1
|
Feng L, Luo G, Li Y, Zhang C, Liu Y, Liu Y, Chen H, He D, Zhu Y, Gan L. Curcumin-dependent phenotypic transformation of microglia mediates resistance to pseudorabies-induced encephalitis. Vet Res 2023; 54:25. [PMID: 36918933 PMCID: PMC10015794 DOI: 10.1186/s13567-023-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023] Open
Abstract
Pseudorabies virus (PRV) causes viral encephalitis, a devastating disease with high mortality worldwide. Curcumin (CUR) can reduce inflammatory damage by altering the phenotype of microglia; however, whether and how these changes mediate resistance to PRV-induced encephalitis is still unclear. In this study, BV2 cells were infected with/without PRV for 24 h and further treated with/without CUR for 24 h. The results indicated that CUR promoted the polarization of PRV-infected BV2 cells from the M1 phenotype to the M2 phenotype and reversed PRV-induced mitochondrial dysfunction. Furthermore, M1 BV2 cell secretions induced signalling pathways leading to apoptosis in PC-12 neuronal cells, and this effect was abrogated by the secretions of M2 BV2 cells. RNA sequencing and bioinformatics analysis predicted that this phenotypic shift may be due to changes in energy metabolism. Furthermore, Western blot analysis showed that CUR inhibited the increase in AMP-activated protein kinase (AMPK) phosphorylation, glycolysis, and triacylglycerol synthesis and the reduction in oxidative phosphorylation induced by PRV infection. Moreover, the ATP levels in M2 BV2 cells were higher than those in M1 cells. Furthermore, CUR prevented the increase in mortality, elevated body temperature, slowed growth, nervous system excitation, brain tissue congestion, vascular cuffing, and other symptoms of PRV-induced encephalitis in vivo. Thus, this study demonstrated that CUR protected against PRV-induced viral encephalitis by switching the phenotype of BV2 cells, thereby protecting neurons from inflammatory injury, and this effect was mediated by improving mitochondrial function and the AMPK/NF-κB p65-energy metabolism-related pathway.
Collapse
Affiliation(s)
- Luqiu Feng
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Guodong Luo
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yuhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Chen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yuxuan Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yanqing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hongyue Chen
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Daoling He
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Yan Zhu
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
2
|
Long noncoding RNA HOXA-AS2 ameliorates chronic intermittent hypoxia-induced lung inflammation by regulating miR-17-5p/tipe2 axis. Allergol Immunopathol (Madr) 2023; 51:36-44. [PMID: 36916086 DOI: 10.15586/aei.v51i2.701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/27/2022] [Indexed: 03/08/2023]
Abstract
PURPOSE The purpose is to confirm whether long noncoding RNA HOXA-AS2 relieves chronic intermittent hypoxia (CIH)-induced lung inflammation. METHODS Male Sprague Dawley rats were used to establisha CIH rat model. Hematoxylin and Eosin staining was used on the lung tissue injury to determine the successful construction of CIH animal model. Arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2) were measured. HOXA-AS2 was overexpressed to evaluate its role in the progression and development of CIH. T cell differentiation and cytokine production were determined using flow cytometry. Cell apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labelling assay kit. The target of HOXA-AS2 and miR-17-5p was predicted by the Encyclopedia of RNA Interactomes (ENCORI) and confirmed using luciferase assay. RESULTS HOXA-AS2 was downregulated in CIH rat models. Lung tissue injury was observed in CIH rats, and the injury was attenuated by the overexpression of HOXA-AS2. PaO2 was reduced and PaCO2 was induced in CIH rats, which was reversed by the overexpression of HOXA-AS2. The overexpression of HOXA-AS2 inhibited CIH-induced cell apoptosis. It also reversed alterations in the levels of interferon gamma (IFNγ), interleukin (IL)-2, IL-6, IL-1β, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta1 (TGF-β1) in rats caused by CIH. The overexpression of HOXA-AS2 prevented the induction in CD4+ IFN-γ+ T cells and reduction in CD4+TGF-β1+ T cells. The overexpression of HOXA-AS2 upregulated tumor necrosis factor-alpha-induced protein 8-like 2 (tipe2) key regulator through directly targeting miR-17-5p. Further experiments proved that tipe2 was the direct target of miR-17-5p. CONCLUSION This study manifested that HOXA-AS2 acted as an anti-inflammatory regulator and protected lung tissue injury from CIH in the rat model; this was mediated by upregulation of tipe2 through directly targeting miR-17-5p. HOXA-AS2 upregulated the expression of tipe2, providing new understanding and therapeutic target for CIH.
Collapse
|
3
|
Ren J, Guo W, Feng K, Huang T, Cai Y. Identifying MicroRNA Markers That Predict COVID-19 Severity Using Machine Learning Methods. Life (Basel) 2022; 12:1964. [PMID: 36556329 PMCID: PMC9784129 DOI: 10.3390/life12121964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Individuals with the SARS-CoV-2 infection may experience a wide range of symptoms, from being asymptomatic to having a mild fever and cough to a severe respiratory impairment that results in death. MicroRNA (miRNA), which plays a role in the antiviral effects of SARS-CoV-2 infection, has the potential to be used as a novel marker to distinguish between patients who have various COVID-19 clinical severities. In the current study, the existing blood expression profiles reported in two previous studies were combined for deep analyses. The final profiles contained 1444 miRNAs in 375 patients from six categories, which were as follows: 30 patients with mild COVID-19 symptoms, 81 patients with moderate COVID-19 symptoms, 30 non-COVID-19 patients with mild symptoms, 137 patients with severe COVID-19 symptoms, 31 non-COVID-19 patients with severe symptoms, and 66 healthy controls. An efficient computational framework containing four feature selection methods (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (DT, KNN, RF, and SVM) was designed to screen clinical miRNA markers, and a high-precision RF model with a 0.780 weighted F1 was constructed. Some miRNAs, including miR-24-3p, whose differential expression was discovered in patients with acute lung injury complications brought on by severe COVID-19, and miR-148a-3p, differentially expressed against SARS-CoV-2 structural proteins, were identified, thereby suggesting the effectiveness and accuracy of our framework. Meanwhile, we extracted classification rules based on the DT model for the quantitative representation of the role of miRNA expression in differentiating COVID-19 patients with different severities. The search for novel biomarkers that could predict the severity of the disease could aid in the clinical diagnosis of COVID-19 and in exploring the specific mechanisms of the complications caused by SARS-CoV-2 infection. Moreover, new therapeutic targets for the disease may be found.
Collapse
Affiliation(s)
- Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Zheng Y, Chen J, Wu X, Zhang X, Hu C, Kang Y, Lin J, Li J, Huang Y, Zhang X, Li C. Enhanced Anti-Inflammatory Effects of Silibinin and Capsaicin Combination in Lipopolysaccharide-Induced RAW264.7 Cells by Inhibiting NF-κB and MAPK Activation. Front Chem 2022; 10:934541. [PMID: 35844639 PMCID: PMC9279934 DOI: 10.3389/fchem.2022.934541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023] Open
Abstract
Silibinin and capsaicin both are natural product molecules with diverse biological activities. In this article, we investigated the anti-inflammatory effects of silibinin combined with capsaicin in lipopolysaccharide (LPS)-induced RAW264.7 cells. The results showed that silibinin combined with capsaicin strongly inhibited LPS-induced nitric oxide (NO), tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and COX-2. Moreover, silibinin combined with capsaicin potently inhibited nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. The results of the present study indicate that silibinin combined with capsaicin effectively inhibits inflammation.
Collapse
|
5
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Epigenetics-mediated pathological alternations and their potential in antiphospholipid syndrome diagnosis and therapy. Autoimmun Rev 2022; 21:103130. [PMID: 35690246 DOI: 10.1016/j.autrev.2022.103130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease accompanied with venous or arterial thrombosis and poor pregnant manifestations, partly attributing to the successive elevated aPL (antiphospholipid antibodies) and provoked prothrombotic and proinflammatory molecules production. Nowadays, most researches focus on the laboratory detection and clinic features of APS, but its precise etiology remains to be deeply explored. As we all know, the dysfunction of ECs (endothelial cells), monocytes, platelets, trophoblasts and neutrophils are key contributors to APS progression. Especially, their epigenetic variations, mainly including the promoter CpGs methylation, histone PTMs (post-translational modifications) and ncRNAs (noncoding RNAs), result in genes expression or silence engaged in inflammation initiation, thrombosis formation, autoimmune activation and APOs (adverse pregnancy outcomes) in APS. Given the potential of epigenetic markers serving as diagnostic biomarkers or therapeutic targets of APS, and the encouraging advancements in epigenetic drugs are being made. In this review, we would systematically introduce the epigenetic underlying mechanisms for APS progression, comprehensively elucidate the functional mechanisms of epigenetics in boosting ECs, monocytes, platelets, trophoblasts and neutrophils. Lastly, the application of epigenetic alterations for probing novel diagnostic, specific therapeutic and prognostic strategies would be proposed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
6
|
Li B, Li H, Dai L, Liu C, Wang L, Li Q, Gu C. NIK-SIX1 signalling axis regulates high glucose-induced endothelial cell dysfunction and inflammation. Autoimmunity 2022; 55:86-94. [PMID: 34894925 DOI: 10.1080/08916934.2021.2015579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction and inflammation are the main manifestations of diabetes-associated atherosclerosis. This paper studied the roles of NF-κB-inducing kinase (NIK) and sine oculis homeobox homolog 1 (SIX1) in regulating high glucose-induced endothelial dysfunction and inflammation. The expression of NIK and SIX1 in human umbilical vein endothelial cells (HUVECs) was silenced by transfection with the specific shRNAs. HUVECs exposed to high glucose were considered as a cell model of endothelial dysfunction. Expression of NIK and SIX1 following transfection was measured by qRT-PCR and western blotting analysis. The proliferation, migration, and inflammation of HUVECs were evaluated by EdU staining, scratch test, ELISA, and western blotting. High glucose (30 mM) significantly decreased the proliferation and migration of HUVECs. High glucose-induced the expression of adhesion molecules VCAM-1 and ICAM-1. Moreover, high glucose increased the release of IL-1β, IL-6, TNF-α, and MCP-1. Transfection of cells with NIK shRNA significantly reversed the toxic effects of high glucose on HUVECs. Of contrast, SIX1 shRNA accelerated the effects of high glucose on HUVECs. NIK shRNA inhibited the accumulation of RelA, RelB, and p52. Meanwhile, NIK shRNA led to SIX1 downregulation which further induced the activation of the NF-κB pathway. NIK-SIX1 signalling axis was suggested to be critical in the regulation of high glucose-induced endothelial dysfunction and inflammation. SIX1 may function as an immunological gatekeeper to control the excessive inflammation mediated by NIK in diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haiming Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Longsheng Dai
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changcheng Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liangshan Wang
- Department of Cardiac Surgery Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qin Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengxiong Gu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Shi Q, Wang Q, Liu L, Chen J, Wang B, Bellusci S, Chen C, Dong N. FGF10 protects against particulate matter (PM)-induced lung injury via regulation of endoplasmic reticulum stress. Int Immunopharmacol 2022; 105:108552. [PMID: 35114441 DOI: 10.1016/j.intimp.2022.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/08/2022] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
Abstract
Exposure of the lungs to particulate matter (PM) leads to the development of respiratory disease and involves mechanisms such as oxydative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress. However, there are no effective therapies to treat PM-induced lung diseases. Fibroblast growth factor 10 (FGF10) is a multifunctional growth factor mediating mesenchymal-to-epithelial signaling and displaying a significant therapeutic potential following injury. The present research aims to investigate the regulatory mechanism of FGF10 on ER stress in PM-induced lung injury. PM-induced lung injury leads to peribronchial wall thickening and marked infiltration of inflammatory cells which is associated with increased secretion of inflammatory cytokines. The results show that FGF10 treatment attenuates PM-induced lung injury in vivo and reversed ER stress protein GRP78 and CHOP levels. Moreover, comparison of human bronchial epithelial cells cultured with PM and FGF10 vs PM alone shows sustained cell proliferation and restrained secretion of inflammatory cytokines supporting FGF10's protective role. Significantly, both ERK1/2 and PI3K/AKT inhibitors largely abolished the impact of FGF10 on PM-induced ER stress. Taken together, both in vivo and in vitro experiments showed that FGF10, via the activation of ERK1/2 and PI3K/AKT signaling, protects against PM-induced lung injury through the regulation of ER stress. Therefore, FGF10 represents a potential therapy for PM-induced lung injury.
Collapse
Affiliation(s)
- Qiangqiang Shi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Qiang Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Li Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Junjie Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Beibei Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany.
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
8
|
Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021; 9:biomedicines9070781. [PMID: 34356845 PMCID: PMC8301477 DOI: 10.3390/biomedicines9070781] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/16/2022] Open
Abstract
Maintenance of endothelial cell integrity is an important component of human health and disease since the endothelium can perform various functions including regulation of vascular tone, control of hemostasis and thrombosis, cellular adhesion, smooth muscle cell proliferation, and vascular inflammation. Endothelial dysfunction is encompassed by complex pathophysiology that is based on endothelial nitric oxide synthase uncoupling and endothelial activation following stimulation from various inflammatory mediators (molecular patterns, oxidized lipoproteins, cytokines). The downstream signaling via nuclear factor-κB leads to overexpression of adhesion molecules, selectins, and chemokines that facilitate leukocyte adhesion, rolling, and transmigration to the subendothelial space. Moreover, oscillatory shear stress leads to pro-inflammatory endothelial activation with increased monocyte adhesion and endothelial cell apoptosis, an effect that is dependent on multiple pathways and flow-sensitive microRNA regulation. Moreover, the role of neutrophil extracellular traps and NLRP3 inflammasome as inflammatory mechanisms contributing to endothelial dysfunction has recently been unveiled and is under further investigation. Consequently, and following their activation, injured endothelial cells release inflammatory mediators and enter a pro-thrombotic state through activation of coagulation pathways, downregulation of thrombomodulin, and an increase in platelet adhesion and aggregation owing to the action of von-Willebrand factor, ultimately promoting atherosclerosis progression.
Collapse
|