors or GABA interneurons. Ketamine produces powerful and rapid antidepressant effects by affecting α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, adenosine A1 receptors, and the L-type calcium channels, among others in the synapse. More interestingly, the 5-HT2A receptor agonist psilocybin has demonstrated potential for rapid antidepressant effects in depressed mouse models and clinical studies. This article focuses on a review of new pharmacological target studies of emerging rapid-acting antidepressant drugs such as ketamine and hallucinogens (e.g., psilocybin) and briefly discusses the possible strategies for new targets of antidepressants, with a view to shed light on the direction of future antidepressant research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ling Cheng
- Hospital-Acquired Infection Control Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiyuan Yuan
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of medicinal chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, Sichuan 646000, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan 646000, China
| | - Hongping Shen
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
31
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
32
|
Català-Solsona J, Lituma PJ, Lutzu S, Siedlecki-Wullich D, Fábregas-Ordoñez C, Miñano-Molina AJ, Saura CA, Castillo PE, Rodriguez-Álvarez J. Activity-Dependent Nr4a2 Induction Modulates Synaptic Expression of AMPA Receptors and Plasticity via a Ca 2+/CRTC1/CREB Pathway. J Neurosci 2023; 43:3028-3041. [PMID: 36931707 PMCID: PMC10146469 DOI: 10.1523/jneurosci.1341-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Transcription factors have a pivotal role in synaptic plasticity and the associated modification of neuronal networks required for memory formation and consolidation. The nuclear receptors subfamily 4 group A (Nr4a) have emerged as possible modulators of hippocampal synaptic plasticity and cognitive functions. However, the molecular and cellular mechanisms underlying Nr4a2-mediated hippocampal synaptic plasticity are not completely known. Here, we report that neuronal activity enhances Nr4a2 expression and function in cultured mouse hippocampal neurons (both sexes) by an ionotropic glutamate receptor/Ca2+/cAMP response element-binding protein/CREB-regulated transcription factor 1 (iGluR/Ca2+/CREB/CRTC1) pathway. Nr4a2 activation mediates BDNF production and increases expression of iGluRs, thereby affecting LTD at CA3-CA1 synapses in acute mouse hippocampal slices (both sexes). Together, our results indicate that the iGluR/Ca2+/CREB/CRTC1 pathway mediates activity-dependent expression of Nr4a2, which is involved in glutamatergic synaptic plasticity by increasing BDNF and synaptic GluA1-AMPARs. Therefore, Nr4a2 activation could be a therapeutic approach for brain disorders associated with dysregulated synaptic plasticity.SIGNIFICANCE STATEMENT A major factor that regulates fast excitatory synaptic transmission and plasticity is the modulation of synaptic AMPARs. However, despite decades of research, the underlying mechanisms of this modulation remain poorly understood. Our study identified a molecular pathway that links neuronal activity with AMPAR modulation and hippocampal synaptic plasticity through the activation of Nr4a2, a member of the nuclear receptor subfamily 4. Since several compounds have been described to activate Nr4a2, our study not only provides mechanistic insights into the molecular pathways related to hippocampal synaptic plasticity and learning, but also identifies Nr4a2 as a potential therapeutic target for pathologic conditions associated with dysregulation of glutamatergic synaptic function.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo J Lituma
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Dolores Siedlecki-Wullich
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Cristina Fábregas-Ordoñez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Alfredo J Miñano-Molina
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Carlos A Saura
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - José Rodriguez-Álvarez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| |
Collapse
|
33
|
Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex. Psychopharmacology (Berl) 2023; 240:713-724. [PMID: 36847832 DOI: 10.1007/s00213-022-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 03/01/2023]
Abstract
RATIONALE Sepsis is a severe inflammatory response to infection that leads to long-lasting cognitive impairment and depression after resolution. The lipopolysaccharide (LPS)-induced endotoxaemia model is a well-established model of gram-negative bacterial infection and recapitulates the clinical characteristics of sepsis. However, whether LPS-induced endotoxaemia during adolescence can modulate depressive and anxiety-like behaviours in adulthood remains unclear. OBJECTIVES To determine whether LPS-induced endotoxaemia in adolescence can modulate the stress vulnerability to depressive and anxiety-like behaviours in adulthood and explore the underlying molecular mechanisms. METHODS Quantitative real-time PCR was used to measure inflammatory cytokine expression in the brain. A stress vulnerability model was established by exposure to subthreshold social defeat stress (SSDS), and depressive- and anxiety-like behaviours were evaluated by the social interaction test (SIT), sucrose preference test (SPT), tail suspension test (TST), force swimming test (FST), elevated plus-maze (EPM) test, and open field test (OFT). Western blotting was used to measure Nrf2 and BDNF expression levels in the brain. RESULTS Our results showed that inflammation occurred in the brain 24 h after the induction of LPS-induced endotoxaemia at P21 but resolved in adulthood. Furthermore, LPS-induced endotoxaemia during adolescence promoted the inflammatory response and the stress vulnerability after SSDS during adulthood. Notably, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and BDNF in the mPFC were decreased after SSDS exposure in mice treated with LPS during adolescence. Activation of the Nrf2-BDNF signalling pathway by sulforaphane (SFN), an Nrf2 activator, ameliorated the effect of LPS-induced endotoxaemia during adolescence on stress vulnerability after SSDS during adulthood. CONCLUSIONS Our study identified adolescence as a critical period during which LPS-induced endotoxaemia can promote stress vulnerability during adulthood and showed that this effect is mediated by impairment of Nrf2-BDNF signalling in the mPFC.
Collapse
|
34
|
Sani G, Margoni S, Brugnami A, Ferrara OM, Bernardi E, Simonetti A, Monti L, Mazza M, Janiri D, Moccia L, Kotzalidis GD, Chieffo DPR, Janiri L. The Nrf2 Pathway in Depressive Disorders: A Systematic Review of Animal and Human Studies. Antioxidants (Basel) 2023; 12:antiox12040817. [PMID: 37107192 PMCID: PMC10135298 DOI: 10.3390/antiox12040817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is increasing interest in the involvement of antioxidative systems in protecting from depression. Among these, Nrf2 occupies a central place. We aimed to review the role of Nrf2 in depression. For this reason, we conducted a PubMed search using as search strategy (psychiatr*[ti] OR schizo*[ti] OR psychot*[ti] OR psychos*[ti] OR depress*[ti] OR MDD[ti] OR BD[ti] OR bipolar[ti] OR Anxiety[ti] OR antidepress*[ti] OR panic[ti] OR obsess*[ti] OR compulsio*[ti] OR “mood disord*”[ti] OR phobi*[ti] OR agoraphob*[ti] OR anorex*[ti] OR anorect*[ti] OR bulimi*[ti] OR “eating disorder*”[ti] OR neurodevelopm*[ti] OR retardation[ti] OR autism[ti] OR autistic[ti] OR ASM[ti] OR adhd[ti] OR “attention-deficit”[ti]) AND nrf2, which on the 9th of March produced 208 results of which 89 were eligible for our purposes. Eligible articles were studies reporting data of Nrf2 manipulations or content by any treatment in human patients or animals with any animal model of depression. Most studies were on mice only (N = 58), 20 on rats only, and three on both rats and mice. There were two studies on cell lines (in vitro) and one each on nematodes and fish. Only four studies were conducted in humans, one of which was post mortem. Most studies were conducted on male animals; however, human studies were carried out on both men and women. The results indicate that Nrf2 is lower in depression and that antidepressant methods (drugs or other methods) increase it. Antioxidant systems and plasticity-promoting molecules, such as those in the Nrf2–HO-1, BDNF–TrkB, and cyclic AMP–CREB pathways, could protect from depression, while glycogen synthase kinase-3β and nuclear factor κB oppose these actions, thus increasing depressive-like behaviours. Since Nrf2 is also endowed with tumorigenic and atherogenic potential, the balance between benefits and harms must be taken into account in designing novel drugs aiming at increasing the intracellular content of Nrf2.
Collapse
Affiliation(s)
- Gabriele Sani
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
- Correspondence:
| | - Stella Margoni
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Brugnami
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ottavia Marianna Ferrara
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Evelina Bernardi
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessio Simonetti
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Centro Lucio Bini, Via Crescenzio 42, 00193 Rome, Italy
| | - Laura Monti
- UOS Clinical Psychology, Clinical Government, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Marianna Mazza
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Delfina Janiri
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Lorenzo Moccia
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Georgios D. Kotzalidis
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
- NESMOS Department, Faculty of Medicine and Psychology, Sant’Andrea University Hospital, University of Rome La Sapienza, Via di Grottarossa, 1035-1039, 00189 Rome, Italy
| | - Daniela Pia Rosaria Chieffo
- UOS Clinical Psychology, Clinical Government, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Luigi Janiri
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Hearth, Rome, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| |
Collapse
|
35
|
Changes in mRNA and miRNA expression in the prelimbic cortex related to depression-like syndrome induced by chronic social defeat stress in mice. Behav Brain Res 2023; 438:114211. [PMID: 36368442 DOI: 10.1016/j.bbr.2022.114211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Major depressive disorder is a complex psychiatric disorder with a high prevalence rate worldwide. Previous studies have demonstrated the involvement of the prelimbic cortex (PL) in mediating depressive-like behavior, however, the exact molecular mechanism taking place in the PL remains unclear. In the present study, we conducted high-throughput sequencing of mRNAs and miRNAs in PL tissue harvested from chronic social defeat stress (CSDS) susceptible male mice. We identified 59 differentially expressed mRNAs and 6 differentially expressed miRNAs, in which 40 mRNAs and 3 miRNAs were up-regulated, while 19 mRNAs and 3 miRNAs were down-regulated. Integrated analysis of miRNA-mRNA networks suggested that GPR35 signaling might be involved in CSDS-induced depressive-like behaviors. RT-PCR and western blot assays validated that Abra, Sell and GPR35 were up-regulated. Functionally, inhibition of GPR35 in the PL ameliorated CSDS-induced depressive-like behaviors. Thus, the present study provided a global view of mRNA and miRNA profiles in the PL of male stress susceptible mice, and suggested that GPR35 signaling was associated with CSDS-induced depressive-like behaviors. These results may be valuable for further investigations of the molecular regulatory mechanisms in stress-induced depression.
Collapse
|
36
|
Carnosic Acid Mitigates Depression-Like Behavior in Ovariectomized Mice via Activation of Nrf2/HO-1 Pathway. Mol Neurobiol 2023; 60:610-628. [PMID: 36331794 PMCID: PMC9849300 DOI: 10.1007/s12035-022-03093-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The peri- and post-menopausal periods have been described as the "window of vulnerability" for the development of depressive symptoms that impair women activities and quality of life. The etiopathogenesis of these symptoms is multifactorial and may confer resistance to traditional antidepressants. Attention is now directed toward phytochemicals for their pleiotropic functions and safer profiles. This study investigated the possible perturbation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways as an underlying mechanism of post-ovariectomy depression and highlighted the potential benefits of carnosic acid (CA) on the associated behavioral, biochemical, and histopathological alterations. Female Balb/c mice were randomly assigned to be sham-operated or ovariectomized (OVX). After 3 weeks, OVX mice received either a vehicle, CA (20 mg/kg/day), or tin protoporphyrin IX (SnPP-IX; a heme oxygenase-1 (HO-1) inhibitor; 50 μmol/kg/day) for 3 weeks. Our findings revealed that OVX mice had depressive but not anxiety-like behavior. Suppressed Nrf2 and its downstream signaling, and augmented proinflammatory markers were observed in both the hippocampus and prefrontal cortex. CA treatment alleviated depressive behavior, induced the expression of Nrf2, HO-1, thioredoxin-1, and brain-derived neurotrophic factor, and enhanced serotonin levels. CA also suppressed oxidative stress, reduced TNF-α, IL-1β, and iNOS mRNA expression, and ameliorated OVX-induced histopathological changes. SnPP-IX aggravated post-OVX behavioral, neurobiochemical, and histological deteriorations, and reduced CA-protective effects. In conclusion, Nrf2/HO-1 signaling suppression and the associated proinflammatory state are key mechanisms in post-OVX depression. CA exerts multifaceted neuroprotection in OVX mice and represents a promising candidate for clinical evaluation as an antidepressant.
Collapse
|
37
|
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y, Miao J, Zhu L, Chen J, Jiang Y, Wang F. Nrf2: An all-rounder in depression. Redox Biol 2022; 58:102522. [PMID: 36335763 PMCID: PMC9641011 DOI: 10.1016/j.redox.2022.102522] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The balance between oxidation and antioxidant is crucial for maintaining homeostasis. Once disrupted, it can lead to various pathological outcomes and diseases, such as depression. Oxidative stress can result in or aggravate a battery of pathological processes including mitochondrial dysfunction, neuroinflammation, autophagical disorder and ferroptosis, which have been found to be involved in the development of depression. Inhibition of oxidative stress and related pathological processes can help improve depression. In this regard, the nuclear factor erythroid 2-related factor 2 (Nrf2) in the antioxidant defense system may play a pivotal role. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damages, but also directly regulate the genes related to the above pathological processes to combat the corresponding alterations. Therefore, targeting Nrf2 has great potential for the treatment of depression. Activation of Nrf2 has antidepressant effect, but the specific mechanism remains to be elucidated. This article reviews the key role of Nrf2 in depression, focusing on the possible mechanisms of Nrf2 regulating oxidative stress and related pathological processes in depression treatment. Meanwhile, we summarize some natural and synthetic compounds targeting Nrf2 in depression therapy. All the above may provide new insights into targeting Nrf2 for the treatment of depression and provide a broad basis for clinical transformation.
Collapse
|
38
|
Moreira LKDS, Turones LC, Campos HM, Nazareth AM, Thomaz DV, Gil EDS, Ghedini PC, Rocha FFD, Menegatti R, Fajemiroye JO, Costa EA. LQFM212, a piperazine derivative, exhibits potential antioxidant effect as well as ameliorates LPS-induced behavioral, inflammatory and oxidative changes. Life Sci 2022; 312:121199. [PMID: 36402170 DOI: 10.1016/j.lfs.2022.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
AIMS Oxidative stress, impaired antioxidant defense and neuroinflammation are often associated with the onset and progression of neuropsychiatric diseases. Conversely, several piperazine compounds presents beneficial neuropharmacological effects as well as antioxidant activity, and some derivatives combine both activities. LQFM212 (2,6-di-tert-butyl-4-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol) was synthesized to produce effects on CNS and to have an additional antioxidant effect. Previous preclinical tests have been shown anxiolytic- and antidepressant-like effects of LQFM212 in mice. Herein, the main objective was to verify the possible antioxidant potential and the effects of LQFM212 against behavioral changes, inflammatory and oxidative markers induced by lipopolysaccharide (LPS). MAIN METHODS Initially, antioxidant potential of LQFM212 was evaluated by electrochemical assays. Afterwards, the effects of oral treatment with LQFM212 were evaluated in mice using LPS-induced models of systemic or local inflammation. KEY FINDINGS In LPS-induced neuroinflammation, LQFM212 treatment reverted changes caused by LPS, demonstrated by attenuated anxiogenic- and depressive-like behaviors, reduced pro-inflammatory cytokines (TNF-α and IL-1β) and increased anti-inflammatory cytokines (IL-4 and IL-10) on serum, and also improved oxidative stress-related changes (levels of nitrite, malondialdehyde, glutathione and carbonylated protein, and superoxide dismutase, catalase, myeloperoxidase and cholinesterase activities) on brain cortex and hippocampus. However, LQFM212 treatment did not attenuate the inflammatory changes in LPS-induced pleurisy model. SIGNIFICANCE LQFM212 presents antioxidant activity and ameliorates behavioral, inflammatory and oxidative changes after LPS-induced neuroinflammation model. These effects do not seem to be secondary to a peripheral anti-inflammatory action of LQFM212, since this compound failed to attenuate the inflammatory changes in LPS-induced pleurisy model.
Collapse
Affiliation(s)
- Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Hericles Mesquita Campos
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biological Sciences, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Aline Martins Nazareth
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Douglas Vieira Thomaz
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eric de Souza Gil
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Paulo César Ghedini
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biological Sciences, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Fábio Fagundes da Rocha
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|
39
|
Nrf2 regulates the arginase 1 + microglia phenotype through the initiation of TREM2 transcription, ameliorating depression-like behavior in mice. Transl Psychiatry 2022; 12:459. [PMID: 36316319 PMCID: PMC9622811 DOI: 10.1038/s41398-022-02227-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
The expression of the triggering receptor on myeloid cell-2 (TREM2) knockdown in microglia from the lateral habenula (LHb) reportedly induces depression-like behaviors in mice. However, the key molecular mechanism that mediates major depressive disorder (MDD) pathogenesis remains elusive. We herein show that Nrf2 regulates TREM2 transcription and effects TREM2 mRNA and protein expression. The activation of Nrf2 by sulforaphane (Nrf2 activator) increases the microglial arginase 1+ phenotype by initiating TREM2 transcription in the medial prefrontal cortex (mPFC) and ameliorates depression-like behavior in CSDS mice. The knockout of Nrf2 decreases TREM2 and the microglial arginase 1+ phenotype in the mPFC of Nrf2 KO mice with depression-like behavior. Downregulating TREM2 expression decreases the microglial arginase 1+ phenotype in the mPFC, resulting in depression-like behavior in SFN-treated CSDS mice. Finally, the knockout of Nrf2 and downregulation of TREM2 expression decreases the microglial arginase 1+ phenotype in the mPFC of Nrf2 KO mice and SFN-treated CSDS mice were associated with the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling pathway. These data indicate that alterations in the interaction between Nrf2 and TREM2 may play a role in the pathophysiology of depression-like behavior in mice.
Collapse
|
40
|
Ma L, Wang L, Chang L, Shan J, Qu Y, Wang X, Wan X, Fujita Y, Hashimoto K. A key role of miR-132-5p in the prefrontal cortex for persistent prophylactic actions of (R)-ketamine in mice. Transl Psychiatry 2022; 12:417. [PMID: 36171191 PMCID: PMC9519951 DOI: 10.1038/s41398-022-02192-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
(R,S)-ketamine is known to elicit persistent prophylactic effects in rodent models of depression. However, the precise molecular mechanisms underlying its action remain elusive. Using RNA-sequencing analysis, we searched for novel molecular target(s) that contribute to the prophylactic effects of (R)-ketamine, a more potent enantiomer of (R,S)-ketamine in chronic restraint stress (CRS) model. Pretreatment with (R)-ketamine (10 mg/kg, 1 day before CRS) significantly ameliorated body weight loss, increased immobility time of forced swimming test, and decreased sucrose preference of sucrose preference test in CRS-exposed mice. RNA-sequencing analysis of prefrontal cortex (PFC) revealed that several miRNAs such as miR-132-5p might contribute to sustained prophylactic effects of (R)-ketamine. Methyl CpG binding protein 2 (MeCP2) is known to regulate brain-derived neurotrophic factor (BDNF) expression. Quantitative RT-PCR confirmed that (R)-ketamine significantly attenuated altered expression of miR-132-5p and its regulated genes (Bdnf, Mecp2, Tgfb1, Tgfbr2) in the PFC of CRS-exposed mice. Furthermore, (R)-ketamine significantly attenuated altered expression of BDNF, MeCP2, TGF-β1 (transforming growth factor β1), and synaptic proteins (PSD-95, and GluA1) in the PFC of CRS-exposed mice. Administration of agomiR-132-5p decreased the expression of Bdnf and Tgfb1 in the PFC, resulting in depression-like behaviors. In contrast, administration of antagomiR-132-5p blocked the increased expression of miR-132-5p and decreased expression of Bdnf in the PFC of CRS-exposed mice, resulting in antidepressant-like effects. In conclusion, our data show a novel role of miR-132-5p in the PFC underlying depression-like phenotypes in CRS model and the sustained prophylactic effects of (R)-ketamine.
Collapse
Affiliation(s)
- Li Ma
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan ,grid.412632.00000 0004 1758 2270Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province China
| | - Long Wang
- grid.412632.00000 0004 1758 2270Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province China
| | - Lijia Chang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jiajing Shan
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Youge Qu
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Xingming Wang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Xiayun Wan
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
41
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
42
|
Huang L, He L, Ma R, Ding W, Zhou C, Lin S, Zhang JC, Chen J, Yao W. The role of MeCP2 and the BDNF/TrkB signaling pathway in the stress resilience of mice subjected to CSDS. Psychopharmacology (Berl) 2022; 239:2921-2929. [PMID: 35711008 DOI: 10.1007/s00213-022-06176-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE There is accumulating evidence to support the idea that brain-derived neurotrophic factor (BDNF) is involved in stress resilience. However, the precise molecular mechanisms underlying resilience in major depressive disorder (MDD) remain unknown. OBJECTIVE The objective of this study was to explore the role of methyl CpG binding protein 2 (MeCP2) and the BDNF/tropomyosin-receptor-kinase B (TrkB) signaling pathway in the stress resilience to chronic social defeat stress (CSDS) in mice. RESULTS We found that the overexpression of MeCP2 inhibited BDNF transcription, resulting in BDNF mRNA and protein downregulation in neuro-2a cells. The overexpression of MeCP2 increased S80-MeCP2 and decreased S421-MeCP2, BDNF, the ratio of S133-cyclic AMP response element binding protein (CREB)/CREB and p-TrkB/TrkB expression in neuro-2a cells. In addition, using the CSDS mouse model, we found that MeCP2 mRNA levels were decreased in the medial prefrontal cortex (mPFC) of resilient mice and increased in the hippocampus of susceptible mice. BDNF exon IV promoter and BDNF mRNA levels were decreased in the mPFC and hippocampus of susceptible mice. Finally, MeCP2 and S80-MeCP2 protein levels were increased in the mPFC and hippocampus of susceptible mice, whereas the protein expression of S421-MeCP2 and BDNF, the ratio of S133-CREB/CREB, and the levels of p-TrkB/TrkB were decreased in susceptible mice. CONCLUSIONS These data suggest that the overexpression of MeCP2 inhibits BDNF transcription in neuro-2a cells. The inhibition of MeCP2 expression and activation of the BDNF/TrkB signaling pathway may confer stress resilience in CSDS mice.
Collapse
Affiliation(s)
- Lixuan Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Lujuan He
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ruijia Ma
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wanzhao Ding
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chan Zhou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangdong, China.
| |
Collapse
|
43
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
44
|
Yu Y, Li Y, Qi K, Xu W, Wei Y. Rosmarinic acid relieves LPS-induced sickness and depressive-like behaviors in mice by activating the BDNF/Nrf2 signaling and autophagy pathway. Behav Brain Res 2022; 433:114006. [PMID: 35843463 DOI: 10.1016/j.bbr.2022.114006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is one of the main causes of sickness and depressive-like behavior. Rosmarinic acid (RA) has been shown to have a significant anti-neuroinflammatory effect. However, the protective effects and the underlying mechanism of RA on sickness and depressive-like behavior under conditions of neuroinflammation are still unclear. In the present study, we investigated the effects and the underlying mechanism of RA on lipopolysaccharide (LPS)-treated mice with sickness behavior. The behavioral effects of LPS treatment and RA administration were assessed using behavioral tests including a sucrose preference test and an open field test. The neuroprotective effects of RA in conditions of neuroinflammatory injury were determined by HE staining, Nissl staining, and immunofluorescent staining. Moreover, its underlying mechanism was analyzed by using real-time PCR analysis, western blot, and immunofluorescent analysis. The results indicated that RA dramatically mitigated sickness behaviors and histologic brain damage in mice exposed to LPS. In addition, RA administration markedly promoted the expression of brain-derived neurotrophic factor (BDNF)/erythroid 2-related factor 2 (Nrf2), the key regulatory proteins for Nrf2 activation (p21 and p62), the downstream antioxidant enzymes (HO-1, NQO1, GCLC), the autophagy-related proteins (LC3II and Beclin1), and mitochondrial respiratory enzyme genes (ME1, IDH1, 6-PGDH), while reducing the expression of pro-inflammatory genes (CD44, iNOS, TNFα, IL-1β). Moreover, the double-label immunofluorescent analysis revealed that RA increased the fluorescence intensity of LC3 mostly co-localized with neurons and co-expressed with Nrf2. Taken together, our research found that RA could effectively alleviate sickness behaviors and nerve injury caused by neuroinflammation, and its protective effects were mediated by the Nrf2 signaling pathway, which reduced cellular oxidative stress, inflammation, mitochondrial respiratory function damage, and autophagy imbalance. Therefore, RA has the potential to prevent or treat sickness and depressive-like behaviors under conditions of neuroinflammation.
Collapse
Affiliation(s)
- Yi Yu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Ye Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Keming Qi
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
45
|
Wu MS, Li XJ, Liu CY, Xu Q, Huang JQ, Gu S, Chen JX. Effects of Histone Modification in Major Depressive Disorder. Curr Neuropharmacol 2022; 20:1261-1277. [PMID: 34551699 PMCID: PMC9881074 DOI: 10.2174/1570159x19666210922150043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Major depressive disorder (MDD) is a disease associated with many factors; specifically, environmental, genetic, psychological, and biological factors play critical roles. Recent studies have demonstrated that histone modification may occur in the human brain in response to severely stressful events, resulting in transcriptional changes and the development of MDD. In this review, we discuss five different histone modifications, histone methylation, histone acetylation, histone phosphorylation, histone crotonylation and histone β-hydroxybutyrylation, and their relationships with MDD. The utility of histone deacetylase (HDAC) inhibitors (HDACis) for MDD treatment is also discussed. As a large number of MDD patients in China have been treated with traditional Chineses medicine (TCM), we also discuss some TCM therapies, such as Xiaoyaosan (XYS), and their effects on histone modification. In summary, targeting histone modification may be a new strategy for elucidating the mechanism of MDD and a new direction for MDD treatment.
Collapse
Affiliation(s)
- Man-Si Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Chen-Yue Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China;
| | - Qiuyue Xu
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China;
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; ,Address correspondence to this author at the Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; E-mail:
| |
Collapse
|
46
|
Long-lasting beneficial effects of maternal intake of sulforaphane glucosinolate on gut microbiota in adult offspring. J Nutr Biochem 2022; 109:109098. [PMID: 35788394 DOI: 10.1016/j.jnutbio.2022.109098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Mounting evidence suggests the impact of maternal diet on the health of offspring. We reported that maternal diet of sulforaphane glucosinolate (SGS) could prevent behavioral abnormalities in offspring after maternal immune activation. The present study was designed to investigate whether the dietary intake of SGS during pregnancy and lactation influences the composition of gut microbiota in the offspring. The dietary intake of SGS during pregnancy and lactation caused significant changes in the α-diversity and β-diversity of gut microbiota in 3-week-old offspring (SGS-3W group) and 10-week-old offspring (SGS-10W group). The LEfSe algorithm identified several microbes as important phylotypes in the SGS-3W or SGS-10W groups. Predictive functional metagenomes showed that the maternal intake of SGS caused several KEGG pathways alterations with respect to the genetic information processing and metabolism. Furthermore, the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the SGS-10W group after the injection of lipopolysaccharide (LPS: 0.5 mg/kg) were significantly lower than those of the CON-10W group. It is noteworthy that there were positive correlations between the relative abundance of the genus Blautia and IL-6 (or TNF-α) in adult offspring. Moreover, there were sex differences of gut microbiota composition in offspring. In conclusion, these data suggest that the dietary intake of SGS during pregnancy and lactation might produce long-lasting beneficial effects in adult offspring through the persistent modulation of gut microbiota. It is likely that the modulation of gut microbiota by maternal nutrition may confer resilience versus vulnerability to stress-related psychiatric disorders in the offspring.
Collapse
|
47
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
48
|
Egbujor MC, Petrosino M, Zuhra K, Saso L. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Antioxidants (Basel) 2022; 11:1255. [PMID: 35883746 PMCID: PMC9311638 DOI: 10.3390/antiox11071255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling has become a key pathway for cellular regulation against oxidative stress and inflammation, and therefore an attractive therapeutic target. Several organosulfur compounds are reportedly activators of the Nrf2 pathway. Organosulfur compounds constitute an important class of therapeutic agents in medicinal chemistry due to their ability to participate in biosynthesis, metabolism, cellular functions, and protection of cells from oxidative damage. Sulfur has distinctive chemical properties such as a large number of oxidation states and versatility of reactions that promote fundamental biological reactions and redox biochemistry. The presence of sulfur is responsible for the peculiar features of organosulfur compounds which have been utilized against oxidative stress-mediated diseases. Nrf2 activation being a key therapeutic strategy for oxidative stress is closely tied to sulfur-based chemistry since the ability of compounds to react with sulfhydryl (-SH) groups is a common property of Nrf2 inducers. Although some individual organosulfur compounds have been reported as Nrf2 activators, there are no papers with a collective analysis of these Nrf2-activating organosulfur compounds which may help to broaden the knowledge of their therapeutic potentials and motivate further research. In line with this fact, for the first time, this review article provides collective and comprehensive information on Nrf2-activating organosulfur compounds and their therapeutic effects against oxidative stress, thereby enriching the chemical and pharmacological diversity of Nrf2 activators.
Collapse
Affiliation(s)
- Melford Chuka Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Abia State, Nigeria
| | - Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
49
|
Ibrahim WW, Abdel Rasheed NO. Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington's disease model in rats: emphasis on Sirt1/Nrf2 signaling pathway. Inflammopharmacology 2022; 30:1745-1758. [PMID: 35639233 PMCID: PMC9499906 DOI: 10.1007/s10787-022-01004-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/30/2022] [Indexed: 04/12/2023]
Abstract
Background and Aim Huntington's disease (HD) is a rare inherited disease portrayed with marked cognitive and motor decline owing to extensive neurodegeneration. NADPH oxidase is considered as an important contributor to the oxidative injury in several neurodegenerative disorders including HD. Thus, the present study explored the possible neuroprotective effects of diapocynin, a specific NADPH oxidase inhibitor, against 3-nitropropionic acid (3-NP) model of HD in rats. Methods Animals received diapocynin (10 mg/kg/day, p.o), 30 min before 3-NP (10 mg/kg/day, i.p) over a period of 14 days. Results Diapocynin administration attenuated 3-NP-induced oxidative stress with significant increase in reduced glutathione, glutathione-S-transferase, nuclear factor erythroid 2-related factor 2, and brain-derived neurotrophic factor striatal contents contrary to NADPH oxidase (NOX2; gp91phox subunit) diminished expression. Moreover, diapocynin mitigated 3-NP-associated neuroinflammation
and glial activation with prominent downregulation of nuclear factor-Кβ p65 and marked decrement of inducible nitric oxide synthase content in addition to decreased immunoreactivity of ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein; markers of microglial and astroglial activation, respectively. Treatment with diapocynin hindered 3-NP-induced apoptosis with prominent decrease in tumor suppressor protein and Bcl-2-associated X protein contents whereas the anti-apoptotic marker; B-cell lymphoma-2 content was noticeably increased. Diapocynin neuroprotective effects could be attributed to silent information regulator 1 upregulation which curbed 3-NP-associated hazards resulting in improved motor functions witnessed during open field, rotarod, and grip strength tests as well as attenuated 3-NP-associated histopathological derangements. Conclusion The present findings indicated that diapocynin could serve as an auspicious nominee for HD management. Graphical abstract ![]()
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
50
|
Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Dis 2022; 8:267. [PMID: 35595779 PMCID: PMC9122988 DOI: 10.1038/s41420-022-01063-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Mounting evidence suggests the key role of brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity of Parkinson’s disease (PD). Activation of NF-E2-related factor-2 (Nrf2) and inhibition of methyl CpG-binding protein 2 (MeCP2) can regulate BDNF upregulation. However, the regulation of BDNF by Nrf2 and MeCP2 in the PD pathogenesis has not been reported. Here, we revealed that Nrf2/MeCP2 coordinately regulated BDNF transcription, reversing the decreased levels of BDNF expression in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Repeated administration of sulforaphane (SFN, an Nrf2 activator) attenuated dopaminergic neurotoxicity in MPTP-treated mice through activation of BDNF and suppression of MeCP2 expression. Furthermore, intracerebroventricular injection of MeCP2-HDO, a DNA/RNA heteroduplex oligonucleotide (HDO) silencing MeCP2 expression, ameliorated dopaminergic neurotoxicity in MPTP-treated mice via activation of Nrf2 and BDNF expression. Moreover, we found decreased levels of Nrf2 and BDNF, and increased levels of MeCP2 protein expression in the striatum of patients with dementia with Lewy bodies (DLB). Interesting, there were correlations between BDNF and Nrf2 (or MeCP2) expression in the striatum from DLB patients. Therefore, it is likely that the activation of BDNF transcription by activation of Nrf2 and/or suppression of MeCP2 could be a new therapeutic approach for PD.
Collapse
|