1
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Wang J, Huang Y, Luan T, Shi P, Guo L, Zhang Q, Shi G, Hao Z, Chen T, Zhang L, Li J. Hydrogel and Microgel Collaboration for Spatiotemporal Delivery of Biofactors to Awaken Nucleus Pulposus-Derived Stem Cells for Endogenous Repair of Disc. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404732. [PMID: 39308283 DOI: 10.1002/smll.202404732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Indexed: 12/06/2024]
Abstract
Depletion of nucleus pulposus-derived stem cells (NPSCs) is a major contributing factor to the attenuation of endogenous regenerative capacity in intervertebral disc degeneration (IVDD). Introducing a hydrogel drug delivery system is a potential strategy for counteracting endogenous cell depletion. The present study proposes a delivery platform for the spatiotemporal release of multiple drugs by combining sodium alginate hydrogels with gelatin microgels (SCGP hydrogels). The SCGP hydrogels facilitated the initial release of chondroitin sulfate (ChS) and the gradual release of an independently developed parathyroid hormone-related peptide (P2). The combined action of these two small molecule drugs "awakened" the reserve NPSCs, mitigated cell damage induced by H2O2, significantly enhanced their biological activity, and promoted their differentiation toward nucleus pulposus cells. The mechanical and viscoelastic properties of the hydrogel are enhanced by physical and chemical dual cross-linking to adapt to the loading environment of the degenerated disc. A rat IVDD model is used to validate that the SCGP hydrogel can significantly inhibit the progression of IVDD and stimulate the endogenous repair of IVDD. Therefore, the spatiotemporal differential drug delivery system of the SCGP hydrogel holds promise as a convenient and efficacious therapeutic strategy for minimally invasive IVDD treatment.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian Luan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Staszkiewicz R, Gładysz D, Sobański D, Bolechała F, Golec E, Sobańska M, Strojny D, Turek A, Grabarek BO. Assessment of the Concentration of Transforming Growth Factor Beta 1-3 in Degenerated Intervertebral Discs of the Lumbosacral Region of the Spine. Curr Issues Mol Biol 2024; 46:12813-12829. [PMID: 39590357 PMCID: PMC11592718 DOI: 10.3390/cimb46110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The purpose of this study was to evaluate the feasibility of using the expression profile of transforming growth factor beta (TGF-β-1-3) to assess the progression of L/S spine degenerative disease. The study group consisted of 113 lumbosacral (L/S) intervertebral disc (IVD) degenerative disease patients from whom IVDs were collected during a microdiscectomy, whereas the control group consisted of 81 participants from whom IVDs were collected during a forensic autopsy or organ harvesting. Hematoxylin and eosin staining was performed to exclude degenerative changes in the IVDs collected from the control group. The molecular analysis consisted of reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR), an enzyme-linked immunosorbent assay (ELISA), Western blotting, and an immunohistochemical analysis (IHC). In degenerated IVDs, we noted an overexpression of all TGF-β-1-3 mRNA isoforms with the largest changes observed for TGF-β3 isoforms (fold change (FC) = 19.52 ± 2.87) and the smallest for TGF-β2 (FC = 2.26 ± 0.16). Changes in the transcriptional activity of TGF-β-1-3 were statistically significant (p < 0.05). Significantly higher concentrations of TGF-β1 (2797 ± 132 pg/mL vs. 276 ± 19 pg/mL; p < 0.05), TGF-β2 (1918 ± 176 pg/mL vs. 159 ± 17 pg/mL; p < 0.05), and TGF-β3 (2573 ± 102 pg/mL vs. 152 ± 11 pg/mL) were observed in degenerative IVDs compared with the control samples. Determining the concentration profiles of TGF-β1-3 appears to be a promising monitoring tool for the progression of degenerative disease as well as for evaluating its treatment or developing new treatment strategies with molecular targets.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (M.S.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland;
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland;
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (M.S.); (D.S.); (B.O.G.)
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland
| | - Filip Bolechała
- Department of Forensic Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| | - Edward Golec
- Department of Rehabilitation in Orthopaedics, Faculty of Motor Rehabilitation, Bronisław Czech University of Physical Education, 31-571 Krakow, Poland;
| | - Małgorzata Sobańska
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (M.S.); (D.S.); (B.O.G.)
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland
| | - Damian Strojny
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (M.S.); (D.S.); (B.O.G.)
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, 37-700 Przemyśl, Poland
- New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-060 Rzeszów, Poland
| | - Artur Turek
- Chair and Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 41-200 Sosnowiec, Poland;
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (M.S.); (D.S.); (B.O.G.)
- Department of Molecular Biology, Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| |
Collapse
|
5
|
Crane J, Zhang W, Otte A, Barik S, Wan M, Cao X. Slit3 by PTH-Induced Osteoblast Secretion Repels Sensory Innervation in Spine Porous Endplates to Relieve Low Back Pain. RESEARCH SQUARE 2024:rs.3.rs-4823095. [PMID: 39257984 PMCID: PMC11384799 DOI: 10.21203/rs.3.rs-4823095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
During aging, the spine undergoes degenerative changes, particularly with vertebral endplate bone expansion and sclerosis, that is associated with nonspecific low back pain (LBP). We reported that parathyroid hormone (PTH) treatment could reduce vertebral endplate sclerosis and improve pain behaviors in aging, SM/J and young lumbar spine instability (LSI) mice. Aberrant innervation noted in the vertebral body and endplate during spinal degeneration was reduced with PTH treatment in aging and LSI mice as quantified by PGP9.5+ and CGRP+ nerve fibers, as well as CGRP expression in dorsal root ganglia (DRG). The neuronal repulsion factor Slit3 significantly increased in response to PTH treatment mediated by transcriptional factor FoxA2. PTH type1 receptor (PPR) and Slit3 deletion in osteoblasts prevented PTH-reduction of endplate porosity and improvement in behavior tests, whereas PPR deletion in chondrocytes continued to respond to PTH. Altogether, PTH stimulates Slit3 to repel sensory nerve innervation and provides symptomatic relief of LBP associated with spinal degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Cao
- Johns Hopkins University School of Medicine
| |
Collapse
|
6
|
Bhadouria N, Holguin N. Osteoporosis treatments for intervertebral disc degeneration and back pain: a perspective. JBMR Plus 2024; 8:ziae048. [PMID: 38706880 PMCID: PMC11066806 DOI: 10.1093/jbmrpl/ziae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 05/07/2024] Open
Abstract
Low back pain derived from intervertebral disc (IVD) degeneration is a debilitating spinal condition that, despite its prevalence, does not have any intermediary guidelines for pharmacological treatment between palliative care and invasive surgery. The development of treatments for the IVD is complicated by the variety of resident cell types needed to maintain the regionally distinct structural properties of the IVD that permit the safe, complex motions of the spine. Osteoporosis of the spine increases the risk of vertebral bone fracture that can increase the incidence of back pain. Fortunately, there are a variety of pharmacological treatments for osteoporosis that target osteoblasts, osteoclasts and/or osteocytes to build bone and prevent vertebral fracture. Of particular note, clinical and preclinical studies suggest that commonly prescribed osteoporosis drugs like bisphosphonates, intermittent parathyroid hormone, anti-sclerostin antibody, selective estrogen receptor modulators and anti-receptor activator of nuclear factor-kappa B ligand inhibitor denosumab may also relieve back pain. Here, we cite clinical and preclinical studies and include unpublished data to support the argument that a subset of these therapeutics for osteoporosis may alleviate low back pain by also targeting the IVD.
Collapse
Affiliation(s)
- Neharika Bhadouria
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nilsson Holguin
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
7
|
He Y, Liu S, Lin H, Ding F, Shao Z, Xiong L. Roles of organokines in intervertebral disc homeostasis and degeneration. Front Endocrinol (Lausanne) 2024; 15:1340625. [PMID: 38532900 PMCID: PMC10963452 DOI: 10.3389/fendo.2024.1340625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines. Through endocrine, paracrine, and autocrine mechanisms, organokines modulate energy homeostasis, oxidative stress, and metabolic balance in various tissues to mediate cross-organ communication. These molecules are involved in the regulation of cellular behavior, inflammation, and matrix metabolism under physiological and pathological conditions. In this review, we aimed to summarize the impact of organokines on disc homeostasis and degeneration and the underlying signaling mechanism. We focused on the regulatory mechanisms of organokines to provide a basis for the development of early diagnostic and therapeutic strategies for disc degeneration.
Collapse
Affiliation(s)
- Yuxin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ding
- Department of Orthopaedics, JingMen Central Hospital, Jingmen, China
- Hubei Minzu University, Enshi, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α activity in the nucleus pulposus causes intervertebral disc degeneration in the aging mouse spine. Front Cell Dev Biol 2024; 12:1360376. [PMID: 38510179 PMCID: PMC10950937 DOI: 10.3389/fcell.2024.1360376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A; P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19CreERT; HIF-2αdPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14- and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-month. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
Affiliation(s)
- Shira N. Johnston
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rahatul Ain
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Pharmacology, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ruteja A. Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α Activity in the Nucleus Pulposus Causes Intervertebral Disc Degeneration in the Aging Mouse Spine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573086. [PMID: 38187709 PMCID: PMC10769411 DOI: 10.1101/2023.12.22.573086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A;P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19 CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19 CreERT ; HIF-2α dPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14-and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-months. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
|
10
|
Ling Z, Crane J, Hu H, Chen Y, Wan M, Ni S, Demehri S, Mohajer B, Peng X, Zou X, Cao X. Parathyroid hormone treatment partially reverses endplate remodeling and attenuates low back pain in animal models of spine degeneration. Sci Transl Med 2023; 15:eadg8982. [PMID: 37967203 DOI: 10.1126/scitranslmed.adg8982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Low back pain (LBP) is one of the most prevalent diseases affecting quality of life, with no disease-modifying therapy. During aging and spinal degeneration, the balance between the normal endplate (EP) bilayers of cartilage and bone shifts to more bone. The aged/degenerated bony EP has increased porosity because of osteoclastic remodeling activity and may be a source of LBP due to aberrant sensory innervation within the pores. We used two mouse models of spinal degeneration to show that parathyroid hormone (PTH) treatment induced osteogenesis and angiogenesis and reduced the porosity of bony EPs. PTH increased the cartilaginous volume and improved the mechanical properties of EPs, which was accompanied by a reduction of the inflammatory factors cyclooxygenase-2 and prostaglandin E2. PTH treatment furthermore partially reversed the innervation of porous EPs and reversed LBP-related behaviors. Conditional knockout of PTH 1 receptors in the nucleus pulposus (NP) did not abolish the treatment effects of PTH, suggesting that the NP is not the primary source of LBP in our mouse models. Last, we showed that aged rhesus macaques with spontaneous spinal degeneration also had decreased EP porosity and sensory innervation when treated with PTH, demonstrating a similar mechanism of PTH action on EP sclerosis between mice and macaques. In summary, our results suggest that PTH treatment could partially reverse EP restructuring during spinal regeneration and support further investigation into this potentially disease-modifying treatment strategy for LBP.
Collapse
Affiliation(s)
- Zemin Ling
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Janet Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shadpour Demehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bahram Mohajer
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
12
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
13
|
Du X, Liang K, Ding S, Shi H. Signaling Mechanisms of Stem Cell Therapy for Intervertebral Disc Degeneration. Biomedicines 2023; 11:2467. [PMID: 37760908 PMCID: PMC10525468 DOI: 10.3390/biomedicines11092467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Low back pain is the leading cause of disability worldwide. Intervertebral disc degeneration (IDD) is the primary clinical risk factor for low back pain and the pathological cause of disc herniation, spinal stenosis, and spinal deformity. A possible approach to improve the clinical practice of IDD-related diseases is to incorporate biomarkers in diagnosis, therapeutic intervention, and prognosis prediction. IDD pathology is still unclear. Regarding molecular mechanisms, cellular signaling pathways constitute a complex network of signaling pathways that coordinate cell survival, proliferation, differentiation, and metabolism. Recently, stem cells have shown great potential in clinical applications for IDD. In this review, the roles of multiple signaling pathways and related stem cell treatment in IDD are summarized and described. This review seeks to investigate the mechanisms and potential therapeutic effects of stem cells in IDD and identify new therapeutic treatments for IDD-related disorders.
Collapse
Affiliation(s)
| | | | | | - Haifei Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.D.); (K.L.); (S.D.)
| |
Collapse
|
14
|
Li T, Ma Z, Zhang Y, Yang Z, Li W, Lu D, Liu Y, Qiang L, Wang T, Ren Y, Wang W, He H, Zhou X, Mao Y, Zhu J, Wang J, Chen X, Dai K. Regeneration of Humeral Head Using a 3D Bioprinted Anisotropic Scaffold with Dual Modulation of Endochondral Ossification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205059. [PMID: 36755334 PMCID: PMC10131811 DOI: 10.1002/advs.202205059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Indexed: 06/18/2023]
Abstract
Tissue engineering is theoretically thought to be a promising method for the reconstruction of biological joints, and thus, offers a potential treatment alternative for advanced osteoarthritis. However, to date, no significant progress is made in the regeneration of large biological joints. In the current study, a biomimetic scaffold for rabbit humeral head regeneration consisting of heterogeneous porous architecture, various bioinks, and different hard supporting materials in the cartilage and bone regions is designed and fabricated in one step using 3D bioprinting technology. Furthermore, orchestrated dynamic mechanical stimulus combined with different biochemical cues (parathyroid hormone [PTH] and chemical component hydroxyapatite [HA] in the outer and inner region, respectively) are used for dual regulation of endochondral ossification. Specifically, dynamic mechanical stimulus combined with growth factor PTH in the outer region inhibits endochondral ossification and results in cartilage regeneration, whereas dynamic mechanical stimulus combined with HA in the inner region promotes endochondral ossification and results in efficient subchondral bone regeneration. The strategy established in this study with the dual modulation of endochondral ossification for 3D bioprinted anisotropic scaffolds represents a versatile and scalable approach for repairing large joints.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Zhengjiang Ma
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Yuxin Zhang
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Zezheng Yang
- Department of OrthopedicsThe Fifth People's Hospital of ShanghaiFudan UniversityMinhang DistrictShanghai200240P. R. China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Dezhi Lu
- School of MedicineShanghai UniversityJing An DistrictShanghai200444China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Lei Qiang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Ya Ren
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Wenhao Wang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Hongtao He
- The Third Ward of Department of OrthopedicsThe Second Hospital of Dalian Medical UniversityNo. 467, Zhongshan Road, Shahekou DistrictDalianLiaoning Province116000P. R. China
| | - Xiaojun Zhou
- College of Biological Science and Medical EngineeringState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620P. R. China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Junfeng Zhu
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Xiaodong Chen
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| |
Collapse
|
15
|
Liang T, Gao B, Zhou J, Qiu X, Qiu J, Chen T, Liang Y, Gao W, Qiu X, Lin Y. Constructing intervertebral disc degeneration animal model: A review of current models. Front Surg 2023; 9:1089244. [PMID: 36969323 PMCID: PMC10036602 DOI: 10.3389/fsurg.2022.1089244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 03/12/2023] Open
Abstract
Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinlang Zhou
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Taiqiu Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanfang Liang
- Department of Operating Theater, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| |
Collapse
|
16
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab 2022; 34:1914-1931. [PMID: 36257317 PMCID: PMC9742337 DOI: 10.1016/j.cmet.2022.09.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Accumulating evidence indicates that interoception maintains proper physiological status and orchestrates metabolic homeostasis by regulating feeding behaviors, glucose balance, and lipid metabolism. Continuous skeletal remodeling consumes a tremendous amount of energy to provide skeletal scaffolding, support muscle movement, store vital minerals, and maintain a niche for hematopoiesis, which are processes that also contribute to overall metabolic balance. Although skeletal innervation has been described for centuries, recent work has shown that skeletal metabolism is tightly regulated by the nervous system and that skeletal interoception regulates bone homeostasis. Here, we provide a general discussion of interoception and its effects on the skeleton and whole-body metabolism. We also discuss skeletal interoception-mediated regulation in the context of pathological conditions and skeletal pain as well as future challenges to our understanding of these process and how they can be leveraged for more effective therapy.
Collapse
Affiliation(s)
- Xiao Lv
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Gao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Zhou N, Shen B, Bai C, Ma L, Wang S, Wu D. Nutritional deficiency induces nucleus pulposus cell apoptosis via the ATF4-PKM2-AKT signal axis. BMC Musculoskelet Disord 2022; 23:946. [PMID: 36324122 PMCID: PMC9628105 DOI: 10.1186/s12891-022-05853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Background The intervertebral disc is the largest avascular tissue in the human body. The nucleus pulposus (NP) consumes glucose and oxygen to generate energy to maintain cellular metabolism via nutrients that diffuse from the cartilage endplate. The microenvironment in the intervertebral disc becomes nutritionally deficient during degeneration, and nutritional deficiency has been shown to inhibit the viability and proliferation of NP cells. Methods To investigate the molecular mechanism by which nutritional deficiency reduces viability and decreases proliferation, we created an in vitro model by using decreasing serum concentration percentages. Results In this study, we found that nutritional deficiency reduced NP cell viability and increased cell apoptosis and that the upregulation of ATF4 expression and the downregulation of PKM2 expression were involved in this process. Moreover, we found that PKM2 inhibition can reduce the cell apoptosis induced by ATF4 silence under nutritional deficiency. Conclusion Our findings revealed that PKM2 inhibition reduces the cell apoptosis induced by ATF4 silence under nutritional deficiency by inhibiting AKT phosphate. Revealing the function and mechanism of NP cell development under nutritional deficiency will provide new insights into the etiology, diagnosis, and treatment of intervertebral disc and related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05853-1.
Collapse
Affiliation(s)
- Ningfeng Zhou
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Shen
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chong Bai
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Ma
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanjin Wang
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Desheng Wu
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Tirado‐Cabrera I, Martin‐Guerrero E, Heredero‐Jimenez S, Ardura JA, Gortázar AR. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion. J Cell Physiol 2022; 237:3927-3943. [PMID: 35933642 PMCID: PMC9804361 DOI: 10.1002/jcp.30849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Osteocytes respond to mechanical forces controlling osteoblast and osteoclast function. Mechanical stimulation decreases osteocyte apoptosis and promotes bone formation. Primary cilia have been described as potential mechanosensors in bone cells. Certain osteogenic responses induced by fluid flow (FF) in vitro are decreased by primary cilia inhibition in MLO-Y4 osteocytes. The parathyroid hormone (PTH) receptor type 1 (PTH1R) modulates osteoblast, osteoclast, and osteocyte effects upon activation by PTH or PTH-related protein (PTHrP) in osteoblastic cells. Moreover, some actions of PTH1R seem to be triggered directly by mechanical stimulation. We hypothesize that PTH1R forms a signaling complex in the primary cilium that is essential for mechanotransduction in osteocytes and affects osteocyte-osteoclast communication. MLO-Y4 osteocytes were stimulated by FF or PTHrP (1-37). PTH1R and primary cilia signaling were abrogated using PTH1R or primary cilia specific siRNAs or inhibitors, respectively. Conditioned media obtained from mechanically- or PTHrP-stimulated MLO-Y4 cells inhibited the migration of preosteoclastic cells and osteoclast differentiation. Redistribution of PTH1R along the entire cilium was observed in mechanically stimulated MLO-Y4 osteocytic cells. Preincubation of MLO-Y4 cells with the Gli-1 antagonist, the adenylate cyclase inhibitor (SQ22536), or with the phospholipase C inhibitor (U73122), affected the migration of osteoclast precursors and osteoclastogenesis. Proteomic analysis and neutralizing experiments showed that FF and PTH1R activation control osteoclast function through the modulation of C-X-C Motif Chemokine Ligand 5 (CXCL5) and interleukin-6 (IL-6) secretion in osteocytes. These novel findings indicate that both primary cilium and PTH1R are necessary in osteocytes for proper communication with osteoclasts and show that mechanical stimulation inhibits osteoclast recruitment and differentiation through CXCL5, while PTH1R activation regulate these processes via IL-6.
Collapse
Affiliation(s)
- Irene Tirado‐Cabrera
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Eduardo Martin‐Guerrero
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Sara Heredero‐Jimenez
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Juan A. Ardura
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Arancha R. Gortázar
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| |
Collapse
|
20
|
Circ0007042 alleviates intervertebral disc degeneration by adsorbing miR-369 to upregulate BMP2 and activate the PI3K/AKt pathway. Arthritis Res Ther 2022; 24:214. [PMID: 36068615 PMCID: PMC9446735 DOI: 10.1186/s13075-022-02895-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background To identify regulatory ncRNA molecules that can cause differential expression of CDH2 in intervertebral disc degeneration (IDD) and explore whether there are other ways to affect the progression of IDD. Methods A primary culture of human nucleus pulposus (NP) cells was established and identified by immunofluorescence. An in vitro IDD model was constructed by compressing human NP cells, and the MTT assay was used to measure cell viability. Changes in the ncRNA group were analysed by RNA-seq. The expression levels of hsa_circ_7042, CDH2, and miR-369-3p were detected by qPCR. Cell apoptosis, senescence, and extracellular matrix (ECM) metabolism were detected by flow cytometry, β-galactosidase staining, and Western blotting. hsa_circ_7042, miR-369-3p, and bone morphogenetic protein 2 (BMP2) were verified by luciferase and RNA immunoprecipitation (RIP) analyses. The PI3K/Akt pathway was validated by transfection of BMP2 siRNA. Furthermore, a mouse model of lumbar spine instability was constructed. circ_7042 adenovirus was packaged and injected into the intervertebral discs of mice, and the influence of circ_7042 overexpression on intervertebral disc degeneration was determined. Results Western blotting, qPCR, and flow cytometry analyses confirmed that overexpression of circ_7042 could downregulate miR-369-3p and upregulate the expression of CDH2 and BMP2 in IDD cell and animal models. Additionally, the levels of apoptotic and senescent cells decreased, and ECM degradation decreased. The PI3K/Akt pathway was significantly activated after circ_7042 was overexpressed. The injection of circ_7042-overexpressing adenovirus effectively reduced ECM degradation and the level of apoptosis in NP tissue. Conclusions circ_7042 could upregulate the expression of CDH2 and BMP2 by absorbing miR-369-3p, and the increased BMP2 activated the PI3K/Akt pathway, thus improving IDD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02895-7.
Collapse
|
21
|
Zhang J, Pi C, Cui C, Zhou Y, Liu B, Liu J, Xu X, Zhou X, Zheng L. PTHrP promotes subchondral bone formation in TMJ-OA. Int J Oral Sci 2022; 14:37. [PMID: 35853862 PMCID: PMC9296483 DOI: 10.1038/s41368-022-00189-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
PTH-related peptide (PTHrP) improves the bone marrow micro-environment to activate the bone-remodelling, but the coordinated regulation of PTHrP and transforming growth factor-β (TGFβ) signalling in TMJ-OA remains incompletely understood. We used disordered occlusion to establish model animals that recapitulate the ordinary clinical aetiology of TMJ-OA. Immunohistochemical and histological analyses revealed condylar fibrocartilage degeneration in model animals following disordered occlusion. TMJ-OA model animals administered intermittent PTHrP (iPTH) exhibited significantly decreased condylar cartilage degeneration. Micro-CT, histomorphometry, and Western Blot analyses disclosed that iPTH promoted subchondral bone formation in the TMJ-OA model animals. In addition, iPTH increased the number of osterix (OSX)-positive cells and osteocalcin (OCN)-positive cells in the subchondral bone marrow cavity. However, the number of osteoclasts was also increased by iPTH, indicating that subchondral bone volume increase was mainly due to the iPTH-mediated increase in the bone-formation ability of condylar subchondral bone. In vitro, PTHrP treatment increased condylar subchondral bone marrow-derived mesenchymal stem cell (SMSC) osteoblastic differentiation potential and upregulated the gene and protein expression of key regulators of osteogenesis. Furthermore, we found that PTHrP-PTH1R signalling inhibits TGFβ signalling during osteoblastic differentiation. Collectively, these data suggested that iPTH improves OA lesions by enhancing osteoblastic differentiation in subchondral bone and suppressing aberrant active TGFβ signalling. These findings indicated that PTHrP, which targets the TGFβ signalling pathway, may be an effective biological reagent to prevent and treat TMJ-OA in the clinic.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Yunnan Key Laboratory of Stomatology, Kunming, China.,Department of, Affiliated Stomatological Hospital, Kunming Medical University, Kunming, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Liu
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Juan Liu
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Ardura JA, Martín-Guerrero E, Heredero-Jiménez S, Gortazar AR. Primary cilia and PTH1R interplay in the regulation of osteogenic actions. VITAMINS AND HORMONES 2022; 120:345-370. [PMID: 35953116 DOI: 10.1016/bs.vh.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Primary cilia are subcellular structures specialized in sensing different stimuli in a diversity of cell types. In bone, the primary cilium is involved in mechanical sensing and transduction of signals that regulate the behavior of mesenchymal osteoprogenitors, osteoblasts and osteocytes. To perform its functions, the primary cilium modulates a plethora of molecules including those stimulated by the parathyroid hormone (PTH) receptor type I (PTH1R), a master regulator of osteogenesis. Binding of the agonists PTH or PTH-related protein (PTHrP) to the PTH1R or direct agonist-independent stimulation of the receptor activate PTH1R signaling pathways. In turn, activation of PTH1R leads to regulation of bone formation and remodeling. Herein, we describe the structure, function and molecular partners of primary cilia in the context of bone, playing special attention to those signaling pathways that are mediated directly or indirectly by PTH1R in association with primary cilia during the process of osteogenesis.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain.
| | - Eduardo Martín-Guerrero
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Sara Heredero-Jiménez
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Arancha R Gortazar
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| |
Collapse
|
23
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
24
|
Role of Primary Cilia in Skeletal Disorders. Stem Cells Int 2022; 2022:6063423. [PMID: 35761830 PMCID: PMC9233574 DOI: 10.1155/2022/6063423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Primary cilia are highly conserved microtubule-based organelles that project from the cell surface into the extracellular environment and play important roles in mechanosensation, mechanotransduction, polarity maintenance, and cell behaviors during organ development and pathological changes. Intraflagellar transport (IFT) proteins are essential for cilium formation and function. The skeletal system consists of bones and connective tissue, including cartilage, tendons, and ligaments, providing support, stability, and movement to the body. Great progress has been achieved in primary cilia and skeletal disorders in recent decades. Increasing evidence suggests that cells with cilium defects in the skeletal system can cause numerous human diseases. Moreover, specific deletion of ciliary proteins in skeletal tissues with different Cre mice resulted in diverse malformations, suggesting that primary cilia are involved in the development of skeletal diseases. In addition, the intact of primary cilium is essential to osteogenic/chondrogenic induction of mesenchymal stem cells, regarded as a promising target for clinical intervention for skeletal disorders. In this review, we summarized the role of primary cilia and ciliary proteins in the pathogenesis of skeletal diseases, including osteoporosis, bone/cartilage tumor, osteoarthritis, intervertebral disc degeneration, spine scoliosis, and other cilium-related skeletal diseases, and highlighted their promising treatment methods, including using mesenchymal stem cells. Our review tries to present evidence for primary cilium as a promising target for clinical intervention for skeletal diseases.
Collapse
|
25
|
Yang X, Li B, Tian H, Cheng X, Zhou T, Zhao J. Curcumenol Mitigates the Inflammation and Ameliorates the Catabolism Status of the Intervertebral Discs In Vivo and In Vitro via Inhibiting the TNFα/NFκB Pathway. Front Pharmacol 2022; 13:905966. [PMID: 35795557 PMCID: PMC9252100 DOI: 10.3389/fphar.2022.905966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Low back pain (LBP) caused by intervertebral disc degeneration (IVDD) is accredited to the release of inflammatory cytokines followed by biomechanical and structural deterioration. In our study, we used a plant-derived medicine, curcumenol, to treat IVDD. A cell viability test was carried out to evaluate the possibility of using curcumenol. RNA-seq was used to determine relative pathways involved with curcumenol addition. Using TNFα as a trigger of inflammation, the activation of the NF-κB signaling pathway and expression of the MMP family were determined by qPCR and western blotting. Nucleus pulposus (NP) cells and the rats’ primary NP cells were cultured. The catabolism status was evaluated by an ex vivo model. A lumbar instability mouse model was carried out to show the effects of curcumenol in vivo. In general, RNA-seq revealed that multiple signaling pathways changed with curcumenol addition, especially the TNFα/NF-κB pathway. So, the NP cells and primary NP cells were induced to suffer inflammation with the activated TNFα/NF-κB signaling pathway and increased expression of the MMP family, such as MMP3, MMP9, and MMP13, which would be mitigated by curcumenol. Owing to the protective effects of curcumenol, the height loss and osteophyte formation of the disc could be prevented in the lumbar instability mouse model in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhao
- *Correspondence: Tangjun Zhou, ; Jie Zhao,
| |
Collapse
|
26
|
Mechanisms of bone pain: Progress in research from bench to bedside. Bone Res 2022; 10:44. [PMID: 35668080 PMCID: PMC9170780 DOI: 10.1038/s41413-022-00217-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
AbstractThe field of research on pain originating from various bone diseases is expanding rapidly, with new mechanisms and targets asserting both peripheral and central sites of action. The scope of research is broadening from bone biology to neuroscience, neuroendocrinology, and immunology. In particular, the roles of primary sensory neurons and non-neuronal cells in the peripheral tissues as important targets for bone pain treatment are under extensive investigation in both pre-clinical and clinical settings. An understanding of the peripheral mechanisms underlying pain conditions associated with various bone diseases will aid in the appropriate application and development of optimal strategies for not only managing bone pain symptoms but also improving bone repairing and remodeling, which potentially cures the underlying etiology for long-term functional recovery. In this review, we focus on advances in important preclinical studies of significant bone pain conditions in the past 5 years that indicated new peripheral neuronal and non-neuronal mechanisms, novel targets for potential clinical interventions, and future directions of research.
Collapse
|
27
|
Gao B, Jiang B, Xing W, Xie Z, Luo Z, Zou W. Discovery and Application of Postnatal Nucleus Pulposus Progenitors Essential for Intervertebral Disc Homeostasis and Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104888. [PMID: 35195356 PMCID: PMC9069184 DOI: 10.1002/advs.202104888] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/16/2022] [Indexed: 05/15/2023]
Abstract
Intervertebral disc degeneration (IDD) results from the dysfunction of nucleus pulposus (NP) cells and the exhaustion of NP progenitors (ProNPs). The cellular applications of NP cells during IDD are currently limited due to the lack of in vivo studies showing whether NP cells are heterogeneous and contain ProNPs throughout postnatal stages. In this study, single-cell RNA sequencing of purified NP cells is used to map four molecularly defined populations and urotensin II receptor (UTS2R)-expressing postnatal ProNPs is identified, which are markedly exhausted during IDD, in mouse and human specimens. The lineage tracing shows that UTS2R+ ProNPs preferentially resides in the NP periphery with its niche factor tenascin-C and give rise to functional NP cells. It is also demonstrated that transplanting UTS2R+ ProNPs with tenascin-C into injured intervertebral discs attenuate the progression of IDD. The study provides a novel NP cell atlas, identified resident ProNPs with regenerative potential, and revealed promising diagnostic and therapeutic targets for IDD.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Bo Jiang
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wenhui Xing
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zaiqi Xie
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhuojing Luo
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Weiguo Zou
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
28
|
Xiao H, Zhang T, Li CJ, Cao Y, Wang LF, Chen HB, Li SC, Guan CB, Hu JZ, Chen D, Chen C, Lu HB. Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling. eLife 2022; 11:73614. [PMID: 35475783 PMCID: PMC9094755 DOI: 10.7554/elife.73614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Proper mechanical stimulation can improve rotator cuff enthesis injury repair. However, the underlying mechanism of mechanical stimulation promoting injury repair is still unknown. In this study, we found that Prrx1+ cell was essential for murine rotator cuff enthesis development identified by single-cell RNA sequence and involved in the injury repair. Proper mechanical stimulation could promote the migration of Prrx1+ cells to enhance enthesis injury repair. Meantime, TGF-β signaling and primary cilia played an essential role in mediating mechanical stimulation signaling transmission. Proper mechanical stimulation enhanced the release of active TGF-β1 to promote migration of Prrx1+ cells. Inhibition of TGF-β signaling eliminated the stimulatory effect of mechanical stimulation on Prrx1+ cell migration and enthesis injury repair. In addition, knockdown of Pallidin to inhibit TGF-βR2 translocation to the primary cilia or deletion of Ift88 in Prrx1+ cells also restrained the mechanics-induced Prrx1+ cells migration. These findings suggested that mechanical stimulation could increase the release of active TGF-β1 and enhance the mobilization of Prrx1+ cells to promote enthesis injury repair via ciliary TGF-β signaling.
Collapse
Affiliation(s)
- Han Xiao
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Jun Li
- Department of Endocrinology, Xiangya Hospital Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lin Feng Wang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Hua Bin Chen
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Sheng Can Li
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Biao Guan
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhong Hu
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Can Chen
- Department of Orthopedic, Xiangya Hospital Central South University, Changsha, China
| | - Hong Bin Lu
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
29
|
Yao C, Guo G, Huang R, Tang C, Zhu Q, Cheng Y, Kong L, Ren J, Fang M. Manual therapy regulates oxidative stress in aging rat lumbar intervertebral discs through the SIRT1/FOXO1 pathway. Aging (Albany NY) 2022; 14:2400-2417. [PMID: 35289767 PMCID: PMC8954973 DOI: 10.18632/aging.203949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
With the increasing burden of a globally aging population, low back pain has become one of the most common musculoskeletal disorders, caused mainly by intervertebral disc (IVD) degeneration. There are currently several clinical methods to alleviate back pain, but there is scarce attention paid as to whether they can improve age-related IVD degeneration. It is therefore difficult to conduct an in-depth evaluation of these methods. A large number of clinical studies have shown that manual therapy (MT), a widely used comprehensive alternative method, has effects on pain, the mechanisms of which require further study. In this study, MT was performed on aging rats for 6 months, and their behaviors were compared with those of a non-intervention group of aging and young rats. After the intervention, all rats were examined by X-ray to observe lumbar spine degeneration, and the IVD tissues were dissected for detection, including pathological staining, immunofluorescence, Western bolt, etc. This study demonstrated the possibility that MT intervention delay the lumbar IVD degeneration in aging rats, specifically improving the motor function and regulating senescence-associated β-galactosidase, p53, p21, p16, and telomerase activity to retard the senescence of cells in IVDs. Moreover, MT intervention can modify oxidative stress, increase the expression of SIRT1 and FOXO1 in IVDs and decrease ac-FOXO1 expression, suggesting that MT can reduce oxidative stress through the SIRT1/FOXO1 pathway, thereby playing a role in delaying the aging of IVDs. This study shows that drug-free, non-invasive mechanical interventions could be of major significance in improving the physical function of the elderly.
Collapse
Affiliation(s)
- Chongjie Yao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Guangxin Guo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Ruixin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Cheng Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Yanbin Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jun Ren
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Min Fang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
30
|
Exogenous Parathyroid Hormone Alleviates Intervertebral Disc Degeneration through the Sonic Hedgehog Signalling Pathway Mediated by CREB. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9955677. [PMID: 35265269 PMCID: PMC8898813 DOI: 10.1155/2022/9955677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
As an important hormone that regulates the balance of calcium and phosphorus, parathyroid hormone (PTH) has also been found to have an important function in intervertebral disc degeneration (IVDD). Our aim was to investigate the mechanism by which PTH alleviates IVDD. In this study, the PTH 1 receptor was found to be highly expressed in severely degenerated human nucleus pulposus (NP) cells. We found in the mouse model of IVDD that supplementation with exogenous PTH alleviated the narrowing of the intervertebral space and the degradation of the extracellular matrix (ECM) caused by tail suspension (TS). In addition, inflammation, oxidative stress, and apoptosis levels were significantly increased in the intervertebral disc tissues of TS-induced mice, and the activity of NP cells was decreased. TS also led to the downregulation of Sonic hedgehog (SHH) signalling pathway-related signal molecules in NP cells such as SHH, Smoothened, and GLI1. However, supplementation with exogenous PTH can reverse these changes. In vitro, PTH also promotes the activity of NP cells and the secretion of ECM. However, the antagonist of the SHH signalling pathway can inhibit the therapeutic effect of PTH on NP cells. In addition, a cAMP-response element-binding protein, as an important transcription factor, was found to mediate the promotion of PTH on the SHH signalling pathway. Our results revealed that PTH can alleviate IVDD by inhibiting inflammation, oxidative stress, and apoptosis and improving the activity of NP cells via activating the SHH signalling pathway.
Collapse
|
31
|
Wang D, Peng P, Dudek M, Hu X, Xu X, Shang Q, Wang D, Jia H, Wang H, Gao B, Zheng C, Mao J, Gao C, He X, Cheng P, Wang H, Zheng J, Hoyland JA, Meng QJ, Luo Z, Yang L. Restoring the dampened expression of the core clock molecule BMAL1 protects against compression-induced intervertebral disc degeneration. Bone Res 2022; 10:20. [PMID: 35217644 PMCID: PMC8881495 DOI: 10.1038/s41413-022-00187-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
The circadian clock participates in maintaining homeostasis in peripheral tissues, including intervertebral discs (IVDs). Abnormal mechanical loading is a known risk factor for intervertebral disc degeneration (IDD). Based on the rhythmic daily loading pattern of rest and activity, we hypothesized that abnormal mechanical loading could dampen the IVD clock, contributing to IDD. Here, we investigated the effects of abnormal loading on the IVD clock and aimed to inhibit compression-induced IDD by targeting the core clock molecule brain and muscle Arnt-like protein-1 (BMAL1). In this study, we showed that BMAL1 KO mice exhibit radiographic features similar to those of human IDD and that BMAL1 expression was negatively correlated with IDD severity by systematic analysis based on 149 human IVD samples. The intrinsic circadian clock in the IVD was dampened by excessive loading, and BMAL1 overexpression by lentivirus attenuated compression-induced IDD. Inhibition of the RhoA/ROCK pathway by Y-27632 or melatonin attenuated the compression-induced decrease in BMAL1 expression. Finally, the two drugs partially restored BMAL1 expression and alleviated IDD in a diurnal compression model. Our results first show that excessive loading dampens the circadian clock of nucleus pulposus tissues via the RhoA/ROCK pathway, the inhibition of which potentially protects against compression-induced IDD by preserving BMAL1 expression. These findings underline the importance of the circadian clock for IVD homeostasis and provide a potentially effective therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Pandi Peng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China
| | - Michal Dudek
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.,Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PL, UK
| | - Xueyu Hu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianxin Mao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chu Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xin He
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Pengzhen Cheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Huanbo Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianmin Zheng
- Radiology Department, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Judith A Hoyland
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Qing-Jun Meng
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.,Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PL, UK
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China. .,Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China.
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China. .,Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China.
| |
Collapse
|
32
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China ,grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Liu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
33
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z+10.1038/s41413-021-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2024] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
34
|
Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
|
35
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Exosomal MATN3 of Urine-Derived Stem Cells Ameliorates Intervertebral Disc Degeneration by Antisenescence Effects and Promotes NPC Proliferation and ECM Synthesis by Activating TGF- β. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5542241. [PMID: 34136064 PMCID: PMC8175180 DOI: 10.1155/2021/5542241] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Objective Low back pain (LBP) is one of the top three causes of disability in developed countries, and intervertebral disc degeneration (IDD) is a major contributor to LBP. In the process of IDD, there is a gradual decrease in nucleus pulposus cells (NPCs) and extracellular matrix (ECM). Exosomes are important exocrine mediators of stem cells that can act directly on cells for tissue repair and regeneration. In this study, we determined the antisenescence, cell proliferation promotion, and ECM modulation effects of human urine-derived stem cell (USC) exosomes (USC-exos) on degenerated intervertebral discs and explored the underlying mechanism. Methods and Materials USCs were identified by multipotent differentiation and flow cytometry for mesenchymal stem cell- (MSC-) specific surface protein markers. USC-exos were isolated from the conditioned medium of USCs by ultracentrifugation and then analyzed by transmission electron microscopy (TEM), particle size analysis, and western blotting (WB) for exosome marker proteins. The effects of USC-exos on NPC proliferation and ECM synthesis were assessed by Cell Counting Kit-8 (CCK-8), WB, and immunofluorescence (IF) analyses. The protein differences between normal and degenerative intervertebral discs were mined, and the temporal and spatial variations in matrilin-3 (MATN3) content were determined by WB and IF in the intervertebral disc tissues. The candidate molecules that mediated the function of USC-exos were screened out and confirmed by multiple assays. Meanwhile, the mechanism underlying the candidate protein in USC-exos-induced cell proliferation and regulation of ECM synthesis promoting the activities of NPCs was explored. In addition, the effects of USC-exos on ameliorating intervertebral disc degeneration (IVD) in mice were examined by assessing computed tomography (CT), magnetic resonance imaging (MRI), and histological analyses. Results The flow cytometry results showed that USCs were positive for CD29, CD44, and CD73, which are USC surface-specific markers, but negative for CD34 and CD45. In addition, USCs showed osteogenic, adipogenic, and chondrogenic differentiation potential. USC-exos exhibited a cup-shaped morphology, with a mean diameter of 49.7 ± 7.3 nm, and were positive for CD63 and TSG101 and negative for calnexin. USC-exos could promote NPC proliferation and ECM synthesis. The protein content of the matrilin family was significantly reduced in degenerative intervertebral discs, and the decrease in MATN3 was the most significant. USC-exos were found to be rich in MATN3 protein, and exosomal MATN3 was required for USC-exos-induced promotion of NPC proliferation and ECM synthesis, as well as alleviation of intervertebral disc degeneration in IVD rats. In addition, the effects of MATN3 in USC-exos were demonstrated to be achieved by activating TGF-β, which elevated the phosphorylation level of SMAD and AKT. Conclusions Our study suggests that reduced MATN3 can be considered a characteristic of intervertebral disc degeneration. USC-exos may represent a potentially effective agent for alleviating intervertebral disc degeneration by promoting NPC proliferation and ECM synthesis by transferring the MATN3 protein.
Collapse
|
37
|
Sources of lumbar back pain during aging and potential therapeutic targets. VITAMINS AND HORMONES 2021; 115:571-583. [PMID: 33706962 DOI: 10.1016/bs.vh.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lumbar back pain during aging is a major clinical problem, the origins and underlying mechanisms of which are challenging to study. Degenerative changes occur in various parts of the functional spinal unit, such the vertebral endplate and intervertebral disc. The homeostasis of these structural components is regulated by signaling molecules, such as transforming growth factor-β and parathyroid hormone. Previous efforts to understand sources of lumbar back pain focused on sensory innervation in the degenerative intervertebral disc, but intervertebral disc degeneration is frequently asymptomatic. An in vivo mouse model of lumbar spine aging and degeneration, combined with genetic technology, has identified endplate innervation as a major source of lumbar back pain and a potential therapeutic target. In this review, we consider how each structural component of the functional spinal unit contributes to lumbar back pain, how the homeostasis of each component is regulated, and how these findings can be used to develop potential therapies.
Collapse
|
38
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Morris H, Gonçalves CF, Dudek M, Hoyland J, Meng QJ. Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis 2021; 80:828-839. [PMID: 33397731 DOI: 10.1136/annrheumdis-2020-219515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.
Collapse
Affiliation(s)
- Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK .,NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK .,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Yao Z, Xue T, Xiong H, Cai C, Liu X, Wu F, Liu S, Fan C. Promotion of collagen deposition during skin healing through Smad3/mTOR pathway by parathyroid hormone-loaded microneedle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111446. [PMID: 33321586 DOI: 10.1016/j.msec.2020.111446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/13/2023]
Abstract
Skin wounds are associated with huge economic and emotional burdens for millions of people annually and are a challenge for health workers worldwide. At present, for skin defects after traumatic accidents, especially large-area skin defects, newly developed strategies such as the use of emerging biomaterials and cell therapy could be considered as options besides classic skin grafts. However, the new strategies have to deal with problems such as immune rejection and high costs for patients. An insufficient understanding of the mechanisms of skin wound healing further hinders the development of innovative treatment approaches. In this study, we developed a parathyroid hormone (PTH)-loaded phase-transition microneedle (PTMN) patch to deliver PTH subcutaneously in an efficient manner and change microneedle patch daily to achieve intermittent and systematic drug administration. By evaluating wound closure, re-epithelialization, collagen deposition, and extracellular matrix (ECM) expression in a Sprague-Dawley rat model of traumatic skin wounds, we demonstrated that intermittent systemic administration of PTH using our PTMN patches accelerated skin wound healing. Further, we demonstrated that the use of the patch may accelerate skin wound healing depending on the activation of the transforming growth factor (TGF)-β/Smad3/mammalian target of rapamycin (mTOR) cascade pathway. Our results suggest that the PTH-loaded PTMN patch may be a novel therapeutic strategy for treating skin wounds.
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tong Xue
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xudong Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
41
|
Shao Z, Tu Z, Shi Y, Li S, Wu A, Wu Y, Tian N, Sun L, Pan Z, Chen L, Gao W, Zhou Y, Wang X, Zhang X. RNA-Binding Protein HuR Suppresses Inflammation and Promotes Extracellular Matrix Homeostasis via NKRF in Intervertebral Disc Degeneration. Front Cell Dev Biol 2020; 8:611234. [PMID: 33330514 PMCID: PMC7732619 DOI: 10.3389/fcell.2020.611234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be a major cause of low back pain. Studies have demonstrated that IVDD may be dysregulated at the transcriptional level; however, whether post-transcriptional regulation is involved is still unknown. The current study aimed to illustrate the role of Human antigen R (HuR), an RNA binding protein involved in post-transcriptional regulation, in IVDD. The results showed that the expression of HuR was decreased in degenerative nucleus pulposus (NP) tissues as well as in TNF-α-treated NP cells. Downregulation of HuR may lead to increased inflammation and extracellular matrix (ECM) degradation in TNF-α-treated NP cells; however, these effects were not reversed in HuR overexpressed NP cells. Inhibition of the NF-κB signaling pathway attenuates inflammation and ECM degradation in HuR-deficient NP cells. A mechanism study showed that HuR prompted NKRF mRNA stability via binding to its AU-rich elements, and upregulation of NKRF suppressed inflammation and ECM degradation in HuR-deficient NP cells. Furthermore, we found that NKRF, but not HuR, overexpression ameliorated the process of IVDD in rats in vivo. In conclusion, HuR suppressed inflammation and ECM degradation in NP cells via stabilizing NKRF and inhibiting the NF-κB signaling pathway; NKRF, but not HuR, may serve as a potential therapeutic target for IVDD.
Collapse
Affiliation(s)
- Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhuolong Tu
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zongyou Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Linwei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
42
|
Yao Z, Xue T, Cai C, Li J, Lu M, Liu X, Jin T, Wu F, Liu S, Fan C. Parathyroid Hormone‐Loaded Microneedle Promotes Tendon Healing Through Activation of mTOR. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhixiao Yao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Tong Xue
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuandong Cai
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Juehong Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Mingkuan Lu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Xudong Liu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Tuo Jin
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fei Wu
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shen Liu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Cunyi Fan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| |
Collapse
|
43
|
Li X, Yang S, Han L, Mao K, Yang S. Ciliary IFT80 is essential for intervertebral disc development and maintenance. FASEB J 2020; 34:6741-6756. [PMID: 32227389 DOI: 10.1096/fj.201902838r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/19/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
The intervertebral disc degeneration (IVDD)-related diseases occur in more than 90% of the population older than 50 years. Owing to the lack of understanding of the cellular mechanisms involved in IVDD formation effective treatment options are still unavailable. Primary cilia are microtubule-based organelles that play important roles in the organ development. Intraflagellar transport (IFT) proteins are essential for the assembly and bidirectional transport within the cilium. Role of cilia and IFT80 protein in intervertebral disc (IVD) development, maintenance, and degeneration are largely unknown. Using cilia-GFP mice, we found presence of cilia on growth plate (GP), cartilage endplate (EP) annulus fibrosus (AF), and nucleus pulposus (NP) with varying ciliary length. Cilia length in NP and AF during IVDD were significantly decreased. However, cilia numbers increased by 63% in AF during repair. Deletion of IFT80 in type II collagen-positive cells resulted in cilia loss in GP and EP, and disrupted IVD structure with disorganized and decreased GP, EP, and internal AF (IAF), and less compact and markedly decreased gel-like matrix in the NP. Deletion of IFT80 in type I collagen-positive cells led to a disorganized outer AF (OAF) with thinner, loosened, and disconnected fiber alignment. Mechanistic analyses showed that loss of IFT80 caused a significant increase in cell apoptosis in the IVD, and a marked decrease in expression of chondrogenic markers - type II collagen, sox9, aggrecan, and hedgehog (Hh) signaling components, including Gli1 and Patch1 in the IVD of IFT80fl/fl ; Col2-creERT mice, and Gli1 and Patch1 expression in the OAF of IFT80fl/fl ; Col1-creERT mice. Interestingly, Smoothened agonist-SAG rescued OAF cell proliferation and osteogenic differentiation. Our findings demonstrate that ciliary IFT80 is important for the maintenance of IVD cell organization and function through regulating the cell survival and Hh signaling.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Spinal Surgery, East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Shuting Yang
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Keya Mao
- Department of Orthopedics, Chinese PLA General Hospital (301 Hospital), Beijing, China
| | - Shuying Yang
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Cui C, Zheng L, Fan Y, Zhang J, Xu R, Xie J, Zhou X. Parathyroid hormone ameliorates temporomandibular joint osteoarthritic-like changes related to age. Cell Prolif 2020; 53:e12755. [PMID: 32154622 PMCID: PMC7162802 DOI: 10.1111/cpr.12755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Ageing could be a contributing factor to the progression of temporomandibular joint osteoarthritis (TMJ OA), whereas its pathogenesis and potential therapeutic strategy have not been comprehensively investigated. MATERIALS AND METHODS We generated ageing mouse models (45-week and 60-week; 12-week mice as control) and intermittently injected 45-week mice with parathyroid hormone (PTH(1-34)) or vehicle for 4 weeks. Cartilage and subchondral bone of TMJ were analysed by microCT, histological and immunostaining. Western blot, qRT-PCR, ChIP, ELISA and immunohistochemical analysis were utilized to examination the mechanism of PTH(1-34)'s function. RESULTS We showed apparent OA-like phenotypes in ageing mice. PTH treatment could ameliorate the degenerative changes and improve bone microarchitecture in the subchondral bone by activating bone remodelling. Moreover, PTH inhibited phosphorylation level of Smad3, which can combine with p16ink4a gene promoter region, resulting in reduced senescent cells accumulation and increased cellular proliferation of marrow mesenchymal stem cells (MSCs). ELISA also showed relieved levels of specific senescent-associated secretory phenotype (SASP) in ageing mice after PTH treatment. CONCLUSIONS In summary, PTH may reduce the accumulation of senescent cells in subchondral bone by inhibiting p16ink4a and improve bone marrow microenvironment to active bone remodelling process, indicating PTH administration could be a potential preventative and therapeutic treatment for age-related TMJ OA.
Collapse
Affiliation(s)
- Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jun Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,School of Stomatology, Kunming Medical University, Kunming, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
45
|
Chen S, Qin L, Wu X, Fu X, Lin S, Chen D, Xiao G, Shao Z, Cao H. Moderate Fluid Shear Stress Regulates Heme Oxygenase-1 Expression to Promote Autophagy and ECM Homeostasis in the Nucleus Pulposus Cells. Front Cell Dev Biol 2020; 8:127. [PMID: 32195253 PMCID: PMC7064043 DOI: 10.3389/fcell.2020.00127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
In vertebrate, the nucleus pulposus (NP), which is an essential component of the intervertebral disk, is constantly impacted by fluid shear stress (FSS); however, molecular mechanism(s) through which FSS modulates the NP homeostasis is poorly understood. Here we show that FSS regulates the extracellular matrix (ECM) homeostasis in NP cells. A moderate dose of FSS (i.e., 12 dyne/cm2) increases the sulfated glycosaminoglycan (sGAG) content and protein levels of Col2a1 and Aggrecan and decreases those of matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motif 5 (ADMATS5) in rat NP cells, while a higher dose of FSS (i.e., 24 dyne/cm2) displays opposite effects. Results from RNA sequencing analysis, quantitative real-time RT-PCR analysis and western blotting establish that the heme oxygenase-1 (HO-1) is a key downstream mediator of the FSS actions in NP cells. HO-1 knockdown abolishes FSS-induced alterations in ECM protein production and sGAG content in NP cells, which is reversed by HO-1 induction. Furthermore, FSS activates the autophagic pathway by increasing the LC3-II/LC3-I ratio, Beclin-1 protein level, and formation of autophagosome and autolysosome and thereby regulates ECM protein and sGAG production in a HO-1 dependent manner. Finally, we demonstrate that the intraflagellar transport (IFT) 88, a core trafficking protein of primary cilia, is critically involved in the HO-1-mediated autophagy activation and ECM protein and sGAG production in FSS-treated NP cells. Thus, we for the first time demonstrate that FSS plays an important role in maintaining ECM homeostasis through HO-1-dependent activation of autophagy in NP cells.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lei Qin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaohao Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopedic Research Institute and Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
46
|
Martín‐Guerrero E, Tirado‐Cabrera I, Buendía I, Alonso V, Gortázar AR, Ardura JA. Primary cilia mediate parathyroid hormone receptor type 1 osteogenic actions in osteocytes and osteoblasts via Gli activation. J Cell Physiol 2020; 235:7356-7369. [DOI: 10.1002/jcp.29636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Eduardo Martín‐Guerrero
- Department of Basic Medical Sciences, Bone Physiopathology LaboratoryUniversidad San Pablo‐CEUAlcorcón Madrid Spain
| | - Irene Tirado‐Cabrera
- Department of Basic Medical Sciences, Bone Physiopathology LaboratoryUniversidad San Pablo‐CEUAlcorcón Madrid Spain
| | - Irene Buendía
- Department of Basic Medical Sciences, Bone Physiopathology LaboratoryUniversidad San Pablo‐CEUAlcorcón Madrid Spain
| | - Verónica Alonso
- Department of Basic Medical Sciences, Bone Physiopathology LaboratoryUniversidad San Pablo‐CEUAlcorcón Madrid Spain
- Departamento de Ciencias Médicas Básicas, Facultad de MedicinaUniversidad San Pablo‐CEU, CEU Universities, Campus MonteprincipeAlcorcón Madrid Spain
| | - Arancha R. Gortázar
- Department of Basic Medical Sciences, Bone Physiopathology LaboratoryUniversidad San Pablo‐CEUAlcorcón Madrid Spain
- Departamento de Ciencias Médicas Básicas, Facultad de MedicinaUniversidad San Pablo‐CEU, CEU Universities, Campus MonteprincipeAlcorcón Madrid Spain
| | - Juan A. Ardura
- Department of Basic Medical Sciences, Bone Physiopathology LaboratoryUniversidad San Pablo‐CEUAlcorcón Madrid Spain
- Departamento de Ciencias Médicas Básicas, Facultad de MedicinaUniversidad San Pablo‐CEU, CEU Universities, Campus MonteprincipeAlcorcón Madrid Spain
| |
Collapse
|
47
|
Sirong S, Yang C, Taoran T, Songhang L, Shiyu L, Yuxin Z, Xiaoru S, Tao Z, Yunfeng L, Xiaoxiao C. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res 2020; 8:6. [PMID: 32047705 PMCID: PMC7010777 DOI: 10.1038/s41413-019-0077-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis, a disorder characterized by articular cartilage deterioration, varying degrees of inflammation, and chondrocyte apoptosis, is the most common chronic joint disease. To slow or reverse its progression, inflammation should be inhibited, and chondrocyte proliferation should be promoted. Tetrahedral framework nucleic acids can be internalized by chondrocytes (even inflammatory chondrocytes) and can enhance their proliferation and migration. Wogonin, a naturally occurring flavonoid, suppresses oxidative stress and inhibits inflammation. In this study, tetrahedral framework nucleic acids were successfully self-assembled and used to load wogonin. We confirmed the effective formation of tetrahedral framework nucleic acid/wogonin complexes by dynamic light scattering, zeta potential analysis, transmission electron microscopy, and fluorescence spectrophotometry. Tetrahedral framework nucleic acids, wogonin, and especially tetrahedral framework nucleic acid/wogonin complexes effectively alleviated inflammation in vitro and in vivo and prevented cartilage destruction. In addition, these materials remarkably downregulated the expression of inflammatory mediators and matrix metalloproteinases, upregulated chondrogenic markers, and promoted tissue inhibitor of metalloproteinase 1 and B-cell lymphoma 2 expression. In vivo, after treatment with tetrahedral framework nucleic acid/wogonin complexes, the bone mineral density in regenerated tissues was much higher than that found in the untreated groups. Histologically, the complexes enhanced new tissue regeneration, significantly suppressed chondrocyte apoptosis, and promoted chondrogenic marker expression. They also inhibited cell apoptosis, increased chondrogenic marker expression, and suppressed the expression of inflammatory mediators in osteoarthritis. Therefore, we believe that tetrahedral framework nucleic acid/wogonin complexes can be used as an injectable form of therapy for osteoarthritis.
Collapse
Affiliation(s)
- Shi Sirong
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Chen Yang
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan Province China
| | - Tian Taoran
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Li Songhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Lin Shiyu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Zhang Yuxin
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Shao Xiaoru
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Zhang Tao
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Lin Yunfeng
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Cai Xiaoxiao
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hosptial of Stomatology, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
48
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
49
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
50
|
Nucleus pulposus primary cilia alter their length in response to changes in extracellular osmolarity but do not control TonEBP-mediated osmoregulation. Sci Rep 2019; 9:15469. [PMID: 31664118 PMCID: PMC6820757 DOI: 10.1038/s41598-019-51939-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
The nucleus pulposus (NP) cells adapt to their physiologically hyperosmotic microenvironment through Tonicity-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cell5 [NFAT5])-mediated osmoregulation. Primary cilia in different organs serve diverse roles including osmosensing, but its contribution to NP cell osmoadaptive response is unknown. A high percentage of cultured primary NP cells possessed primary cilia that changed length in response to osmotic stimuli. Stable silencing of Intraflagellar Transport 88 (Ift88) or Kinesin Family Member 3 A (Kif3a) to inhibit the formation of primary cilia did not affect hyperosmotic upregulation of TonEBP. While ShKif3a blocked hyperosmotic increase of TonEBP-Transactivation Domain (TAD) activity, overall the knockdown of either gene did not alter the hyperosmotic status of proximal promoter activities and transcription of key TonEBP targets. On the other hand, a small decrease in TonEBP level under hypoosmotic condition was attenuated by Ift88 or Kif3a knockdown. Noteworthy, none of the TonEBP target genes were responsive to hypoosmotic stimulus in control and Ift88 or Kif3a knockdown cells, suggesting the primary role of TonEBP in the hyperosmotic adaptation of NP cells. Similarly, in Kif3a null mouse embryonic fibroblasts (MEFs), the overall TonEBP-dependent hyperosmotic responses were preserved. Unlike NP cells, TonEBP targets were responsive to hypoosmolarity in wild-type MEFs, and these responses remained intact in Kif3a null MEFs. Together, these results suggest that primary cilia are dispensable for TonEBP-dependent osmoadaptive response.
Collapse
|