1
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Liu H, Gao W, Jiao Q, Cao W, Guo Y, Cui D, Shi Y, Sun F, Su L, Lu G. Structural and functional disruption of subcortical limbic structures related with executive function in pediatric bipolar disorder. J Psychiatr Res 2024; 175:461-469. [PMID: 38820996 DOI: 10.1016/j.jpsychires.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Impaired cognition has been demonstrated in pediatric bipolar disorder (PBD). The subcortical limbic structures play a key role in PBD. However, alternations of anatomical and functional characteristics of subcortical limbic structures and their relationship with neurocognition of PBD remain unclear. METHODS Thirty-six PBD type I (PBD-I) (15.36 ± 0.32 years old), twenty PBD type II (PBD-II) (14.80 ± 0.32 years old) and nineteen age-gender matched healthy controls (HCs) (14.16 ± 0.36 years old) were enlisted. Primarily, the volumes of the subcortical limbic structures were obtained and differences in the volumes were evaluated. Then, these structures served as seeds of regions of interest to calculate the voxel-wised functional connectivity (FC). After that, correlation analysis was completed between volumes and FC of brain regions showing significant differences and neuropsychological tests. RESULTS Compared to HCs, both PBD-I and PBD-II patients showed a decrease in the Stroop color word test (SCWT) and digit span backward test scores. Compared with HCs, PBD-II patients exhibited a significantly increased volume of right septal nuclei, and PBD-I patients presented increased FC of right nucleus accumbens and bilateral pallidum, of right basal forebrain with right putamen and left pallidum. Both the significantly altered volumes and FC were negatively correlated with SCWT scores. SIGNIFICANCE The study revealed the role of subcortical limbic structural and functional abnormalities on cognitive impairments in PBD patients. These may have far-reaching significance for the etiology of PBD and provide neuroimaging clues for the differential diagnosis of PBD subtypes. CONCLUSIONS Distinctive features of neural structure and function in PBD subtypes may contribute to better comprehending the potential mechanisms of PBD.
Collapse
Affiliation(s)
- Haiqin Liu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China; School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China; School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.
| | - Weifang Cao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yongxin Guo
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yajun Shi
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Fengzhu Sun
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Linyan Su
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Li G, Zhong D, Li B, Chen Y, Yang L, Li CSR. Sleep Deficits Inter-Link Lower Basal Forebrain-Posterior Cingulate Connectivity and Perceived Stress and Anxiety Bidirectionally in Young Men. Int J Neuropsychopharmacol 2023; 26:879-889. [PMID: 37924270 PMCID: PMC10726414 DOI: 10.1093/ijnp/pyad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The basal nucleus of Meynert (BNM), a primary source of cholinergic projections to the cortex, plays key roles in regulating the sleep-wake cycle and attention. Sleep deficit is associated with impairment in cognitive and emotional functions. However, whether or how cholinergic circuit, sleep, and cognitive/emotional dysfunction are inter-related remains unclear. METHODS We curated the Human Connectome Project data and explored BNM resting state functional connectivities (rsFC) in relation to sleep deficit, based on the Pittsburgh Sleep Quality Index (PSQI), cognitive performance, and subjective reports of emotional states in 687 young adults (342 women). Imaging data were processed with published routines and evaluated at a corrected threshold. We assessed the correlation between BNM rsFC, PSQI, and clinical measurements with Pearson regressions and their inter-relationships with mediation analyses. RESULTS In whole-brain regressions with age and alcohol use severity as covariates, men showed lower BNM rsFC with the posterior cingulate cortex (PCC) in correlation with PSQI score. No clusters were identified in women at the same threshold. Both BNM-PCC rsFC and PSQI score were significantly correlated with anxiety, perceived stress, and neuroticism scores in men. Moreover, mediation analyses showed that PSQI score mediated the relationship between BNM-PCC rsFC and these measures of negative emotions bidirectionally in men. CONCLUSIONS Sleep deficit is associated with negative emotions and lower BNM rsFC with the PCC. Negative emotional states and BNM-PCC rsFC are bidirectionally related through poor sleep quality. These findings are specific to men, suggesting potential sex differences in the neural circuits regulating sleep and emotional states.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dandan Zhong
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Bao Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Yang
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Graham JWC, Jeon P, Théberge J, Palaniyappan L. Non-linear variations in glutamate dynamics during a cognitive task engagement in schizophrenia. Psychiatry Res Neuroimaging 2023; 332:111640. [PMID: 37121089 DOI: 10.1016/j.pscychresns.2023.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
To investigate the role of glutamate in psychosis, we employ functional magnetic resonance spectroscopy at an ultra-high magnetic field (7T) and employ fuzzy-approximate entropy (F-ApEn) and Hurst Exponent (HE) to capture time-varying nature of glutamate signaling during a cognitive task. We recruited thirty first-episode psychosis patients (FEP) with age- and gender-matched healthy controls (HC) and administered the Color-Word Stroop paradigm, providing 128 raw MRS time-points per subject over a period of 16 min. We then performed metabolite quantification of glutamate in the dorsal anterior cingulate cortex, a region reliably activated during the Stroop task. Symptoms/cognitive functioning was measured using Positive and Negative Syndrome Scale-8 score, Social and Occupational Functioning (SOFAS) score, digit symbol) coding score, and Stroop accuracy. These scores were related to the Entropy/HE data from the overall glutamate time-series. Patients with FEP had significantly higher HE compared to HC, with individuals displaying significantly higher HE having lower functional performance (SOFAS) in both HC and FEP groups. Among healthy individuals, higher HE also indicated significantly lower cognitive function through Stroop accuracy and DSST scores. F-ApEn had an inverse Pearson correlation with HE, and tracked diagnosis, cognition and function as expected, but with lower effect sizes not reaching statistical significance. We demonstrate notable diagnostic differences in the temporal course of glutamate signaling during a cognitive task in psychosis.
Collapse
Affiliation(s)
- James W C Graham
- Lawson Health Research Institute, London, ON, Canada; Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Peter Jeon
- Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jean Théberge
- Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Robarts Research Institute, London, ON, Canada; Douglas Mental Health University Institute, McGill University, Department of Psychiatry, Montreal, QC, Canada.
| |
Collapse
|