1
|
Hosseinzadeh S, Rafat SA, Fang L. Integrated TWAS, GWAS, and RNAseq results identify candidate genes associated with reproductive traits in cows. Sci Rep 2025; 15:1932. [PMID: 39809816 PMCID: PMC11733129 DOI: 10.1038/s41598-024-82448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Low fertility in cows leads to early removal from herds. Since reproductive traits are complex and have low heritability, genetic analysis can aid in improving reproduction. This study identified key genes linked to fertility by conducting genome- and transcriptome-wide association studies, RNA-seq analysis, meta-analysis, weighted gene co-expression network analysis, and functional enrichment analysis. Through these methods, we identified candidate genes related to Cow conception rate (CCR), Daughter pregnancy rate (DPR), Heifer conception rate (HCR), and overall fertility traits, helping to improve genetic selection for reproductive success in cows. The identified genes include RPL12, FKBP1B, FZD10, COX10, COX7A2, GAA, ETFBKMT, ACSM5, NUDT9, TIGAR, PAIP2, and PSMB5. Notably, GAA, ETFBKMT, COX10, and COX7A2 are involved in the "generation of precursor metabolites and energy" process. COX10, GAA, ETFBKMT, ACSM5, NUDT9, and TIGAR exhibit significant impacts on CCR, DPR, and HCR. COX7A2, PAIP2, and PSMB5 have been identified as hub genes related to fertility traits. RPL12 plays a role in protein synthesis, essential for gametogenesis and embryo development, while FKBP1B regulates calcium signaling, particularly in oocyte aging and fertility decline, and FZD10 is crucial in Wnt signaling. The identified genes serve as markers for genomic selection aimed at enhancing reproductive traits in cow.
Collapse
Affiliation(s)
- Sevda Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
2
|
Li Y, Song H, Xu J, Wang Y, Bai L, Wang H, Zhang J. TIGAR relieves PCOS by inhibiting granulosa cell apoptosis and oxidative stress through activating Nrf2. Mol Cell Endocrinol 2024; 594:112381. [PMID: 39341450 DOI: 10.1016/j.mce.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to elucidate the role of TP53-induced glycolysis and apoptosis regulator (TIGAR) in polycystic ovary syndrome (PCOS). A rat model PCOS was constructed by subcutaneous injection with dehydroepiandrosterone (DHEA). Follicular atresia and reduced granular cells (GCs) in ovaries suggested successful modeling. The low expression of TIGAR was observed in ovarian tissue of PCOS rat. To explore the role of TIGAR in PCOS, lentivirus carrying the TIGAR were used to up-regulate TIGAR expression. TIGAR overexpression reduced the DHEA-induced increase of ovarian weight, the levels of estradiol (E2), and the ratio of luteinizing hormone/follicle-stimulating hormone (LH/FSH) in the serum, as well as improved the morphology of the follicle, especially increased the thickness of the GC layer, which attributed to the inhibition of apoptosis by TIGAR. In addition, high expression of TIGAR inhibited oxidative stress in ovaries of PCOS rat, as evidenced by decreased level of malondialdehyde (MDA), and reactive oxygen species (ROS), and enhanced activity of glutathione peroxidase (GPX) and superoxide dismutase (SOD). Mechanically, Nrf2/OH-1 signal pathway was activated by TIGAR. The effect of TIGAR on PCOS were verified in the primary rat GCs treated with dihydrotestosterone, but also the rescue experiment was performed. Downregulation of Nrf2 reversed the effects of TIGAR, indicating that TIGAR suppressed oxidative stress and GC apoptosis by activating Nrf2/OH-1 pathway in PCOS. Finally, non-targeted metabolomics revealed that TIGAR might affect the energy metabolic pathway, thereby altering the metabolic profile of primary rat GCs. This study provided new insights into the prevention and treatment of PCOS.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Hui Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Jia Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Yunping Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Lu Bai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Haixu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China.
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Li G, Ma Y, Zhang S, Lin W, Yao X, Zhou Y, Zhao Y, Rao Q, Qu Y, Gao Y, Chen L, Zhang Y, Han F, Sun M, Zhao C. A mechanistic systems biology model of brain microvascular endothelial cell signaling reveals dynamic pathway-based therapeutic targets for brain ischemia. Redox Biol 2024; 78:103415. [PMID: 39520909 PMCID: PMC11584692 DOI: 10.1016/j.redox.2024.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Ischemic stroke is a significant threat to human health. Currently, there is a lack of effective treatments for stroke, and progress in new neuron-centered drug target development is relatively slow. On the other hand, studies have demonstrated that brain microvascular endothelial cells (BMECs) are crucial components of the neurovascular unit and play pivotal roles in ischemic stroke progression. To better understand the complex multifaceted roles of BMECs in the regulation of ischemic stroke pathophysiology and facilitate BMEC-based drug target discovery, we utilized a transcriptomics-informed systems biology modeling approach and constructed a mechanism-based computational multipathway model to systematically investigate BMEC function and its modulatory potential. Extensive multilevel data regarding complex BMEC pathway signal transduction and biomarker expression under various pathophysiological conditions were used for quantitative model calibration and validation, and we generated dynamic BMEC phenotype maps in response to various stroke-related stimuli to identify potential determinants of BMEC fate under stress conditions. Through high-throughput model sensitivity analyses and virtual target perturbations in model-based single cells, our model predicted that targeting succinate could effectively reverse the detrimental cell phenotype of BMECs under oxygen and glucose deprivation/reoxygenation, a condition that mimics stroke pathogenesis, and we experimentally validated the utility of this new target in terms of regulating inflammatory factor production, free radical generation and tight junction protection in vitro and in vivo. Our work is the first that complementarily couples transcriptomic analysis with mechanistic systems-level pathway modeling in the study of BMEC function and endothelium-based therapeutic targets in ischemic stroke.
Collapse
Affiliation(s)
- Geli Li
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China; Gusu School, Nanjing Medical University, 215000, Suzhou, China
| | - Yuchen Ma
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Sujie Zhang
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Wen Lin
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Xinyi Yao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yating Zhou
- The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China
| | - Yanyong Zhao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Qi Rao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yuchen Qu
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, 210000, Nanjing, China
| | - Lianmin Chen
- The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China
| | - Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 21205, Baltimore, USA
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China.
| | - Meiling Sun
- School of Basic Medical Sciences, Nanjing Medical University, 210000, Nanjing, China.
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China; The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China.
| |
Collapse
|
4
|
Hellman U, Rosendal E, Lehrstrand J, Henriksson J, Björsell T, Wennemo A, Hahn M, Österberg B, Dorofte L, Nilsson E, Forsell MNE, Smed-Sörensen A, Lange A, Karlsson MG, Ahlm C, Blomberg A, Cajander S, Ahlgren U, Lind A, Normark J, Överby AK, Lenman A. SARS-CoV-2 infection induces hyaluronan production in vitro and hyaluronan levels in COVID-19 patients relate to morbidity and long-term lung impairment: a prospective cohort study. mBio 2024; 15:e0130324. [PMID: 39302125 PMCID: PMC11492986 DOI: 10.1128/mbio.01303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
We previously demonstrated that the lungs of deceased COVID-19 patients were filled with a clear hydrogel consisting of hyaluronan (HA). In this translational study, we investigated the role of HA at all stages of COVID-19 disease to map the consequences of elevated HA on morbidity and identify the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced HA production. A reduced alveolar surface area was observed in the lungs of deceased COVID-19 patients compared to healthy controls, as visualized by a 3D rendering of lung morphology using light-sheet fluorescence microscopy. We confirmed the presence of HA in lung biopsies and found large quantities of proinflammatory fragmented HA. The association of systemic HA in blood plasma and disease severity was assessed in patients with mild (WHO Clinical Progression Scale, WHO-CPS, 1-5) and severe COVID-19 (WHO-CPS, 6-9) during the acute and convalescent phases and related to lung function. We found that systemic levels of HA were high during acute COVID-19 disease, remained elevated during convalescence, and were associated with a reduced diffusion capacity. In vitro 3D-lung models, differentiated from primary human bronchial epithelial cells, were used to study the effects of SARS-CoV-2 infection on HA metabolism, and transcriptomic analyses revealed a dysregulation of HA synthases and hyaluronidases, both contributing to increased HA in apical secretions. Furthermore, corticosteroid treatment reduced the inflammation and downregulated HA synthases. Our findings demonstrate that HA plays a role in COVID-19 morbidity and that sustained elevated HA concentrations may contribute to long-term respiratory impairment.IMPORTANCEThis study provides insights into the role of hyaluronan (HA) in the severity and long-term impact of COVID-19 on lung function. Through extensive morphological examination of lung tissues and a multicenter study, we identified that HA levels are significantly elevated in COVID-19 patients, correlating with a reduced lung diffusion capacity during convalescence. Using a 3D-lung model, we further uncovered how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 infection causes a dysregulated HA metabolism, leading to increased HA production. Our findings provide valuable insights into the pathogenesis of SARS-CoV-2 and suggest that targeting HA metabolism could offer new therapeutic avenues for managing COVID-19, particularly to prevent long-term lung impairment. Additionally, HA holds potential as a biomarker for predicting disease severity, which could guide personalized treatment strategies.
Collapse
Affiliation(s)
- Urban Hellman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Ebba Rosendal
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Joakim Lehrstrand
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Johan Henriksson
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
- Department of
Molecular Biology, Umeå Centre for Microbial Research (UCMR),
Umeå University,
Umeå, Sweden
- IceLab, Umeå
University, Umeå,
Sweden
| | - Tove Björsell
- Centre for Clinical
Research and Education, Region
Värmland, Karlstad,
Sweden
| | - Alfred Wennemo
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Max Hahn
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Björn Österberg
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Luiza Dorofte
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Emma Nilsson
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | | | - Anna Smed-Sörensen
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Anna Lange
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Mats G. Karlsson
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Clas Ahlm
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Anders Blomberg
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Sara Cajander
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Ulf Ahlgren
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Alicia Lind
- Department of
Surgical and Perioperative Sciences, Umeå
University, Umeå,
Sweden
| | - Johan Normark
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Wallenberg Centre
for Molecular Medicine, Umeå
University, Umeå,
Sweden
| | - Anna K. Överby
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Annasara Lenman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| |
Collapse
|
5
|
Zhang P, Wu D, Zha X, Su S, Zhang Y, Wei Y, Xia L, Fan S, Peng X. Glutamine promotes the proliferation of intestinal stem cells via inhibition of TP53-induced glycolysis and apoptosis regulator promoter methylation in burned mice. BURNS & TRAUMA 2024; 12:tkae045. [PMID: 39328365 PMCID: PMC11427069 DOI: 10.1093/burnst/tkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Indexed: 09/28/2024]
Abstract
Background Intestinal stem cells (ISCs) play a pivotal role in maintaining intestinal homeostasis and facilitating the restoration of intestinal mucosal barrier integrity. Glutamine (Gln) is a crucial energy substrate in the intestine, promoting the proliferation of ISCs and mitigating damage to the intestinal mucosal barrier after burn injury. However, the underlying mechanism has not yet been fully elucidated. The objective of this study was to explore the mechanism by which Gln facilitates the proliferation of ISCs. Methods A mouse burn model was established to investigate the impact of Gln on intestinal function. Subsequently, crypts were isolated, and changes in TP53-induced glycolysis and apoptosis regulator (TIGAR) expression were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, immunohistochemistry, and immunofluorescence. The effects of TIGAR on cell proliferation were validated through CCK-8, EdU, and clonogenicity assays. Furthermore, the effect of TIGAR on Yes-associated protein (YAP) nuclear translocation and ferroptosis was examined by western blotting and immunofluorescence staining. Finally, dot blot analysis and methylation-specific PCR were performed to evaluate the effect of Gln on TIGAR promoter methylation. Results The mRNA and protein levels of TIGAR decreased after burn injury, and supplementation with Gln increased the expression of TIGAR. TIGAR accelerates the nuclear translocation of YAP, thereby increasing the proliferation of ISCs. Concurrently, TIGAR promotes the synthesis of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione to suppress ferroptosis in ISCs. Subsequent investigations demonstrated that Gln inhibits TIGAR promoter methylation by increasing the expression of the demethylase ten-eleven translocation. This change increased TIGAR transcription, increased NADPH synthesis, and reduced oxidative stress, thereby facilitating the restoration of intestinal mucosal barrier integrity post-burn injury. Conclusions Our data confirmed the inhibitory effect of Gln on TIGAR promoter methylation, which facilitates YAP translocation into the nucleus and suppresses ferroptosis, ultimately promoting the proliferation of ISCs.
Collapse
Affiliation(s)
- Panyang Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yajuan Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
6
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
7
|
Abukwaik R, Vera-Siguenza E, Tennant D, Spill F. p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect. Bull Math Biol 2024; 86:124. [PMID: 39207627 PMCID: PMC11362376 DOI: 10.1007/s11538-024-01346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, King Abdulaziz University, Rabigh, Saudi Arabia.
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| |
Collapse
|
8
|
Silva EFP, Gaia RC, Mulim HA, Pinto LFB, Iung LHS, Brito LF, Pedrosa VB. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals (Basel) 2024; 14:2472. [PMID: 39272257 PMCID: PMC11394126 DOI: 10.3390/ani14172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The linear conformation of animals exerts an influence on health, reproduction, production, and welfare, in addition to longevity, which directly affects the profitability of milk-producing farms. The objectives of this study were (1) to perform genome-wide association studies (GWASs) of conformation traits, namely the Rump, Feet and Legs, Mammary System, Dairy Strength, and Final Classification traits, and (2) to identify genes and related pathways involved in physiological processes associated with conformation traits in Brazilian Holstein cattle. Phenotypic and genotypic data from 2339 Holstein animals distributed across the states of Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais were used. The genotypic data were obtained with a 100 K SNP marker panel. The single-step genome-wide association study (ssGWAS) method was employed in the analyses. Genes close to a significant SNP were identified in an interval of 100 kb up- and downstream using the Ensembl database available in the BioMart tool. The DAVID database was used to identify the main metabolic pathways and the STRING program was employed to create the gene regulatory network. In total, 36 significant SNPs were found on 15 chromosomes; 27 of these SNPs were linked to genes that may influence the traits studied. Fourteen genes most closely related to the studied traits were identified, as well as four genes that showed interactions in important metabolic pathways such as myogenesis, adipogenesis, and angiogenesis. Among the total genes, four were associated with myogenesis (TMOD2, TMOD3, CCND2, and CTBP2), three with angiogenesis (FGF23, FGF1, and SCG3), and four with adipogenesis and body size and development (C5H12orf4, CCND2, EMILIN1, and FGF6). These results contribute to a better understanding of the biological mechanisms underlying phenotypic variability in conformation traits in Brazilian Holstein cattle.
Collapse
Affiliation(s)
- Emanueli F P Silva
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Rita C Gaia
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Laiza H S Iung
- Neogen Corporation, Pindamonhangaba 12412-800, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Neogen Corporation, Biotechnology Research, Lincoln, NE 68504, USA
| |
Collapse
|
9
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Li Z, Dai F, Zhu R, Zhang Y, Chen J, Chen L, Liu H, Cheng Y. Dysregulation of CREB5 Impairs Decidualization and Maternal-Fetal Interactions by Inhibiting Autophagy in Recurrent Spontaneous Abortion. Reprod Sci 2024; 31:1983-2000. [PMID: 38424407 DOI: 10.1007/s43032-024-01474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1β and TGF-β1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.
Collapse
Affiliation(s)
- Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei, 430100, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
11
|
Zhao A, Xu W, Han R, Wei J, Yu Q, Wang M, Li H, Li M, Chi G. Role of histone modifications in neurogenesis and neurodegenerative disease development. Ageing Res Rev 2024; 98:102324. [PMID: 38762100 DOI: 10.1016/j.arr.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.
Collapse
Affiliation(s)
- Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
Wang D, Li Y, Yang H, Shen X, Shi X, Li C, Zhang Y, Liu X, Jiang B, Zhu X, Zhang H, Li X, Bai H, Yang Q, Gao W, Bai F, Ji Y, Chen Q, Ben J. Disruption of TIGAR-TAK1 alleviates immunopathology in a murine model of sepsis. Nat Commun 2024; 15:4340. [PMID: 38773142 PMCID: PMC11109194 DOI: 10.1038/s41467-024-48708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/11/2024] [Indexed: 05/23/2024] Open
Abstract
Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor β-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yanxia Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Hao Yang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaoqi Shen
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaolin Shi
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chenyu Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yongjing Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Gao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fang Bai
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yong Ji
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Wang X, Li M, Wang F, Mao G, Wu J, Han R, Sheng R, Qin Z, Ni H. TIGAR reduces neuronal ferroptosis by inhibiting succinate dehydrogenase activity in cerebral ischemia. Free Radic Biol Med 2024; 216:89-105. [PMID: 38494143 DOI: 10.1016/j.freeradbiomed.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Ischemia Stroke (IS) is an acute neurological condition with high morbidity, disability, and mortality due to a severe reduction in local cerebral blood flow to the brain and blockage of oxygen and glucose supply. Oxidative stress induced by IS predisposes neurons to ferroptosis. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits the intracellular glycolytic pathway to increase pentose phosphate pathway (PPP) flux, promotes NADPH production and thus generates reduced glutathione (GSH) to scavenge reactive oxygen species (ROS), and thus shows strong antioxidant effects to ameliorate cerebral ischemia/reperfusion injury. However, in the current study, prolonged ischemia impaired the PPP, and TIGAR was unable to produce NADPH but was still able to reduce neuronal ferroptosis and attenuate ischemic brain injury. Ferroptosis is a form of cell death caused by free radical-driven lipid peroxidation, and the vast majority of ROS leading to oxidative stress are generated by mitochondrial succinate dehydrogenase (SDH) driving reverse electron transfer (RET) via the mitochondrial electron transport chain. Overexpression of TIGAR significantly inhibited hypoxia-induced enhancement of SDH activity, and TIGAR deficiency further enhanced SDH activity. We also found that the inhibitory effect of TIGAR on SDH activity was related to its mitochondrial translocation under hypoxic conditions. TIGAR may inhibit SDH activity by mediating post-translational modifications (acetylation and succinylation) of SDH A through interaction with SDH A. SDH activity inhibition reduces neuronal ferroptosis by decreasing ROS production, eliminating MitoROS levels and attenuating lipid peroxide accumulation. Notably, TIGAR-mediated inhibition of SDH activity and ferroptosis was not dependent on the PPP-NADPH-GPX4 pathways. In conclusion, mitochondrial translocation of TIGAR in prolonged ischemia is an important pathway to reduce neuronal ferroptosis and provide sustainable antioxidant defense for the brain under prolonged ischemia, further complementing the mechanism of TIGAR resistance to oxidative stress induced by IS.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei Li
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Fan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Mao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Institute of Heath Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science & Technology Tower, Hi-Tech Area, Suzhou, 215163, China.
| | - Hong Ni
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
14
|
Yu F, Liu J, Wei X. Circ-ABCA1 promotes oxidized low-density lipoprotein-induced inflammation and phenotypic switch in vascular smooth muscle cells. Clinics (Sao Paulo) 2024; 79:100343. [PMID: 38554490 PMCID: PMC10998038 DOI: 10.1016/j.clinsp.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/03/2024] [Indexed: 04/01/2024] Open
Abstract
OBJECTIVE Atherosclerosis (AS) is a chronic inflammatory disease of the arterial wall, in which Human Vascular Smooth Muscle Cells (HVSMCs) are involved. Nevertheless, the functions and mechanisms of circRNAs in oxidized Low-Density Lipoprotein (ox-LDL)-induced vascular smooth muscle cells remain unclear. METHODS Circ-ABCA1 expression was measured in the models of AS. Then, in the vitro model, oligonucleotide transfection was performed, followed by an analysis of VSMC proliferation, migration, inflammation, and phenotypic switch. Also, in the in vivo model, mice were injected with shRNA lentivirus, followed by histological examination of aortic tissues. Finally, the interaction of circ-ABCA1, miR-885-5p, and ROCK2 was identified. RESULTS Circ-ABCA1, was confirmed to be overexpressed in ox-LDL-induced VSMCs and mouse models of AS. Functionally, silencing circ-ABCA1 via oligonucleotide transfection suppressed VSMC proliferation, migration, inflammation, and phenotypic switch in vitro and prevented AS development in mice in vivo. Mechanistically, circ-ABCA1 absorbed miR-885-5p, which targeted ROCK2. CONCLUSION Taken together, the data from this study suggest that circ-ABCA1 mediates cellular inflammation and phenotype switching through the miR-885-5p/ROCK2 axis in ox-LDL-induced VSMCs, and the circ-ABCA1/miR-885-5p/ROCK2 axis is a new potential biomarker for the treatment of AS.
Collapse
Affiliation(s)
- Fang Yu
- Department of Cardiac Catheterization Room, Yantaishan Hospital, Yantai City, Shandong Province, China
| | - JiWei Liu
- Department of Emergency, Ezhou Central Hospital, Ezhou City, Hubei Province, China
| | - Xiao Wei
- Department of 120 Emergency Center, The First People's Hospital of Jiangxia District, Wuhan City, Hubei Province, China.
| |
Collapse
|
15
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
16
|
Kordowitzki P, Graczyk S, Haghani A, Klutstein M. Oocyte Aging: A Multifactorial Phenomenon in A Unique Cell. Aging Dis 2024; 15:5-21. [PMID: 37307833 PMCID: PMC10796106 DOI: 10.14336/ad.2023.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
The oocyte is considered to be the largest cell in mammalian species. Women hoping to become pregnant face a ticking biological clock. This is becoming increasingly challenging as an increase in life expectancy is accompanied by the tendency to conceive at older ages. With advancing maternal age, the fertilized egg will exhibit lower quality and developmental competence, which contributes to increased chances of miscarriage due to several causes such as aneuploidy, oxidative stress, epigenetics, or metabolic disorders. In particular, heterochromatin in oocytes and with it, the DNA methylation landscape undergoes changes. Further, obesity is a well-known and ever-increasing global problem as it is associated with several metabolic disorders. More importantly, both obesity and aging negatively affect female reproduction. However, among women, there is immense variability in age-related decline of oocytes' quantity, developmental competence, or quality. Herein, the relevance of obesity and DNA-methylation will be discussed as these aspects have a tremendous effect on female fertility, and it is a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Yokoi H, Furukawa M, Wang J, Aoki Y, Raju R, Ikuyo Y, Yamada M, Shikama Y, Matsushita K. Erythritol Can Inhibit the Expression of Senescence Molecules in Mouse Gingival Tissues and Human Gingival Fibroblasts. Nutrients 2023; 15:4050. [PMID: 37764833 PMCID: PMC10537281 DOI: 10.3390/nu15184050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oral aging causes conditions including periodontal disease. We investigated how the sugar alcohol erythritol, which has anti-caries effects, impacts aging periodontal tissues and gingival fibroblasts in mice and humans in vivo and in vitro. Mice were classified into three groups: control groups of six-week-old (YC) and eighteen-month-old mice (AC) and a group receiving 5% w/w erythritol water for 6 months (AE). After rearing, RNA was extracted from the gingiva, and the levels of aging-related molecules were measured using PCR. Immunostaining was performed for the aging markers p21, γH2AX, and NF-κB p65. p16, p21, γH2AX, IL-1β, and TNFα mRNA expression levels were higher in the gingiva of the AC group than in the YC group, while this enhanced expression was significantly suppressed in AE gingiva. NF-κB p65 expression was high in the AC group but was strongly suppressed in the AE group. We induced senescence in cultured human gingival fibroblasts using H2O2 and lipopolysaccharide before erythritol treatment, which reduced elevated senescence-related marker (p16, p21, SA-β-gal, IL-1β, and TNFα) expression levels. Knockdown of PFK or PGAM promoted p16 and p21 mRNA expression, but erythritol subsequently rescued pyruvate production. Overall, intraoral erythritol administration may prevent age-related oral mucosal diseases.
Collapse
Affiliation(s)
- Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Yu Aoki
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8710, Japan;
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Yoriko Ikuyo
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07480-x. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
19
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
20
|
Liu G, Qi H, Shen J. JMJD5 inhibits lung cancer progression by regulating glucose metabolism through the p53/TIGAR pathway. Med Oncol 2023; 40:145. [PMID: 37043051 DOI: 10.1007/s12032-023-02016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023]
Abstract
Metabolic reprogramming is considered one of the main driving forces for tumor progression, providing energy and substrates of biosynthesis to support rapid neoplastic proliferation. Particularly, the tumor suppressor protein p53 was shown to revert the Warburg effect and play complex roles in regulating glucose metabolism. Jumonji C domain-containing protein 5 (JMJD5) has previously been reported as a negative regulator of p53. However, the role of JMJD5 in p53-mediated metabolic reprogramming remains elusive. Here, we discovered that knockdown of JMJD5 significantly enhances TIGAR expression in p53 wild-type non-small cell lung cancer (NSCLC) cells, which could further suppress glycolysis and promote the pentose phosphate pathway. Besides, JMJD5 knockdown promotes the NSCLC cell proliferation in vitro and xenograft tumor growth in vivo, while silencing TIGAR can abolish this effect. Low JMJD5 expression levels are associated with elevated TIGAR levels and correlates with poor prognosis in lung cancer patients. Taken together, our findings suggest that JMJD5 is a key regulator of tumor glucose metabolism by targeting the p53/TIGAR metabolic pathway.
Collapse
Affiliation(s)
- Guiling Liu
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongyan Qi
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jing Shen
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Vakili O, Borji M, Saffari-Chaleshtori J, Shafiee SM. Ameliorative effects of bilirubin on cell culture model of non-alcoholic fatty liver disease. Mol Biol Rep 2023; 50:4411-4422. [PMID: 36971910 DOI: 10.1007/s11033-023-08339-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined as the most prevalent hepatic disorder that affects a significant population worldwide. There are several genes/proteins, involving in the modulation of NAFLD pathogenesis; sirtuin1 (SIRT1), TP53-inducible regulator gene (TIGAR), and autophagy-related gene 5 (Atg5) are considered a chief group of these modulators that principally act by regulating the hepatic lipid metabolism, as well as preventing the lipid accumulation. Surprisingly, bilirubin, especially in its unconjugated form, might be able to alleviate NAFLD progression by decreasing lipid accumulation and regulating the expression levels of the above-stated genes. METHODS AND RESULTS Herein, the interactions between bilirubin and the corresponding genes' products were first analyzed by docking assessments. Afterwards, HepG2 cells were cultured under the optimum conditions, and then were incubated with high concentrations of glucose to induce NAFLD. After treating normal and fatty liver cells with particular bilirubin concentrations for 24- and 48-hour periods, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay, colorimetric method, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) were employed to assess cell viability status, intracellular triglycerides content, and mRNA expression levels of the genes, respectively. Intracellular lipid accumulation of HepG2 cells was significantly decreased after treating with bilirubin. Bilirubin also increased SIRT1 and Atg5 gene expression levels in fatty liver cells. TIGAR gene expression levels were variable upon the conditions and the cell type, suggesting a dual role for TIGAR during the NAFLD pathogenesis. CONCLUSION Our findings indicate the potential of bilirubin in the prevention from or amelioration of NAFLD through influencing SIRT1-related deacetylation and the process of lipophagy, as well as decreasing the intrahepatic lipid content. In vitro model of NAFLD was treated with unconjugated bilirubin under the optimal conditions.Desirably, bilirubin moderated the accumulation of triglycerides within the cells possibly through modulation of the expression of SIRT1, Atg5, and TIGAR genes. In the context, bilirubin was shown to increase the expression levels of SIRT1 and Atg5, while the expression of TIGAR was demonstrated to be either increased or decreased, depending on the treatment conditions. Created with BioRender.com.
Collapse
|
22
|
Xiong Z, Xing C, Zhang P, Diao Y, Guang C, Ying Y, Zhang W. Identification of a Novel Protein-Based Prognostic Model in Gastric Cancers. Biomedicines 2023; 11:biomedicines11030983. [PMID: 36979962 PMCID: PMC10046574 DOI: 10.3390/biomedicines11030983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. However, there are still no reliable biomarkers for the prognosis of this disease. This study aims to construct a robust protein-based prognostic prediction model for GC patients. The protein expression data and clinical information of GC patients were downloaded from the TCPA and TCGA databases, and the expressions of 218 proteins in 352 GC patients were analyzed using bioinformatics methods. Additionally, Kaplan-Meier (KM) survival analysis and univariate and multivariate Cox regression analysis were applied to screen the prognosis-related proteins for establishing the prognostic prediction risk model. Finally, five proteins, including NDRG1_pT346, SYK, P90RSK, TIGAR, and XBP1, were related to the risk prognosis of gastric cancer and were selected for model construction. Furthermore, a significant trend toward worse survival was found in the high-risk group (p = 1.495 × 10-7). The time-dependent ROC analysis indicated that the model had better specificity and sensitivity compared to the clinical features at 1, 2, and 3 years (AUC = 0.685, 0.673, and 0.665, respectively). Notably, the independent prognostic analysis results revealed that the model was an independent prognostic factor for GC patients. In conclusion, the robust protein-based model based on five proteins was established, and its potential benefits in the prognostic prediction of GC patients were demonstrated.
Collapse
Affiliation(s)
- Zhijuan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Jiangxi Medical Center for Major Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Department of Respiratory and Intensive Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Chutian Xing
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ping Zhang
- The Department of Respiratory and Intensive Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yunlian Diao
- The Department of Respiratory and Intensive Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Chenxi Guang
- Jiangxi Medical Center for Major Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Medical Center for Major Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Jiangxi Medical Center for Major Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Department of Respiratory and Intensive Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
23
|
Zhang Q, Yao Z, Chen F, Wang X, Wang M, Lu J, Meng Y, Xu L, Han Y, Liu W, Wang H. TIGAR Protects Cochlear Hair Cells against Teicoplanin-Induced Damage. Mol Neurobiol 2023; 60:3788-3802. [PMID: 36943624 PMCID: PMC10029784 DOI: 10.1007/s12035-023-03309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Teicoplanin is a glycopeptide antibiotic used to treat severe staphylococcal infections. It has been claimed that teicoplanin possesses ototoxic potential, although its toxic effects on cochlear hair cells (HCs) remain unknown. The TP53-induced glycolysis and apoptosis regulator (TIGAR) plays a crucial role in promoting cell survival. Prior research has demonstrated that TIGAR protects spiral ganglion neurons against cisplatin damage. However, the significance of TIGAR in damage to mammalian HCs has not yet been investigated. In this study, firstly, we discovered that teicoplanin caused dose-dependent cell death in vitro in both HEI-OC1 cells and cochlear HCs. Next, we discovered that HCs and HEI-OC1 cells treated with teicoplanin exhibited a dramatically decrease in TIGAR expression. To investigate the involvement of TIGAR in inner ear injury caused by teicoplanin, the expression of TIGAR was either upregulated via recombinant adenovirus or downregulated by shRNA in HEI-OC1 cells. Overexpression of TIGAR increased cell viability, decreased apoptosis, and decreased intracellular reactive oxygen species (ROS) level, whereas downregulation of TIGAR decreased cell viability, exacerbated apoptosis, and elevated ROS level following teicoplanin injury. Finally, antioxidant therapy with N-acetyl-L-cysteine decreased ROS level, prevented cell death, and restored p38/phosphorylation-p38 expression levels in HEI-OC1 cells injured by teicoplanin. This study demonstrates that TIGAR may be a promising novel target for the prevention of teicoplanin-induced ototoxicity.
Collapse
Affiliation(s)
- Qiongmin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Zhiqun Yao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China.
| |
Collapse
|
24
|
Piantanida N, La Vecchia M, Sculco M, Talmon M, Palattella G, Kurita R, Nakamura Y, Ronchi AE, Dianzani I, Ellis SR, Fresu LG, Aspesi A. Deficiency of ribosomal protein S26, which is mutated in a subset of patients with Diamond Blackfan anemia, impairs erythroid differentiation. Front Genet 2022; 13:1045236. [PMID: 36579335 PMCID: PMC9790993 DOI: 10.3389/fgene.2022.1045236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by defective maturation of the erythroid progenitors in the bone marrow, for which treatment involves steroids, chronic transfusions, or hematopoietic stem cells transplantation. Diamond Blackfan anemia is caused by defective ribosome biogenesis due to heterozygous pathogenic variants in one of 19 ribosomal protein (RP) genes. The decreased number of functional ribosomes leads to the activation of pro-apoptotic pathways and to the reduced translation of key genes for erythropoiesis. Results and discussion: Here we characterized the phenotype of RPS26-deficiency in a cell line derived from human umbilical cord blood erythroid progenitors (HUDEP-1 cells). This model recapitulates cellular hallmarks of Diamond Blackfan anemia including: imbalanced production of ribosomal RNAs, upregulation of pro-apoptotic genes and reduced viability, and shows increased levels of intracellular calcium. Evaluation of the expression of erythroid markers revealed the impairment of erythroid differentiation in RPS26-silenced cells compared to control cells. Conclusions: In conclusion, for the first time we assessed the effect of RPS26 deficiency in a human erythroid progenitor cell line and demonstrated that these cells can be used as a scalable model system to study aspects of DBA pathophysiology that have been refractory to detailed investigation because of the paucity of specific cell types affected in this disorder.
Collapse
Affiliation(s)
- Noemy Piantanida
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marta La Vecchia
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Gioele Palattella
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | | | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Luigia Grazia Fresu
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy,*Correspondence: Anna Aspesi,
| |
Collapse
|
25
|
Huang B, Lang X, Li X. The role of TIGAR in nervous system diseases. Front Aging Neurosci 2022; 14:1023161. [DOI: 10.3389/fnagi.2022.1023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) mainly regulates pentose phosphate pathway by inhibiting glycolysis, so as to synthesize ribose required by DNA, promote DNA damage repair and cell proliferation, maintain cell homeostasis and avoid body injury. Its physiological functions include anti-oxidative stress, reducing inflammation, maintaining mitochondrial function, inhibiting apoptosis, reducing autophagy etc. This paper reviews the research of TIGAR in neurological diseases, including stroke, Parkinson’s disease (PD), Alzheimer’s disease (AD), seizures and brain tumors, aiming to provide reference for the development of new therapeutic targets.
Collapse
|
26
|
Chai X, Pan M, Wang J, Feng M, Wang Y, Zhang Q, Sun Y. Cordycepin exhibits anti-fatigue effect via activating TIGAR/SIRT1/PGC-1α signaling pathway. Biochem Biophys Res Commun 2022; 637:127-135. [DOI: 10.1016/j.bbrc.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
27
|
Epigenetic impact of a 1-week intensive multimodal group program for adolescents with multiple adverse childhood experiences. Sci Rep 2022; 12:17177. [PMID: 36266402 PMCID: PMC9585146 DOI: 10.1038/s41598-022-21246-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
Adverse childhood experiences (ACEs, i.e., abuse, neglect, household dysfunction) represent a potential risk factor for a wide range of long-lasting diseases and shorter life expectancy. We recently described a 1-week residential group program, based on mindfulness training, artistic expression and EMDR group therapy, that significantly reduced PTSD-related symptoms and increased attention/awareness-related outcomes in adolescent girls with multiple ACEs in a randomized controlled study. Since epigenetic mechanisms (i.e., DNA methylation) have been associated with the long-lasting effects of ACEs, the present report extends these prior findings by exploring genome-wide DNA methylation changes following the program. Saliva samples from all participants (n = 44) were collected and genomic DNA was extracted prior (T1) and following (T2) the intervention. Genome-wide DNA methylation analysis using the MethylationEPIC beadchip array (Illumina) revealed 49 differentially methylated loci (DML; p value < 0.001; methylation change > 10%) that were annotated to genes with roles in biological processes linked to early childhood adversity (i.e., neural, immune, and endocrine pathways, cancer and cardiovascular disease). DNA sequences flanking these DML showed significant enrichment of transcription factor binding sites involved in inflammation, cancer, cardiovascular disease, and brain development. Methylation changes in SIRT5 and TRAPPC2L genes showed associations with changes in trauma-related psychological measures. Results presented here suggest that this multimodal group program for adolescents with multiple victimization modulates the DNA methylome at sites of potential relevance for health and behavioral disorders associated with ACEs.
Collapse
|
28
|
Campana S, Riesgo A, Jongepier E, Fuss J, Muyzer G, de Goeij JM. Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter. BMC Genomics 2022; 23:674. [PMID: 36175840 PMCID: PMC9520939 DOI: 10.1186/s12864-022-08893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sponge holobionts (i.e., the host and its associated microbiota) play a key role in the cycling of dissolved organic matter (DOM) in marine ecosystems. On coral reefs, an ecological shift from coral-dominated to algal-dominated ecosystems is currently occurring. Given that benthic corals and macroalgae release different types of DOM, in different abundances and with different bioavailability to sponge holobionts, it is important to understand how the metabolic activity of the host and associated microbiota change in response to the exposure to both DOM sources. Here, we look at the differential gene expression of two sponge holobionts 6 hours after feeding on naturally sourced coral- and macroalgal-DOM using RNA sequencing and meta-transcriptomic analysis. Results We found a slight, but significant differential gene expression in the comparison between the coral- and macroalgal-DOM treatments in both the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Haliclona vansoesti. In the hosts, processes that regulate immune response, signal transduction, and metabolic pathways related to cell proliferation were elicited. In the associated microbiota carbohydrate metabolism was upregulated in both treatments, but coral-DOM induced further lipid and amino acids biosynthesis, while macroalgal-DOM caused a stress response. These differences could be driven by the presence of distinct organic macronutrients in the two DOM sources and of small pathogens or bacterial virulence factors in the macroalgal-DOM. Conclusions This work provides two new sponge meta-transcriptomes and a database of putative genes and genetic pathways that are involved in the differential processing of coral- versus macroalgal-DOM as food source to sponges with high and low abundances of associated microbes. These pathways include carbohydrate metabolism, signaling pathways, and immune responses. However, the differences in the meta-transcriptomic responses of the sponge holobionts after 6 hours of feeding on the two DOM sources were small. Longer-term responses to both DOM sources should be assessed to evaluate how the metabolism and the ecological function of sponges will be affected when reefs shift from coral towards algal dominance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08893-y.
Collapse
Affiliation(s)
- Sara Campana
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Evelien Jongepier
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| |
Collapse
|
29
|
Wasserman DH. Insulin, Muscle Glucose Uptake, and Hexokinase: Revisiting the Road Not Taken. Physiology (Bethesda) 2022; 37:115-127. [PMID: 34779282 PMCID: PMC8977147 DOI: 10.1152/physiol.00034.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
Research conducted over the last 50 yr has provided insight into the mechanisms by which insulin stimulates glucose transport across the skeletal muscle cell membrane Transport alone, however, does not result in net glucose uptake as free glucose equilibrates across the cell membrane and is not metabolized. Glucose uptake requires that glucose is phosphorylated by hexokinases. Phosphorylated glucose cannot leave the cell and is the substrate for metabolism. It is indisputable that glucose phosphorylation is essential for glucose uptake. Major advances have been made in defining the regulation of the insulin-stimulated glucose transporter (GLUT4) in skeletal muscle. By contrast, the insulin-regulated hexokinase (hexokinase II) parallels Robert Frost's "The Road Not Taken." Here the case is made that an understanding of glucose phosphorylation by hexokinase II is necessary to define the regulation of skeletal muscle glucose uptake in health and insulin resistance. Results of studies from different physiological disciplines that have elegantly described how hexokinase II can be regulated are summarized to provide a framework for potential application to skeletal muscle. Mechanisms by which hexokinase II is regulated in skeletal muscle await rigorous examination.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
30
|
Tang Y, Zong H, Kwon H, Qiu Y, Pessin JB, Wu L, Buddo KA, Boykov I, Schmidt CA, Lin CT, Neufer PD, Schwartz GJ, Kurland IJ, Pessin J. TIGAR deficiency enhances skeletal muscle thermogenesis by increasing neuromuscular junction cholinergic signaling. eLife 2022; 11:73360. [PMID: 35254259 PMCID: PMC8947760 DOI: 10.7554/elife.73360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Cholinergic and sympathetic counter-regulatory networks control numerous physiological functions, including learning/memory/cognition, stress responsiveness, blood pressure, heart rate, and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels, and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.
Collapse
Affiliation(s)
- Yan Tang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Haihong Zong
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Hyokjoon Kwon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Yunping Qiu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jacob B Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Licheng Wu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Katherine A Buddo
- Department of Physiology, East Carolina University, Greenville, United States
| | - Ilya Boykov
- Department of Physiology, East Carolina University, Greenville, United States
| | - Cameron A Schmidt
- Department of Physiology, East Carolina University, Greenville, United States
| | - Chien-Te Lin
- Department of Physiology, East Carolina University, Greenville, United States
| | - P Darrell Neufer
- Department of Physiology, East Carolina University, Greenville, United States
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jeffrey Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
31
|
Liu MY, Li HM, Wang XY, Xia R, Li X, Ma YJ, Wang M, Zhang HS. TIGAR drives colorectal cancer ferroptosis resistance through ROS/AMPK/SCD1 pathway. Free Radic Biol Med 2022; 182:219-231. [PMID: 35271998 DOI: 10.1016/j.freeradbiomed.2022.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and major cause of cancer death in the world. Ferroptosis is a recently identified type of regulated cell death. Increasing evidence has shown that ferroptosis plays an important regulatory role in the occurrence and development of cancer. This study identified TIGAR as a potential regulator of ferroptosis resistance in the development of CRC. We showed that TIGAR expression in CRC tissues is significantly higher than that in adjacent normal tissues. Knockdown of TIGAR significantly caused an increase in erastin-induced ferroptosis in SW620 and HCT116 cells. Notably, knockdown of TIGAR significantly decreased GSH/GSSG ratio, increased lipid peroxidation production, and facilitated the accumulation of lipid peroxidation product malondialdehyde (MDA), and rendered CRC cells more sensitive to erastin induced ferroptosis. Furthermore, TIGAR inhibition repressed SCD1 expression in a redox and AMPK-dependent manner. Thus, these results suggest that TIGAR induces ferroptosis resistance in CRC cells via the ROS/AMPK/SCD1 signaling pathway.
Collapse
Affiliation(s)
- Min-Yao Liu
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China
| | - Hong-Ming Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China
| | - Xin-Yu Wang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China
| | - Ran Xia
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China
| | - Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China
| | - Yu-Jie Ma
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China
| | - Miao Wang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing, 100124, China.
| |
Collapse
|
32
|
Rahman MA, Park MN, Rahman MDH, Rashid MM, Islam R, Uddin MJ, Hannan MA, Kim B. p53 Modulation of Autophagy Signaling in Cancer Therapies: Perspectives Mechanism and Therapeutic Targets. Front Cell Dev Biol 2022; 10:761080. [PMID: 35155422 PMCID: PMC8827382 DOI: 10.3389/fcell.2022.761080] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The key tumor suppressor protein p53, additionally known as p53, represents an attractive target for the development and management of anti-cancer therapies. p53 has been implicated as a tumor suppressor protein that has multiple aspects of biological function comprising energy metabolism, cell cycle arrest, apoptosis, growth and differentiation, senescence, oxidative stress, angiogenesis, and cancer biology. Autophagy, a cellular self-defense system, is an evolutionarily conserved catabolic process involved in various physiological processes that maintain cellular homeostasis. Numerous studies have found that p53 modulates autophagy, although the relationship between p53 and autophagy is relatively complex and not well understood. Recently, several experimental studies have been reported that p53 can act both an inhibitor and an activator of autophagy which depend on its cellular localization as well as its mode of action. Emerging evidences have been suggested that the dual role of p53 which suppresses and stimulates autophagy in various cencer cells. It has been found that p53 suppression and activation are important to modulate autophagy for tumor promotion and cancer treatment. On the other hand, activation of autophagy by p53 has been recommended as a protective function of p53. Therefore, elucidation of the new functions of p53 and autophagy could contribute to the development of novel therapeutic approaches in cancer biology. However, the underlying molecular mechanisms of p53 and autophagy shows reciprocal functional interaction that is a major importance for cancer treatment and manegement. Additionally, several synthetic drugs and phytochemicals have been targeted to modulate p53 signaling via regulation of autophagy pathway in cancer cells. This review emphasizes the current perspectives and the role of p53 as the main regulator of autophagy-mediated novel therapeutic approaches against cancer treatment and managements.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- *Correspondence: Md Ataur Rahman, ; Bonglee Kim,
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - MD Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Md Mamunur Rashid
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Rokibul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|
33
|
Li QQ, Li JY, Zhou M, Qin ZH, Sheng R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem Int 2021; 148:105081. [PMID: 34082063 DOI: 10.1016/j.neuint.2021.105081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/22/2021] [Indexed: 01/30/2023]
Abstract
Cerebral ischemia is a disease of ischemic necrosis of brain tissue caused by intracranial artery stenosis or occlusion and cerebral artery embolization. Neuroinflammation plays an important role in the pathophysiology of cerebral ischemia. Microglia, astrocytes, leukocytes and other cells that release a variety of inflammatory factors involved in neuroinflammation may play a damaging or protective role during the process of cerebral ischemia. TP53-induced glycolysis and apoptotic regulators (TIGAR) may facilitate the production of nicotinamide adenine dinucleotide phosphoric acid (NADPH) via the pentose phosphate pathway (PPP) to inhibit oxidative stress and neuroinflammation. TIGAR can also directly inhibit NF-κB to inhibit neuroinflammation. TIGAR thus protect against cerebral ischemic injury. Exogenous NADPH can inhibit neuroinflammation by inhibiting oxidative stress and regulating a variety of signals. However, since NADPH oxidase (NOX) may use NADPH as a substrate to generate reactive oxygen species (ROS) to mediate neuroinflammation, the combination of NADPH and NOX inhibitors may produce more powerful anti-neuroinflammatory effects. Here, we review the cells and regulatory signals involved in neuroinflammation during cerebral ischemia, and discuss the possible mechanisms of targeting neuroinflammation in the treatment of cerebral ischemia with TIGAR/NADPH axis, so as to provide new ideas for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
34
|
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci 2021; 22:ijms22094716. [PMID: 33946854 PMCID: PMC8125560 DOI: 10.3390/ijms22094716] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions in autophagy regulation and cell death inhibition that are independent of its enzymatic activity. The recent definition of HK2 localization to contact points between mitochondria and endoplasmic reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can constitute a promising anti-tumor strategy.
Collapse
Affiliation(s)
- Francesco Ciscato
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| | - Lavinia Ferrone
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Institute of Neuroscience, National Research Council, 56124 Pias, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| |
Collapse
|