1
|
Liu J, Li B, Zhou X, Liu G, Li C, Hu Z, Peng R. Uncovering the mechanisms of Zhubi decoction against rheumatoid arthritis through an integrated study of network pharmacology, metabolomics, and intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118736. [PMID: 39186991 DOI: 10.1016/j.jep.2024.118736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1β and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.
Collapse
Affiliation(s)
- Jing Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Bocun Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Xiaohong Zhou
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Chao Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Zhaoduan Hu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Rui Peng
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
2
|
Zhang W, Wang L, Wang Y, Fang Y, Cao R, Fang Z, Han D, Huang X, Gu Z, Zhang Y, Zhu Y, Ma Y, Cao F. Inhibition of the RXRA-PPARα-FABP4 signaling pathway alleviates vascular cellular aging by an SGLT2 inhibitor in an atherosclerotic mice model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2678-2691. [PMID: 39225895 DOI: 10.1007/s11427-024-2602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Linghuan Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Zhiyi Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghui Gu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Ma
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
3
|
Ainiwaer A, Qian Z, Wang J, Zhao Q, Lu Y. Single-cell analysis uncovers liver susceptibility to pancreatic cancer metastasis via myeloid cell characterization. Discov Oncol 2024; 15:696. [PMID: 39578286 PMCID: PMC11584836 DOI: 10.1007/s12672-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
The liver is the predominant metastatic site for diverse cancers, including pancreatic and colorectal cancers (CRC), etc. The high incidence of hepatic metastasis of pancreatic cancer is an important reason for its refractory and high mortality. Therefore, it is important to understand how metastatic pancreatic cancer affects the hepatic tumor immune microenvironment (TME) in patients. Here, we characterized the TME of liver metastases unique to pancreatic cancer by comparing them with CRC liver metastases. We integrated two single-cell RNA-seq (scRNA-seq) datasets including tumor samples of pancreatic cancer liver metastasis (P-LM), colorectal cancer liver metastasis (C-LM), primary pancreatic cancer (PP), primary colorectal cancer (PC), as well as samples of peripheral blood mono-nuclear cells (PBMC), adjacent normal pancreatic tissues (NPT), to better characterize the heterogeneities of the microenvironment of two kinds of liver metastases. We next performed comparative analysis on cellular compositions between P-LM and C-LM, found that Mph_SPP1, a subset of macrophages associated with angiogenesis and tumor invasion, was more enriched in the P-LM group, indicating this kind of macrophages provide a TME niche more vulnerable for pancreatic cancers. Analysis of the developmental trajectory implied that Mph_SPP1 may progressively be furnished with increased expression of genes regulating endothelium. Cell-cell communications analysis revealed that Mph_SPP1 potentially interacts with endothelial cells in P-LM via FN1/SPP1-ITGAV/ITGB1, implying this macrophage subset may construct an immunosuppressive TME for pancreatic cancer by regulating endothelial cells. We also found that Mph_SPP1 has a prognostic value in pancreatic adenocarcinoma that is not present in colon adenocarcinoma or rectum adenocarcinoma. This study provides a new perspective for understanding the characteristics of the hepatic TME in patients with liver metastatic cancer. And it provides a subset of macrophages specifically associated with the liver metastasis of pancreatic cancer, and its detection and intervention have potential value for preventing the metastasis of pancreatic cancer to the liver.
Collapse
Affiliation(s)
- Aizier Ainiwaer
- Comprehensive Liver Cancer Center, The 5Th Medical Center of the PLA General Hospital, Beijing, China
| | - Zhenwei Qian
- Peking University 302 Clinical Medical School, Beijing, 100039, China
| | - Jianxun Wang
- Shenzhen Cell Valley Biopharmaceuticals Co., LTD, Shenzhen, 518118, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The 5Th Medical Center of the PLA General Hospital, Beijing, China.
- Peking University 302 Clinical Medical School, Beijing, 100039, China.
| |
Collapse
|
4
|
Chen C, Guo S, Chai W, Yang J, Yang Y, Chen G, Rao H, Ma Y, Bai S. A comprehensive genome-based analysis identifies the anti-cancerous role of the anoikis-related gene ADH1A in modulating the pathogenesis of breast cancer. Mol Genet Genomics 2024; 299:108. [PMID: 39531174 DOI: 10.1007/s00438-024-02200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC), a widespread and lethal neoplasm, is irrespective of the subtype of BC. Metastasis remains a crucial determinant for unfavorable outcome. The identification of novel diagnostic markers is instrumental in optimizing the treatment regime for BC. The direct correlation between anoikis and the progression/outcome of BC is well established. Nevertheless, the contribution of anoikis-related genes (ARGs) in BC remains obscure at present. We implemented the METABRIC dataset to scrutinize and assess differentially expressed ARGs in BC versus healthy breast tissues. An unsupervised consensus clustering approach for ARGs was employed to classify patients into diverse subtypes. ESTIMATE algorithms were utilized to assess immune infiltrative patterns. Prognostic gene expression patterns were derived from LASSO regression and univariate COX regression analysis. Subsequently, these signatures underwent examination via use of the Kaplan-Meier survival curve. 6 pairs of fresh tissue specimens (tumor and adjacent non-tumor) were employed to assess the expression of 7 ARGs genes via qPCR. Notably, DCN and FOS were not expressed in BC tissue, which had been excluded in our subsequent experiments. Also, among remaining 5 ARGs, solely the expression of ADH1A demonstrated a statistically remarkable disparity between freshly collected cancer tissues and the adjacent ones. ADH1A-overexpressed and ADH1A-sh vectors were transfected into MCF-7 and MCF-7-AR cell lines, respectively. The expression status of FABP4, CALML5, ADH1A, C1orf106, CIDEC, β-catenin, N-cadherin, and Vimentin in the clinical samples were scrutinized using RT-qPCR and western blotting techniques. Migration and invasion through transwell chambers were employed to assess the migratory and invasive potential of the cells. Detailed evaluation of cell proliferation was conducted utilizing a Cell Counting Kit-8 (CCK-8) assay. The apoptotic index of the cells was determined by flow cytometry analysis. An innovative anoikis-associated signature consisting of seven genes, namely ADH1A, DCN, CIEDC, FABP4, FOS, CALML5, and C1orf106, was devised to stratify BC patients into high- and low-risk cohorts. This unique risk assessment model, formulated via the distinctive signature approach, has been validated as an independent prognostic indicator. Additional analysis demonstrated that distinct risk subtypes manifested variances in the tumor microenvironment and drug sensitivities. Suppression of ADH1A enhanced the migratory and invasive capacities and reduced these tumorigenesis-related protein levels, underscoring the prognostic role of ADH1A in the progression of BC. Through our meticulous study, we have elucidated the possible molecular markers and clinical implications of ARGs in BC. Our model, which incorporate seven ARGs, has proven to accurately forecast the survival outcomes of BC patients. Moreover, the thorough molecular study of ADH1A has augmented our comprehension of ARGs in BC and opened a novel avenue for guiding personalized and precise therapeutic interventions for BC patients.
Collapse
Affiliation(s)
- Cheng Chen
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Shan Guo
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Wenying Chai
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Jun Yang
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Ying Yang
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Guimin Chen
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Haishan Rao
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Yun Ma
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Song Bai
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China.
| |
Collapse
|
5
|
Guo D, Liu H, Zhao S, Lu X, Wan H, Zhao Y, Liang X, Zhang A, Wu M, Xiao Z, Hu N, Li Z, Xie D. Synergistic rheumatoid arthritis therapy by interrupting the detrimental feedback loop to orchestrate hypoxia M1 macrophage polarization using an enzyme-catalyzed nanoplatform. Bioact Mater 2024; 41:221-238. [PMID: 39149592 PMCID: PMC11324459 DOI: 10.1016/j.bioactmat.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
A detrimental feedback loop between hypoxia and oxidative stress consistently drives macrophage polarization toward a pro-inflammatory M1 phenotype, thus persistently aggravating rheumatoid arthritis (RA) progression. Herein, an enzyme-catalyzed nanoplatform with synergistic hypoxia-relieving and reactive oxygen species (ROS)-scavenging properties was developed using bovine serum albumin-bilirubin-platinum nanoparticles (BSA-BR-Pt NPs). Bilirubin was employed to eliminate ROS, while platinum exhibited a synergistic effect in scavenging ROS and simultaneously generated oxygen. In mice RA model, BSA-BR-Pt NPs treatment exhibited superior effects, resulting in significant improvements in joint inflammation, cartilage damage, and bone erosion, compared to methotrexate, the most widely used antirheumatic drug. Mechanistically, RNA-sequencing data and experimental results elucidated that BSA-BR-Pt NPs induced a re-polarization of hypoxic M1 macrophages to M2 macrophages via switching glycolysis to oxidative phosphorylation through the inhibition of HIF-1α pathway. Collectively, this research for the first time elaborated the underlying mechanism of enzyme-catalyzed nanoplatform in orchestrating macrophage polarization, and identified a novel therapeutic strategy for RA and other inflammatory disorders.
Collapse
Affiliation(s)
- Dong Guo
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Hui Liu
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Xinya Lu
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Haoyu Wan
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Yitao Zhao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Xinzhi Liang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Anbiao Zhang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Mengyuan Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Zhisheng Xiao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhong Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong, PR China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| |
Collapse
|
6
|
Guo X, Zhang J, Feng Z, Ji J, Shen X, Hou X, Mei Z. The antiangiogenic effect of total saponins of Panax japonicus C.A. Meyer in rheumatoid arthritis is mediated by targeting the HIF-1α/VEGF/ANG-1 axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118422. [PMID: 38838922 DOI: 10.1016/j.jep.2024.118422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine Panax japonicus C.A. Meyer has a long history in clinical treatment of rheumatoid arthritis (RA). Total saponins of Panax japonicus C.A. Meyer (TSPJs) were extracted from the root of Panax japonicus C.A. Meyer, and its anti-rheumatism mechanism is still unclear. AIM OF THE STUDY To investigate whether TSPJs attenuated synovial angiogenesis in RA and explore the potential mechanisms. MATERIALS AND METHODS Potential TSPJs targets involving gene function were predicted by network pharmacology related databases. Bioinformatics analysis and molecular docking technology were used to predict the mechanism of TSPJs in the treatment of RA. The predicted results were validated by cell experiments and a collagen-induced arthritis (CIA) mouse model. RESULTS Bioinformatics analysis results showed that TSPJs may inhibit RA-related angiogenesis through the hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) pathways. In vitro, different doses of TSPJs showed a good inhibitory effect on the tube formation of EA.hy926 cells. The results of the cellular thermal shift assay indicated that TSPJs can bind to the HIF-1α, VEGFA, and angiopoietin-1 (ANG-1) proteins. In vivo, the administration of TSPJs alleviated the symptoms of CIA mice, including the arthritis index, hind paw thickness, and swollen joint count. The histological results demonstrated that TSPJs inhibited inflammation, angiogenesis, bone damage, and cartilage destruction. Furthermore, TSPJs decreased the number of vessels and the expression level of CD31. The mechanistic results revealed that TSPJs decreased the expression of HIF-1α, VEGFA, and ANG-1 in the serum or synovial tissues of CIA mice. CONCLUSION These results suggest that TSPJs effectively inhibit angiogenesis in RA, and the mechanism may be related to inhibiting the HIF-1α/VEGF/ANG-1 axis.
Collapse
Affiliation(s)
- Xiang Guo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, College of Medicine and Health Science, China Three Gorges University, Yichang, Hubei, 443002, China; The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China.
| | - Jinkai Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, College of Medicine and Health Science, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, College of Medicine and Health Science, China Three Gorges University, Yichang, Hubei, 443002, China; Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Jinyu Ji
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, College of Medicine and Health Science, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Xiaolan Shen
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, College of Medicine and Health Science, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Xiaoqiang Hou
- Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Zhigang Mei
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
7
|
Tang L, Guo D, Jia D, Piao S, Fang C, Zhu Y, Wang Y, Pan Z. Exploring the therapeutic potential of "Tianyu" medicine pair in rheumatoid arthritis: an integrated study combining LC-MS/MS, bioinformatics, network pharmacology, and experimental validation. Front Med (Lausanne) 2024; 11:1475239. [PMID: 39430588 PMCID: PMC11488520 DOI: 10.3389/fmed.2024.1475239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a widespread chronic autoimmune disease that primarily causes joint inflammation and damage. In advanced stages, RA can result in joint deformities and loss of function, severely impacting patients' quality of life. The "Tianyu" pair (TYP) is a traditional Chinese medicine formulation developed from clinical experience and has shown some effectiveness in treating RA. However, its role in the complex biological mechanisms underlying RA remains unclear and warrants further investigation. Methods We obtained gene sequencing data of synovial tissues from both RA patients and healthy individuals using two gene microarrays, GSE77298 and GSE55235, from the GEO database. Through an integrated approach involving bioinformatics, machine learning, and network pharmacology, we identified the core molecular targets of the "Tianyu" medicine pair (TYP) for RA treatment. Liquid chromatography-mass spectrometry was then employed to analyze the chemical components of TYP. To validate our findings, we conducted animal experiments with Wistar rats, comparing histopathological and key gene expression changes before and after TYP treatment. Results Our data analysis suggests that the onset of RA may be associated with inflammation-related immune cells involved in both adaptive and innate immune responses. Potential key targets for TYP treatment in RA include AKR1B10, MMP13, FABP4, NCF1, SPP1, COL1A1, and RASGRP1. Among the components of TYP, Kaempferol, Quercetin, and Salidroside were identified as key, with MMP13 and NCF1 showing the strongest binding affinity to these compounds. Animal experiments confirmed the findings from bioinformatics and network pharmacology, validating the key targets and therapeutic effects of TYP in treating RA. Conclusion Our study reveals that TYP has potential clinical value in the treatment of rheumatoid arthritis. This research enhances our understanding of RA's pathogenesis and provides insight into potential therapeutic mechanisms.
Collapse
Affiliation(s)
- Lu Tang
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Dingyuan Guo
- Department of Traditional Chinese Internal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongye Jia
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Songlan Piao
- Department of Pathology Teaching and Research, Clinical Medical School, Changchun University of Chinese Medicine, Changchun, China
| | - Chunqiu Fang
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yueya Zhu
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghang Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhi Pan
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Wang DD, Song MK, Yin Q, Chen WG, Olatunji OJ, Yang K, Zuo J. Qing-Luo-Yin Eased Adjuvant-Induced Arthritis by Inhibiting SIRT1-Controlled Visfatin Production in White Adipose Tissues. J Inflamm Res 2024; 17:6691-6706. [PMID: 39345898 PMCID: PMC11438449 DOI: 10.2147/jir.s474329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1 regulates both metabolism and immune functions. This study investigated if SIRT1 inhibitory property of herbal formula Qing-Luo-Yin (QLY) contributed to its anti-rheumatic effects. Methods Adjuvant-induced arthritis (AIA) rats were treated by QLY and nicotinamide mononucleotide (NMN, a biosynthesis precursor of NAD) for 38 days. After sacrifice, blood, paws, liver and white adipose tissues (WAT) were collected. Pre-adipocytes were cultured by the rats' serum. The medium was used for monocytes culture. Some pre-adipocytes were treated by QLY-derived SIRT1 inhibitors. SIRT1 was silenced or overexpressed beforehand. The samples were subjected to kits-based quantification, polymerase-chain reaction, western-blot, immunofluorescence, and histology experiments. Results AIA rats experienced significant fat loss in liver and WAT. Expression of many SIRT1-related signals like PPARγ, PGC-1α, HSL, ATGL and CPT-1A were altered. QLY attenuated all these abnormalities and joint injuries. By pan-acetylation up-regulation, visfatin was obviously reduced in QLY-treated AIA rats' blood (from 191.8 to 127.0 pg/mL). NMN sustained SIRT1 activation by replenishing NAD, and weakened these effects. QLY-containing serum and the related compounds showed similar impacts on pre-adipocytes, resembling the changes in QLY-treated AIA rats' WAT. These treatments suppressed AIA serum-induced visfatin secretion (from 49.3 to 36.1 and 30.7 pg/mL). This effect was impaired by SIRT1 overexpression. The medium from the compounds-treated pre-adipocytes impaired NF-κB activation in AIA serum-cultured monocytes. Conclusion Besides fat depletion, SIRT1 up-regulation in rheumatic subjects' WAT promotes visfatin production, and exacerbates inflammation. SIRT1 inhibition in WAT is an anti-rheumatic way of QLY independent of immune regulation.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Meng-Ke Song
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | | | - Kui Yang
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
9
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
10
|
Leek C, Cantu A, Sonti S, Gutierrez MC, Eldredge L, Sajti E, Xu HN, Lingappan K. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol 2024; 75:103296. [PMID: 39098263 PMCID: PMC11345582 DOI: 10.1016/j.redox.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.
Collapse
Affiliation(s)
- Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Abiud Cantu
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Shilpa Sonti
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Laurie Eldredge
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Washington School of Medicine, Seattle Children's Hospital, WA, USA
| | - Eniko Sajti
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA.
| |
Collapse
|
11
|
Jee W, Cho HS, Kim SW, Bae H, Chung WS, Cho JH, Kim H, Song MY, Jang HJ. Lycium chinense Mill Induces Anti-Obesity and Anti-Diabetic Effects In Vitro and In Vivo. Int J Mol Sci 2024; 25:8572. [PMID: 39201257 PMCID: PMC11354703 DOI: 10.3390/ijms25168572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the effects of Lycium chinense Mill (LCM) extract on obesity and diabetes, using both in vitro and high-fat diet (HFD)-induced obesity mouse models. We found that LCM notably enhanced glucagon-like peptide-1 (GLP-1) secretion in NCI-h716 cells from 411.4 ± 10.75 pg/mL to 411.4 ± 10.75 pg/mL compared to NT (78.0 ± 0.67 pg/mL) without causing cytotoxicity, implying the involvement of Protein Kinase A C (PKA C) and AMP-activated protein kinase (AMPK) in its action mechanism. LCM also decreased lipid droplets and lowered the expression of adipogenic and lipogenic indicators, such as Fatty Acid Synthase (FAS), Fatty Acid-Binding Protein 4 (FABP4), and Sterol Regulatory Element-Binding Protein 1c (SREBP1c), indicating the suppression of adipocyte differentiation and lipid accumulation. LCM administration to HFD mice resulted in significant weight loss (41.5 ± 3.3 g) compared to the HFD group (45.1 ± 1.8 g). In addition, improved glucose tolerance and serum lipid profiles demonstrated the ability to counteract obesity-related metabolic issues. Additionally, LCM exhibited hepatoprotective properties by reducing hepatic lipid accumulation and diminishing white adipose tissue mass and adipocyte size, thereby demonstrating its effectiveness against hepatic steatosis and adipocyte hypertrophy. These findings show that LCM can be efficiently used as a natural material to treat obesity and diabetes, providing a new approach for remedial and therapeutic purposes.
Collapse
Affiliation(s)
- Wona Jee
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hong-Seok Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok Woo Kim
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hanbit Bae
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won-Seok Chung
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Heung Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Yeon Song
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals (Basel) 2024; 17:963. [PMID: 39065811 PMCID: PMC11279697 DOI: 10.3390/ph17070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease's symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA's development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL's mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Aya Shoujaa
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Sonia Abou Najem
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates;
| |
Collapse
|
13
|
Farrag Y, Farrag M, Varela-García M, Torrijos-Pulpón C, Capuozzo M, Ottaiano A, Lago F, Mera A, Pino J, Gualillo O. Adipokines as potential pharmacological targets for immune inflammatory rheumatic diseases: Focus on rheumatoid arthritis, osteoarthritis, and intervertebral disc degeneration. Pharmacol Res 2024; 205:107219. [PMID: 38763327 DOI: 10.1016/j.phrs.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Adipokines are a heterogeneous group of signalling molecules secreted prevalently by adipose tissue. Initially considered as regulators of energy metabolism and appetite, adipokines have been recognized for their substantial involvement in musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, and many others. Understanding the role of adipokines in rheumatic inflammatory and autoimmune diseases, as well as in other musculoskeletal diseases such as intervertebral disc degeneration, is crucial for the development of novel therapeutic strategies. Targeting adipokines, or their signalling pathways, may offer new opportunities for the treatment and management of these conditions. By modulating adipokines levels or activity, it may be possible to regulate inflammation, to maintain bone health, and preserve muscle mass, thereby improving the outcomes and quality of life for individuals affected by musculoskeletal diseases. The aim of this review article is to update the reader on the multifaceted role of adipokines in the main rheumatic diseases such as osteoarthritis and rheumatoid arthritis and to unravel the complex interplay among adipokines, cartilage metabolism, bone remodelling and muscles, which will pave the way for innovative therapeutic intervention in the future. For completeness, the role of adipokines in intervertebral disc degeneration will be also addressed.
Collapse
Affiliation(s)
- Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - María Varela-García
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Carlos Torrijos-Pulpón
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Maurizio Capuozzo
- Pharmaceutical Department, ASL-Napoli-3 Sud, Via Marittima 3, Ercolano 80056, Italy.
| | - Alessando Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Mera
- SERGAS, Servizo Galego de Saude, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela 15706, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain; University of Santiago de Compostela, Department of Surgery and Medical Surgical Specialties, Santiago University Clinical Hospital, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain.
| |
Collapse
|
14
|
Mocanu V, Timofte DV, Zară-Dănceanu CM, Labusca L. Obesity, Metabolic Syndrome, and Osteoarthritis Require Integrative Understanding and Management. Biomedicines 2024; 12:1262. [PMID: 38927469 PMCID: PMC11201254 DOI: 10.3390/biomedicines12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a progressive chronic disease affecting the articular joints, leading to pain and disability. Unlike traditional views that primarily link OA to aging, recent understanding portrays it as a multifactorial degenerative disease of the entire joint. Emerging research highlights metabolic and immune dysregulation in OA pathogenesis, emphasizing the roles of obesity, dyslipidemia, and insulin resistance in altering joint homeostasis. Recent studies have increasingly focused on the complex role of white adipose tissue (WAT) in OA. WAT not only serves metabolic functions but also plays a critical role in systemic inflammation through the release of various adipokines. These adipokines, including leptin and adiponectin, have been implicated in exacerbating cartilage erosion and promoting inflammatory pathways within joint tissues. The overlapping global crises of obesity and metabolic syndrome have significantly impacted joint health. Obesity, now understood to contribute to mechanical joint overload and metabolic dysregulation, heightens the risk of developing OA, particularly in the knee. Metabolic syndrome compounds these risks by inducing chronic inflammation and altering macrophage activity within the joints. The multifaceted effects of obesity and metabolic syndrome extend beyond simple joint loading. These conditions disrupt normal joint function by modifying tissue composition, promoting inflammatory macrophage polarization, and impairing chondrocyte metabolism. These changes contribute to OA progression, highlighting the need for targeted therapeutic strategies that address both the mechanical and biochemical aspects of the disease. Recent advances in understanding the molecular pathways involved in OA suggest potential therapeutic targets. Interventions that modulate macrophage polarization, improve chondrocyte function, or normalize adipokine levels could serve as preventative or disease-modifying therapies. Exploring the role of diet, exercise, and pharmacological interventions in modulating these pathways offers promising avenues for reducing the burden of OA. Furthermore, such methods could prove cost-effective, avoiding the increase in access to healthcare.
Collapse
Affiliation(s)
- Veronica Mocanu
- Center for Obesity BioBehavioral Experimental Research, Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Camelia-Mihaela Zară-Dănceanu
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
| | - Luminita Labusca
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
- Department of Orthopedics, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania
| |
Collapse
|
15
|
Rajendran AK, Anthraper MSJ, Hwang NS, Rangasamy J. Osteogenesis and angiogenesis promoting bioactive ceramics. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 159:100801. [DOI: 10.1016/j.mser.2024.100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Huang H, Zheng S, Wu J, Liang X, Li S, Mao P, He Z, Chen Y, Sun L, Zhao X, Cai A, Wang L, Sheng H, Yao Q, Chen R, Zhao Y, Kou L. Opsonization Inveigles Macrophages Engulfing Carrier-Free Bilirubin/JPH203 Nanoparticles to Suppress Inflammation for Osteoarthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400713. [PMID: 38593402 PMCID: PMC11165524 DOI: 10.1002/advs.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Xindan Liang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Shengjie Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Pengfei Mao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Zhinan He
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Yahui Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Lining Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Aimin Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Luhui Wang
- Department of UltrasonographyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325015China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Ying‐Zheng Zhao
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| |
Collapse
|
17
|
Wang J, Xue Y, Zhou L. New Classification of Rheumatoid Arthritis Based on Immune Cells and Clinical Characteristics. J Inflamm Res 2024; 17:3293-3305. [PMID: 38800595 PMCID: PMC11128232 DOI: 10.2147/jir.s395566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic immune disease characterized by joint synovitis, but there are differences in clinical manifestations and serum test results among different patients. Methods This is a bioinformatics study. We first obtained the gene expression profile of RA and normal synovium from the database, and screened the differentially expressed immune related genes for enrichment analysis. Subsequently, we classified RA into three subtypes by unsupervised clustering of serum gene expression profiles based on immune enrichment scores. Then, the enrichment and clinical characteristics of different subtypes were analyzed. Finally, according to the infiltration of different subtypes of immune cells, diagnostic markers were screened and verified by qRT-PCR. Results C1 subtype is related to the increase of neutrophils, C-reactive protein and erythrocyte sedimentation rate, and joint pain is more significant in patients. C2 subtype is related to the expression of CD8+T cells and Tregs, and patients have mild joint pain symptoms. The RF value of C3 subtype is higher, and the expression of various immune cells is increased. CD4 T cells, NK cells activated, macrophages M1 and neutrophils are immune cells significantly infiltrated in synovium and serum of RA patients. IFNGR1, TRAC, IFITM1 can be used as diagnostic markers of different subtypes. Conclusion In this study, RA patients were divided into different immune molecular subtypes based on gene expression profile, and immune diagnostic markers were screened, which provided a new idea for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Wang
- Department of Orthopaedic, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yuan Xue
- Department of Orthopaedic, Wuxi Ninth People’s Hospital of Soochow University, Wuxi, 214000, People’s Republic of China
| | - Liang Zhou
- Department of Orthopaedic, Lianshui County People’s Hospital, Huai‘an, People’s Republic of China
| |
Collapse
|
18
|
Li W, He H, Du M, Gao M, Sun Q, Wang Y, Lu H, Ou S, Xia C, Xu C, Zhao Q, Sun H. Quercetin as a promising intervention for rat osteoarthritis by decreasing M1-polarized macrophages via blocking the TRPV1-mediated P2X7/NLRP3 signaling pathway. Phytother Res 2024; 38:1990-2006. [PMID: 38372204 DOI: 10.1002/ptr.8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Osteoarthritis (OA) is characterized by an imbalance between M1 and M2 polarized synovial macrophages. Quercetin has shown protective effects against OA by altering M1/M2-polarized macrophages, but the underlying mechanisms remain unclear. In this study, rat chondrocytes were treated with 10 ng/mL of IL-1β. To create M1-polarized macrophages in vitro, rat bone marrow-derived macrophages (rBMDMs) were treated with 100 ng/mL LPS. To mimic OA conditions observed in vivo, a co-culture system of chondrocytes and macrophages was established. ATP release assays, immunofluorescence assays, Fluo-4 AM staining, Transwell assays, ELISA assays, and flow cytometry were performed. Male adult Sprague-Dawley (SD) rats were used to create an OA model. Histological analyses, including H&E, and safranin O-fast green staining were performed. Our data showed a quercetin-mediated suppression of calcium ion influx and ATP release, with concurrent downregulation of TRPV1 and P2X7 in the chondrocytes treated with IL-1β. Activation of TRPV1 abolished the quercetin-mediated effects on calcium ion influx and ATP release in chondrocytes treated with IL-1β. In the co-culture system, overexpression of P2X7 in macrophages attenuated the quercetin-mediated effects on M1 polarization, migration, and inflammation. Either P2X7 or NLRP3 knockdown attenuated IL-1β-induced M1/M2 polarization, migration, and inflammation. Moreover, overexpression of TRPV1 reduced the quercetin-mediated suppressive effects on OA by promoting M1/M2-polarized macrophages in vivo. Collectively, our data showed that quercetin-induced suppression of TRPV1 leads to a delay in OA progression by shifting the macrophage polarization from M1 to M2 subtypes via modulation of the P2X7/NLRP3 pathway.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hebei He
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Min Du
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Mu Gao
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qijie Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yeyang Wang
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hanyu Lu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuanji Ou
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changliang Xia
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changpeng Xu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hongtao Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Tan P, Cai S, Huang Z, Li M, Liu S, Chen J, Fu W, Zhao L. E3 ubiquitin ligase FBXW11 as a novel inflammatory biomarker is associated with immune infiltration and NF-κB pathway activation in pancreatitis and pancreatic cancer. Cell Signal 2024; 116:111033. [PMID: 38182068 DOI: 10.1016/j.cellsig.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is an aggressive disease with an overall poor prognosis. Pancreatitis is a major risk factor for the development of PDAC. Due to the lack of reliable and accurate biomarkers, the diagnosis, treatment, and prognosis of PDAC face great challenges. It is of great significance to elucidate the pathogenesis of PDAC and explore novel inflammatory biomarkers. METHODS We identified E3 ubiquitin ligases associated with pancreatic inflammation by combining multiple GEO datasets and UbiNet 2.0, and integrating the WGCNA algorithm and Limma R package. A risk score model for PDAC patients was established by using LASSO regression. We investigated the correlation between FBXW11 and immune cell infiltration using CIBERSORT, mMCP-counter, ImmuCellAI-mouse, QUANTISEQ, and TIMER algorithms, based on GEO, ArrayExpress, and TCGA datasets. We used Ubibrowser 2.0 to predict potential substrates for FBXW11. WikiPathway, MSigDB Hallmark, and Elsevier pathway analysis of FBXW11 key substrates were also performed using the EnrichR database. We detected protein expression through IHC, immunofluorescence, and western blot in the cerulein-induced acute pancreatitis mouse model. RESULTS We first identified that FBXW11 exhibited a clear tendency to gradually increase in normal, pancreatitis, and PDAC patients. The validation analysis revealed that the FBXW11 protein exhibited significantly high expression in cerulein-induced acute pancreatitis mice, with its distribution primarily observed in the cytoplasm. Simultaneously, we developed a risk model utilizing the genes associated with FBXW11 to forecast the outcome of patients with PDAC and the likelihood of pancreatitis advancing to pancreatic cancer. Functional analysis showed that FBXW11, as a novel inflammatory biomarker, had a significant positive correlation with macrophage infiltration and the NF-κB signaling pathway. Finally, the western blot assay of the NF-κB signaling pathway in pancreatic tissues demonstrated that high activation of NF-κB was correlated with high expression of FBXW11. CONCLUSIONS Our research not only provides evidence for FBXW11 as a novel inflammatory biomarker but also provides new insights into the research and clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Tan
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shuang Cai
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China
| | - Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Mo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wenguang Fu
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.; Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China.
| |
Collapse
|
20
|
Zhou M, Yu H, Bai M, Lu S, Wang C, Ke S, Huang J, Li Z, Xu Y, Yin B, Li X, Feng Z, Fu Y, Jiang H, Ma Y. IRG1 restrains M2 macrophage polarization and suppresses intrahepatic cholangiocarcinoma progression via the CCL18/STAT3 pathway. Cancer Sci 2024; 115:777-790. [PMID: 38228495 PMCID: PMC10920997 DOI: 10.1111/cas.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and aggressive cancer whose incidence and mortality continue to increase, whereas its prognosis remains dismal. Tumor-associated macrophages (TAMs) promote malignant progression and immune microenvironment remodeling through direct contact and secreted mediators. Targeting TAMs has emerged as a promising strategy for ICC treatment. Here, we revealed the potential regulatory function of immune responsive gene 1 (IRG1) in macrophage polarization. We found that IRG1 expression remained at a low level in M2 macrophages. IRG1 overexpression can restrain macrophages from polarizing to the M2 type, which results in inhibition of the proliferation, invasion, and migration of ICC, whereas IRG1 knockdown exerts the opposite effects. Mechanistically, IRG1 inhibited the tumor-promoting chemokine CCL18 and thus suppressed ICC progression by regulating STAT3 phosphorylation. The intervention of IRG1 expression in TAMs may serve as a potential therapeutic target for delaying ICC progression.
Collapse
Affiliation(s)
- Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Miaoyu Bai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chaoqun Wang
- Department of Hepatobiliary Surgerythe Second Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jingjing Huang
- Department of Thyroid SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yanan Xu
- Department of Hepatopancreatobiliary SurgeryAffiliated Hangzhou First People's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xinglong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Department of General SurgeryThe Affiliated Hospital of Inner Mongolia Minzu UniversityTongliaoChina
| | - Yao Fu
- Department of UltrasoundThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
21
|
Gordon C, Trainor J, Shah RJ, Studholme K, Gelman A, Doswell F, Sadar F, Giovannetti A, Gershenson J, Khan A, Nicholson J, Huang Z, Spurgat M, Tang SJ, Wang H, Ojima I, Carlson D, Komatsu DE, Kaczocha M. Fatty acid binding protein 5 inhibition attenuates pronociceptive cytokine/chemokine expression and suppresses osteoarthritis pain: A comparative human and rat study. Osteoarthritis Cartilage 2024; 32:266-280. [PMID: 38035977 PMCID: PMC11283882 DOI: 10.1016/j.joca.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.
Collapse
Affiliation(s)
- Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Trainor
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Rohan J Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alex Gelman
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faniya Doswell
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faisal Sadar
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Allessio Giovannetti
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Josh Gershenson
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ayesha Khan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Nicholson
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - ZeYu Huang
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Michael Spurgat
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - David Carlson
- Genomics Core Facility and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
22
|
Wu Y, Pu X, Wang X, Xu M. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis 2024; 23:35. [PMID: 38302980 PMCID: PMC10832245 DOI: 10.1186/s12944-024-02024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Lipid metabolism in cancer cells has garnered increasing attention in recent decades. Cancer cells thrive in hypoxic conditions, nutrient deficiency, and oxidative stress and cannot be separated from alterations in lipid metabolism. Therefore, cancer cells exhibit increased lipid metabolism, lipid uptake, lipogenesis and storage to adapt to a progressively challenging environment, which contribute to their rapid growth. Lipids aid cancer cell activation. Cancer cells absorb lipids with the help of transporter and translocase proteins to obtain energy. Abnormal levels of a series of lipid synthases contribute to the over-accumulation of lipids in the tumor microenvironment (TME). Lipid reprogramming plays an essential role in the TME. Lipids are closely linked to several immune cells and their phenotypic transformation. The reprogramming of tumor lipid metabolism further promotes immunosuppression, which leads to immune escape. This event significantly affects the progression, treatment, recurrence, and metastasis of cancer. Therefore, the present review describes alterations in the lipid metabolism of immune cells in the TME and examines the connection between lipid metabolism and immunotherapy.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xi Pu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
| | - Min Xu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
23
|
Li Y, Tang C, Vanarsa K, Thai N, Castillo J, Lea GAB, Lee KH, Kim S, Pedroza C, Wu T, Saxena R, Mok CC, Mohan C. Proximity extension assay proteomics and renal single cell transcriptomics uncover novel urinary biomarkers for active lupus nephritis. J Autoimmun 2024; 143:103165. [PMID: 38194790 DOI: 10.1016/j.jaut.2023.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE To identify urinary biomarkers that can distinguish active renal involvement in Lupus Nephritis (LN), a severe manifestation of systemic lupus erythematosus (SLE). METHODS Urine from 117 subjects, comprised of inactive SLE, active non-renal lupus, active LN, and healthy controls, were subjected to Proximity Extension Assay (PEA) based comprehensive proteomics followed by ELISA validation in an independent, ethnically diverse cohort. Proteomic data is also cross-referenced to renal transcriptomic data to elucidate cellular origins of biomarkers. RESULTS Systems biology analyses revealed progressive activation of cytokine signaling, chemokine activity and coagulation pathways, with worsening renal disease. In addition to validating 30 previously reported biomarkers, this study uncovers several novel candidates. Following ELISA validation in an independent cohort of different ethnicity, the six most discriminatory biomarkers for active LN were urinary ICAM-2, FABP4, FASLG, IGFBP-2, SELE and TNFSF13B/BAFF, with ROC AUC ≥80%, with most correlating strongly with clinical disease activity. Transcriptomic analyses of LN kidneys mapped the likely origin of these proteins to intra-renal myeloid cells (CXCL16, IL-1RT2, TNFSF13B/BAFF), T/NK cells (FASLG), leukocytes (ICAM2) and endothelial cells (SELE). CONCLUSION In addition to confirming the diagnostic potential of urine ALCAM, CD163, MCP1, SELL, ICAM1, VCAM1, NGAL and TWEAK for active LN, this study adds urine ICAM-2, FABP4, FASLG, IGFBP-2, SELE, and TNFSF13B/BAFF as additional markers that warrant systematic validation in larger cross-sectional and longitudinal cohorts.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Nga Thai
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Jessica Castillo
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | | | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Soojin Kim
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, New Territories, Hong Kong, China
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
24
|
Wang P, Zhang S, Liu W, Lv X, Wang B, Hu B, Shao Z. Bardoxolone methyl breaks the vicious cycle between M1 macrophages and senescent nucleus pulposus cells through the Nrf2/STING/NF-κB pathway. Int Immunopharmacol 2024; 127:111262. [PMID: 38101216 DOI: 10.1016/j.intimp.2023.111262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD), an age-related degenerative disease, is accompanied by the accumulation of senescent nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation. The current study aims to clarify the role of M1 macrophages in the senescence of NP cells, and further explores whether bardoxolone methyl (CDDO-Me) can alleviate the pathological changes induced by M1 macrophages and relieve IDD. On the one hand, conditioned medium (CM) of M1 macrophages (M1CM) triggered senescence of NP cells and ECM degradation in a time-dependent manner. On the other hand, CM of senescent NP cells (S-NPCM) was collected to treat macrophages and we found that S-NPCM promoted the migration and M1-polarization of macrophages. However, both of the above effects can be partially blocked by CDDO-Me. We further explored the mechanism and found that M1CM promoted the expression level of STING and nuclear translocation of P65 in NP cells, while being restrained by CDDO-Me and STING inhibitor H151. In addition, the employment of Nrf2 inhibitor ML385 facilitated the expression level of STING and nuclear translocation of P65, thereby blocking the effects of CDDO-Me on suppressing senescence of NP cells and ECM degradation. In vivo, the injection of CDDO-Me into the disc decreased the infiltration of M1 macrophages and ameliorated degenerative manifestations in the puncture-induced rat IDD model. In conclusion, CDDO-Me was proved to break the vicious cycle between M1 macrophages and senescent NP cells through the Nrf2/STING/NF-κB pathway, thereby attenuating the progression of IDD.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Zhang C, Lin Y, Li H, Hu H, Chen Y, Huang Y, Huang Z, Fang X, Zhang W, Lin Y. Fatty acid binding protein 4 (FABP4) induces chondrocyte degeneration via activation of the NF-κb signaling pathway. FASEB J 2024; 38:e23347. [PMID: 38095503 DOI: 10.1096/fj.202301882r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
The pathogenesis of osteoarthritis (OA) is still unclear. Fatty acid binding protein 4 (FABP4), a novel adipokine, has been found to play a role in OA. This study aimed to explore the role of NF-κB in FABP4-induced OA. In the in vivo study, four pairs of 12-week-old male FABP4 knockout (KO) and wild-type (WT) mice were included. The activation of NF-κB was assessed. In parallel, 24 6-week-old male C57/Bl6 mice were fed a high-fat diet (HFD) and randomly allocated to four groups: daily oral gavage with (1) PBS solution; (2) QNZ (NF-κB-specific inhibitor, 1 mg/kg/d); (3) BMS309403 (FABP4-specific inhibitor, 30 mg/kg/d); and (4) BMS309403 (30 mg/kg/d) + QNZ (1 mg/kg/d). The diet and treatment were sustained for 4 months. The knee joints were obtained to assess cartilage degradation, NF-κB activation, and subchondral bone sclerosis. In the in vitro study, a mouse chondrogenic cell line (ATDC5) was cultured. FABP4 was supplemented to stimulate chondrocytes, and the activation of NF-κB was investigated. In parallel, QNZ and NF-κB-specific siRNA were used to inhibit NF-κB. In vivo, the FABP4 WT mice had more significant NF-κB activation than the KO mice. Dual inhibition of FABP4 and NF-κB alleviated knee OA in mice. FABP4 has no significant effect on the activation of the JNK signaling pathway. In vitro, FABP4 directly activated NF-κB in chondrocytes. The use of QNZ and NF-κB-siRNA significantly alleviated the expression of catabolic markers of chondrocytes induced by FABP4. FABP4 induces chondrocyte degeneration by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yiming Lin
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hongyan Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hongxin Hu
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Yongfa Chen
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Pediatric Orthopaedic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Huang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zida Huang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yunzhi Lin
- Department of Stomatology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, Lin J, Wang J, Pan X, Xue X. MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnology 2023; 21:486. [PMID: 38105181 PMCID: PMC10726686 DOI: 10.1186/s12951-023-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tian Xia
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiguang Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shoaib Iqbal
- Feik School of Pharmacy, University of the Incarnate Word, Broadway, San Antonio, 4301, USA
| | - Haixiao Liu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jilong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
27
|
Guo D, Pan H, Lu X, Chen Z, Zhou L, Chen S, Huang J, Liang X, Xiao Z, Zeng H, Shao Y, Qi W, Xie D, Lin C. Rspo2 exacerbates rheumatoid arthritis by targeting aggressive phenotype of fibroblast-like synoviocytes and disrupting chondrocyte homeostasis via Wnt/β-catenin pathway. Arthritis Res Ther 2023; 25:217. [PMID: 37946278 PMCID: PMC10634117 DOI: 10.1186/s13075-023-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The aggressive phenotype of fibroblast-like synoviocytes (FLS) has been identified as a contributing factor to the exacerbation of rheumatoid arthritis (RA) through the promotion of synovitis and cartilage damage. Regrettably, there is currently no effective therapeutic intervention available to address this issue. Recent research has shed light on the crucial regulatory role of R-spondin-2 (Rspo2) in cellular proliferation, cartilage degradation, and tumorigenesis. However, the specific impact of Rspo2 on RA remains poorly understood. We aim to investigate the function and mechanism of Rspo2 in regulating the aggressive phenotype of FLS and maintaining chondrocyte homeostasis in the context of RA. METHODS The expression of Rspo2 in knee joint synovium and cartilage were detected in RA mice with antigen-induced arthritis (AIA) and RA patients. Recombinant mouse Rspo2 (rmRspo2), Rspo2 neutralizing antibody (Rspo2-NAb), and recombinant mouse DKK1 (rmDKK1, a potent inhibitor of Wnt signaling pathway) were used to explore the role and mechanism of Rspo2 in the progression of RA, specifically in relation to the aggressive phenotype of FLS and chondrocyte homeostasis, both in vivo and in vitro. RESULTS We indicated that Rspo2 expression was upregulated both in synovium and articular cartilage as RA progressed in RA mice and RA patients. Increased Rspo2 upregulated the expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), as the ligand for Rspo2, and β-catenin in FLS and chondrocytes. Subsequent investigations revealed that intra-articular administration of rmRspo2 caused striking progressive synovitis and articular cartilage destruction to exacerbate RA progress in mice. Conversely, neutralization of Rspo2 or inhibition of the Wnt/β-catenin pathway effectively alleviated experimental RA development. Moreover, Rspo2 facilitated FLS aggressive phenotype and disrupted chondrocyte homeostasis primarily through activating Wnt/β-catenin pathway, which were effectively alleviated by Rspo2-NAb or rmDKK1. CONCLUSIONS Our data confirmed a critical role of Rspo2 in enhancing the aggressive phenotype of FLS and disrupting chondrocyte homeostasis through the Wnt/β-catenin pathway in the context of RA. Furthermore, the results indicated that intra-articular administration of Rspo2 neutralizing antibody or recombinant DKK1 might represent a promising therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Dong Guo
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Haoyan Pan
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Xueying Lu
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, 518100, People's Republic of China
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Shuxin Chen
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Jin Huang
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Xinzhi Liang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Zhisheng Xiao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Hua Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Yan Shao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Weizhong Qi
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China.
| |
Collapse
|
28
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
29
|
Liu F, Wang Y, Huang D, Sun Y. LncRNA HOTAIR regulates the PI3K/AKT pathway via the miR-126-3p/PIK3R2 axis to participate in synovial angiogenesis in rheumatoid arthritis. Immun Inflamm Dis 2023; 11:e1064. [PMID: 37904709 PMCID: PMC10604569 DOI: 10.1002/iid3.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The abnormal expression of long noncoding RNA (LncRNA) HOTAIR has been associated with synovial angiogenesis in rheumatoid arthritis (RA). The aim of this study is to investigate whether LncRNA HOTAIR plays a role in synovial angiogenesis in RA by regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway through the miR-126-3p/PIK3R2 axis. METHODS In this study, we conducted in vitro experiments by designing overexpression plasmids and small interfering RNAs targeting LncRNA HOTAIR and then transfected them into rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). We then co-cultured the RA-FLS with human umbilical vein endothelial cells (HUVEC) to establish a RA-FLS-induced HUVEC model. We investigated the effects of LncRNA HOTAIR on the proliferation, migration, lumen forming ability of HUVEC, as well as the expression of synovial endothelial cell markers, angiogenic factors, and the PI3K/AKT pathway. To validate the interactions between LncRNA HOTAIR, miR-126-3p, and PIK3R2, we used bioinformatics and luciferase reporter experiments. We also employed real-time fluorescence quantitative, Western blotanalysis, and immunofluorescence techniques to analyze the target genes and proteins. RESULTS The expression of LncRNA HOTAIR was upregulated in HUVEC induced by RA-FLS. The overexpression of LncRNA HOTAIR significantly increased the expression of vascular endothelial growth factor, basic fibroblast growth factor, CD34, and CD105 in HUVEC, promoting their proliferation, migration, and lumen formation. At the same time, the overexpression of LncRNA HOTAIR inhibited the expression of miR-126-3p, promoted the expression of PIK3R2, activated the PI3K/AKT pathway, and promoted the expression of PI3K, AKT and phosphorylated-AKT, while the silence of LncRNA HOTAIR reversed these expressions. Bioinformatics and double luciferase reporter gene experiments confirmed the targeting relationship among LncRNA HOTAIR, miR-126-3p, and PIK3R2. Finally, the rescue experiments showed that PI3K agonists could reverse the inhibitory effect of silent LncRNA HOTAIR on HUVEC. CONCLUSION LncRNA HOTAIR has the potential to activate the PI3K/AKT pathway, likely through the regulatory axis involving miR-126-3p/PIK3R2, consequently contributing to synovial angiogenesis in RA.
Collapse
Affiliation(s)
- Feifei Liu
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Yuan Wang
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Dan Huang
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Yanqiu Sun
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| |
Collapse
|
30
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
31
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Shi Y, Wang CC, Wu L, Zhang Y, Xu A, Wang Y. Pathophysiological Insight into Fatty Acid-Binding Protein-4: Multifaced Roles in Reproduction, Pregnancy, and Offspring Health. Int J Mol Sci 2023; 24:12655. [PMID: 37628833 PMCID: PMC10454382 DOI: 10.3390/ijms241612655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty acid-binding protein-4 (FABP4), commonly known as adipocyte-fatty acid-binding protein (A-FABP), is a pleiotropic adipokine that broadly affects immunity and metabolism. It has been increasingly recognized that FABP4 dysfunction is associated with various metabolic syndromes, including obesity, diabetes, cardiovascular diseases, and metabolic inflammation. However, its explicit roles within the context of women's reproduction and pregnancy remain to be investigated. In this review, we collate recent studies probing the influence of FABP4 on female reproduction, pregnancy, and even fetal health. Elevated circulating FABP4 levels have been found to correlate with impaired reproductive function in women, such as polycystic ovary syndrome and endometriosis. Throughout pregnancy, FABP4 affects maternal-fetal interface homeostasis by affecting both glycolipid metabolism and immune tolerance, leading to adverse pregnancy outcomes, including miscarriage, gestational obesity, gestational diabetes, and preeclampsia. Moreover, maternal FABP4 levels exhibit a substantial linkage with the metabolic health of offspring. Herein, we discuss the emerging significance and potential application of FABP4 in reproduction and pregnancy health and delve into its underlying mechanism at molecular levels.
Collapse
Affiliation(s)
- Yue Shi
- The Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing 100078, China; (Y.S.); (Y.Z.)
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong;
- Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Liqun Wu
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China;
| | - Yunqing Zhang
- The Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing 100078, China; (Y.S.); (Y.Z.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong;
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong;
| |
Collapse
|
33
|
Guo D, Lin C, Lu Y, Guan H, Qi W, Zhang H, Shao Y, Zeng C, Zhang R, Zhang H, Bai X, Cai D. Correction: FABP4 secreted by M1-polarized macrophages promotes synovitis and angiogenesis to exacerbate rheumatoid arthritis. Bone Res 2023; 11:41. [PMID: 37488097 PMCID: PMC10366159 DOI: 10.1038/s41413-023-00271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Affiliation(s)
- Dong Guo
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Yuheng Lu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hong Guan
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Weizhong Qi
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan Shao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, Southern Medical University School of Basic Medical Sciences, Guangzhou, China.
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| |
Collapse
|
34
|
Blocking TRPV4 Ameliorates Osteoarthritis by Inhibiting M1 Macrophage Polarization via the ROS/NLRP3 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11122315. [PMID: 36552524 PMCID: PMC9774183 DOI: 10.3390/antiox11122315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is a low-level inflammatory disease in which synovial macrophage M1 polarization exacerbates the progression of synovitis and OA. Notedly, the ROS (reactive oxygen species) level in macrophages is intimately implicated in macrophage M1 polarization. TRPV4 (transient receptor potential channel subfamily V member 4), as an ion channel, plays a pivotal role in oxidative stress and inflammation. In this study, we investigated the role of TRPV4 in OA progression and M1 macrophage polarization. Male adult Sprague-Dawley (SD) rats underwent a medial meniscus radial transection operation to create an OA model in vivo and RAW 264.7 cells were intervened with 100 ng/mL LPS (lipopolysaccharide) to induce M1-polarized macrophages in vitro. We demonstrated that the infiltration of M1 synovial macrophages and the expression of TRPV4 were increased significantly in OA synovium. In addition, intra-articular injection of HC067074 (a specific inhibitor of TRPV4) alleviated the progression of rat OA and significantly decreased synovial macrophage M1 polarization. Further mechanisms suggested that ROS production by M1 macrophages was decreased after TRPV4 inhibition. In addition, NLRP3 (pyrin domain containing protein 3) as a downstream effector of ROS in M1-polarized macrophage, was significantly suppressed following TRPV4 inhibition. In conclusion, this study discovered that inhibition of TRPV4 delays OA progression by inhibiting M1 synovial macrophage polarization through the ROS/NLRP3 pathway.
Collapse
|
35
|
Du J, Zheng L, Chen S, Wang N, Pu X, Yu D, Yan H, Chen J, Wang D, Shen B, Li J, Pan S. NFIL3 and its immunoregulatory role in rheumatoid arthritis patients. Front Immunol 2022; 13:950144. [PMID: 36439145 PMCID: PMC9692021 DOI: 10.3389/fimmu.2022.950144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear-factor, interleukin 3 regulated (NFIL3) is an immune regulator that plays an essential role in autoimmune diseases. However, the relationship between rheumatoid arthritis (RA) and NFIL3 remains largely unknown. In this study, we examined NFIL3 expression in RA patients and its potential molecular mechanisms in RA. Increased NFIL3 expression levels were identified in peripheral blood mononuclear cells (PBMCs) from 62 initially diagnosed RA patients and 75 healthy controls (HCs) by quantitative real-time PCR (qRT-PCR). No correlation between NFIL3 and disease activity was observed. In addition, NFIL3 expression was significantly upregulated in RA synovial tissues analyzed in the Gene Expression Omnibus (GEO) dataset (GSE89408). Then, we classified synovial tissues into NFIL3-high (≥75%) and NFIL3-low (≤25%) groups according to NFIL3 expression levels. Four hundred five differentially expressed genes (DEGs) between the NFIL3-high and NFIL3-low groups were screened out using the “limma” R package. Enrichment analysis showed that most of the enriched genes were primarily involved in the TNF signaling pathway via NFκB, IL-17 signaling pathway, and rheumatoid arthritis pathways. Then, 10 genes (IL6, IL1β, CXCL8, CCL2, PTGS2, MMP3, MMP1, FOS, SPP1, and ADIPOQ) were identified as hub genes, and most of them play a key role in RA. Positive correlations between the hub genes and NFIL3 were revealed by qRT-PCR in RA PBMCs. An NFIL3-related protein–protein interaction (PPI) network was constructed using the STRING database, and four clusters (mainly participating in the inflammatory response, lipid metabolism process, extracellular matrix organization, and circadian rhythm) were constructed with MCODE in Cytoscape. Furthermore, 29 DEGs overlapped with RA-related genes from the RADB database and were mainly enriched in IL-17 signaling pathways. Thus, our study revealed the elevated expression of NFIL3 in both RA peripheral blood and synovial tissues, and the high expression of NFIL3 correlated with the abnormal inflammatory cytokines and inflammatory responses, which potentially contributed to RA progression.
Collapse
Affiliation(s)
- Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Liyuan Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Xia Pu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Die Yu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Haixi Yan
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Jiaxi Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Donglian Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Shaobiao Pan, ; Jun Li,
| | - Shaobiao Pan
- Department of Rheumatology and Immunology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Shaobiao Pan, ; Jun Li,
| |
Collapse
|
36
|
Lai W, Shi M, Huang R, Fu P, Ma L. Fatty acid-binding protein 4 in kidney diseases: From mechanisms to clinics. Eur J Pharmacol 2022; 931:175224. [PMID: 35995212 DOI: 10.1016/j.ejphar.2022.175224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
Considerable evidence indicated the relationship between fatty acid-binding protein 4 (FABP4) and kidney diseases. FABP4, a small molecular lipid chaperone, is identified to regulate fatty acid oxidation, inflammation, apoptosis, endoplasmic reticulum stress and macrophage-to-myofibroblast transition in kidney diseases. Many studies have shown that circulating FABP4 level is related to proteinuria, renal function decline, cardiovascular complications of end-stage renal disease and even the prognosis of kidney transplanted patients. Notably, pharmacological or genetic inhibition of FABP4 attenuated renal injury in the various experimental models of kidney diseases, making it promising to develop potential therapeutic strategies targeting FABP4 in kidney diseases. In this study, we updated and reviewed the mechanisms and clinical significance of FABP4 in kidney diseases.
Collapse
Affiliation(s)
- Weijing Lai
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Sichuan, Chengdu, 610041, China; Department of Nephrology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Min Shi
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Sichuan, Chengdu, 610041, China
| | - Rongshuang Huang
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Sichuan, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Sichuan, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
37
|
FABP4 exacerbates RA. Nat Rev Rheumatol 2022; 18:493. [PMID: 35922552 DOI: 10.1038/s41584-022-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|