1
|
Wakeford R. What about the workers? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:020202. [PMID: 38776882 DOI: 10.1088/1361-6498/ad4eea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Richardson DB, Leuraud K, Laurier D, Gillies M, Haylock R, Kelly-Reif K, Bertke S, Daniels RD, Thierry-Chef I, Moissonnier M, Kesminiene A, Schubauer-Berigan MK. Cancer mortality after low dose exposure to ionising radiation in workers in France, the United Kingdom, and the United States (INWORKS): cohort study. BMJ 2023; 382:e074520. [PMID: 37586731 PMCID: PMC10427997 DOI: 10.1136/bmj-2022-074520] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effect of protracted low dose, low dose rate exposure to ionising radiation on the risk of cancer. DESIGN Multinational cohort study. SETTING Cohorts of workers in the nuclear industry in France, the UK, and the US included in a major update to the International Nuclear Workers Study (INWORKS). PARTICIPANTS 309 932 workers with individual monitoring data for external exposure to ionising radiation and a total follow-up of 10.7 million person years. MAIN OUTCOME MEASURES Estimates of excess relative rate per gray (Gy) of radiation dose for mortality from cancer. RESULTS The study included 103 553 deaths, of which 28 089 were due to solid cancers. The estimated rate of mortality due to solid cancer increased with cumulative dose by 52% (90% confidence interval 27% to 77%) per Gy, lagged by 10 years. Restricting the analysis to the low cumulative dose range (0-100 mGy) approximately doubled the estimate of association (and increased the width of its confidence interval), as did restricting the analysis to workers hired in the more recent years of operations when estimates of occupational external penetrating radiation dose were recorded more accurately. Exclusion of deaths from lung cancer and pleural cancer had a modest effect on the estimated magnitude of association, providing indirect evidence that the association was not substantially confounded by smoking or occupational exposure to asbestos. CONCLUSIONS This major update to INWORKS provides a direct estimate of the association between protracted low dose exposure to ionising radiation and solid cancer mortality based on some of the world's most informative cohorts of radiation workers. The summary estimate of excess relative rate solid cancer mortality per Gy is larger than estimates currently informing radiation protection, and some evidence suggests a steeper slope for the dose-response association in the low dose range than over the full dose range. These results can help to strengthen radiation protection, especially for low dose exposures that are of primary interest in contemporary medical, occupational, and environmental settings.
Collapse
Affiliation(s)
- David B Richardson
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Klervi Leuraud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | | | - Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Stephen Bertke
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Robert D Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
3
|
Bang YJ, Kim YM, Lee WJ. Circulatory disease mortality among male medical radiation workers in South Korea, 1996-2019. Scand J Work Environ Health 2023; 49:99-107. [PMID: 36309988 PMCID: PMC10577014 DOI: 10.5271/sjweh.4066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between occupational radiation exposure and circulatory disease (CD) mortality among medical radiation workers. METHODS The study included 53 860 male diagnostic medical radiation workers enrolled in the National Dosimetry Registry (NDR) between 1996 and 2011 in South Korea. NDR data were linked with mortality data obtained from the national registry at the end of 2019. Observed CD mortality rates in this population were compared to those in the general population using the standardized mortality ratio (SMR). The relative risk (RR) for occupational history was estimated by use of internal comparisons, and the excess relative risk (ERR) was used to quantify the radiation dose-response relationship. RESULTS A total of 320 deaths due to CD were identified among 53 860 male medical radiation workers. The SMR of CD was significantly lower among male workers than the general population. A linear dose-response model provided an estimated ERR per 100 mGy for CD [0.85, 95% confidence interval (CI) -0.11-1.82], ischemic heart disease (1.18, 95% CI -0.69-3.05), and cerebrovascular disease (0.23, 95% CI -0.48-0.94) with a 10-years lag, showing no statistical evidence of a radiation dose-response relationship. Additional adjustments for non-radiation factors did not affect the findings on occupational radiation risk for CD mortality. Sensitivity analyses excluding workers employed <1 year or who had exposure to a cumulative badge dose of ≥1 mSv showed similar results. CONCLUSIONS Occupational radiation doses were non-significantly positively associated with CD mortality among male diagnostic medical radiation workers. However, cautious interpretation is needed due to the limitations of short follow-up.
Collapse
Affiliation(s)
- Ye Jin Bang
- Department of Preventive Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | | | | |
Collapse
|
4
|
Laurent O, Samson E, Caër-Lorho S, Fournier L, Laurier D, Leuraud K. Updated Mortality Analysis of SELTINE, the French Cohort of Nuclear Workers, 1968-2014. Cancers (Basel) 2022; 15:79. [PMID: 36612076 PMCID: PMC9817793 DOI: 10.3390/cancers15010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Cohorts of nuclear workers are particularly relevant to study the health effects of protracted exposures to low doses at low dose-rates of ionizing radiation (IR). In France, a cohort of nuclear workers badge-monitored for external IR exposure has been followed-up for several decades. Its size and follow-up period have recently been extended. The present paper focuses on mortality from both cancer and non-cancer diseases in this cohort. The SELTINE cohort of nuclear workers employed by CEA, Orano, and EDF companies was followed-up for mortality from 1968 to 2014. Mortality in the cohort was compared to that in the French general population. Poisson regression methods were used to estimate excess relative rates of mortality per unit of cumulative dose of IR, adjusted for calendar year, age, company, duration of employment, and socioeconomic status. The cohort included 80,348 workers. At the end of the follow-up, the mean attained age was 63 years, and 15,695 deaths were observed. A strong healthy worker effect was observed overall. A significant excess of pleural cancer mortality was observed but not associated with IR dose. Death from solid cancers was positively but non-significantly associated with radiation. Death from leukaemia (excluding chronic lymphocytic leukaemia), dementia, and Alzheimer's disease were positively and significantly associated with IR dose. Estimated dose-risk relationships were consistent with those from other nuclear worker studies for all solid cancers and leukaemia but remained associated with large uncertainty. The association between IR dose and dementia mortality risk should be interpreted with caution and requires further investigation by other studies.
Collapse
Affiliation(s)
- Olivier Laurent
- Ionizing Radiation Epidemiology Laboratory (LEPID), Institute for Radiobiological Protection and Nuclear Safety (IRSN), 92262 Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|
5
|
Koterov AN, Tukov AR, Ushenkova LN, Kalinina MV, Biryukov AP. Average Accumulated Radiation Doses for Global Nuclear Workers: Low Doses, Low Effects, and Comparison with Doses for Medical Radiologists. BIOL BULL+ 2022. [DOI: 10.1134/s106235902212007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Little MP, Hamada N. Low-Dose Extrapolation Factors Implied by Mortality and Incidence Data from the Japanese Atomic Bomb Survivor Life Span Study Data. Radiat Res 2022; 198:582-589. [PMID: 36161867 PMCID: PMC9797579 DOI: 10.1667/rade-22-00108.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022]
Abstract
Assessment of the effect of low dose and low-dose-rate exposure depends critically on extrapolation from groups exposed at high dose and high-dose rates such as the Japanese atomic bomb survivor data, and has often been achieved via application of a dose and dose-rate effectiveness factor (DDREF). An important component of DDREF is the factor determining the effect of extrapolation of dose, the so-called low-dose extrapolation factor (LDEF). To assess LDEF models linear (or linear quadratic) in dose are often fitted. In this report LDEF is assessed via fitting relative rate models that are linear or linear quadratic in dose to the latest Japanese atomic bomb survivor data on solid cancer, leukemia and circulatory disease mortality (followed from 1950 through 2003) and to data on solid cancer, lung cancer and urinary tract cancer incidence. The uncertainties in LDEF are assessed using parametric bootstrap techniques. Analysis is restricted to survivors with <3 Gy dose. There is modest evidence for upward curvature in dose response in the mortality data. For leukemia and for all solid cancer excluding lung, stomach and breast cancer there is significant curvature (P < 0.05). There is no evidence of curvature for circulatory disease (P > 0.5). The estimate of LDEF for all solid cancer mortality is 1.273 [95% confidence intervals (CI) 0.913, 2.182], for all solid cancer mortality excluding lung cancer, stomach cancer and breast cancer is 2.183 (95% CI 1.090, >100) and for leukemia mortality is 11.447 (95% CI 2.390, >100). For stomach cancer mortality LDEF is modestly raised, 1.077 (95% CI 0.526, >100), while for lung cancer, female breast cancer and circulatory disease mortality the LDEF does not much exceed 1. LDEF for solid cancer incidence is 1.186 (95% CI 0.942, 1.626) and for urinary tract cancer is 1.298 (95% CI <0, 7.723), although for lung cancer LDEF is not elevated, 0.842 (95% CI 0.344, >100).
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland 20892-9778
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
7
|
Wakeford R. Radiation in the workplace - an opportunity for substantial epidemiological evidence. Int J Radiat Biol 2022; 98:533-536. [PMID: 35044294 DOI: 10.1080/09553002.2022.2031218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
8
|
Wakeford R. Overview of epidemiological studies of nuclear workers: opportunities, expectations, and limitations . JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1075-1092. [PMID: 34161930 DOI: 10.1088/1361-6498/ac0df4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies of those exposed occupationally to ionising radiation offer an important opportunity to directly check the assumptions underlying the international system of radiological protection against low-level radiation exposures. Recent nuclear worker studies, notably the International Nuclear Workers Study (INWORKS) and studies of the Mayak workforce in Russia, provide powerful investigations of a wide range of cumulative photon doses received at a low dose-rate over protracted periods, and broadly confirm radiation-related excess risks of leukaemia and solid cancers at around the levels predicted by standard risk models derived mainly from the experience of the Japanese atomic-bomb survivors acutely exposed principally to gamma radiation. However, the slope of the dose-response for solid cancers expressed in terms of the excess relative risk per unit dose, ERR/Gy, differs between INWORKS and Mayak, such that when compared with the slope derived from the atomic-bomb survivors, INWORKS does not provide obvious support for the use in radiological protection of a dose and dose-rate effectiveness factor greater than one whereas the Mayak workforce apparently does. This difference could be a chance effect, but it could also point to potential problems with these worker studies. Of particular concern is the adequacy of recorded doses received in the early years of operations at older nuclear installations, such as the potential for 'missed' photon doses. A further issue is how baseline cancer rates may influence radiation-related excess risks. There is scope for a considerable increase in the statistical power of worker studies, with longer follow-up capturing more deaths and incident cases of cancer, and further workforces being included in collaborative studies, but the difficulties posed by dosimetry questions should not be ignored and need to be the subject of detailed scrutiny.
Collapse
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
9
|
Boice JD, Cohen SS, Mumma MT, Golden AP, Howard SC, Girardi DJ, Ellis ED, Bellamy MB, Dauer LT, Samuels C, Eckerman KF, Leggett RW. Mortality among workers at the Los Alamos National Laboratory, 1943-2017. Int J Radiat Biol 2021; 98:722-749. [PMID: 34047625 DOI: 10.1080/09553002.2021.1917784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND During World War II (WWII), the Manhattan Engineering District established a secret laboratory in the mountains of northern New Mexico. The mission was to design, construct and test the first atomic weapon, nicknamed 'The Gadget' that was detonated at the TRINITY site in Alamogordo, NM. After WWII, nuclear weapons research continued, and the laboratory became the Los Alamos National Laboratory (LANL). MATERIALS AND METHODS The mortality experience of 26,328 workers first employed between 1943 and 1980 at LANL was determined through 2017. Included were 6157 contract workers employed by the ZIA Company. Organ dose estimates for each worker considered all sources of exposure, notably photons, neutrons, tritium, 238Pu and 239Pu. Vital status determination included searches within the National Death Index, Social Security Administration and New Mexico State Mortality Files. Standardized Mortality Ratios (SMR) and Cox regression models were used in the analyses. RESULTS Most workers (55%) were hired before 1960, 38% had a college degree, 25% were female, 81% white, 13% Hispanic and 60% had died. Vital status was complete, with only 0.1% lost to follow-up. The mean dose to the lung for the 17,053 workers monitored for radiation was 28.6 weighted-mGy (maximum 16.8 weighted-Gy) assuming a Dose Weighting Factor of 20 for alpha particle dose to lung. The Excess Relative Risk (ERR) at 100 weighted-mGy was 0.01 (95%CI -0.02, 0.03; n = 839) for lung cancer. The ERR at 100 mGy was -0.43 (95%CI -1.11, 0.24; n = 160) for leukemia other than chronic lymphocytic leukemia (CLL), -0.06 (95%CI -0.16, 0.04; n = 3043) for ischemic heart disease (IHD), and 0.29 (95%CI 0.02, 0.55; n = 106) for esophageal cancer. Among the 6499 workers with measurable intakes of plutonium, an increase in bone cancer (SMR 2.44; 95%CI 0.98, 5.03; n = 7) was related to dose. The SMR for berylliosis was significantly high, based on 4 deaths. SMRs for Hispanic workers were significantly high for cancers of the stomach and liver, cirrhosis of the liver, nonmalignant kidney disease and diabetes, but the excesses were not related to radiation dose. CONCLUSIONS There was little evidence that radiation increased the risk of lung cancer or leukemia. Esophageal cancer was associated with radiation, and plutonium intakes were linked to an increase of bone cancer. IHD was not associated with radiation dose. More precise evaluations will await the pooled analysis of workers with similar exposures such as at Rocky Flats, Savannah River and Hanford.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley P Golden
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sara C Howard
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - David J Girardi
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Michael B Bellamy
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence T Dauer
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|
10
|
Zhang G, Shen J, Bao P, Yao Z, Yuan Y, Fang S. ASSESSMENT OF OCCUPATIONAL EXPOSURE OF RADIATION WORKERS AT A TERTIARY HOSPITAL IN ANHUI PROVINCE, CHINA, DURING 2013-18. RADIATION PROTECTION DOSIMETRY 2020; 190:237-242. [PMID: 32662512 DOI: 10.1093/rpd/ncaa098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Data on occupational radiation exposure of radiation workers at a tertiary hospital in China during 2013-18 were analyzed to provide decision-making advice for hospitals and health administrative departments. A total of 1255 exposure records of radiation workers were collected. The average annual effective doses of radiation workers during 2013-18 was 0.4977 mSv, with 1150 (91.63%) records ranging between 0 and 1 mSv, 91 (7.25%) between 1 and 2 mSv, 10 (0.80%) between 2 and 5 mSv and 4 (0.32%) records exceeding 5 mSv. There was a significant difference in the average annual effective dose of radiation workers among different occupational categories except in 2015 indicating that hospitals and administrative authorities should pay more attention to the radiation workers in the nuclear medicine and intervention department. The average annual effective doses did not show significant differences between male and female workers except in 2017; in that year the average individual dose of female workers was higher than male workers'. There were no significant differences in the average annual effective doses among doctors, nurses and radiologic technologists except in 2016 and 2017; during that period the individual dose of nurses was higher than doctors' and radiologic technologists'.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Medical Quality Control and Health Affairs Management, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianmin Shen
- Department of Medical Quality Control and Health Affairs Management, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pin Bao
- Department of Medical Quality Control and Health Affairs Management, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ziqin Yao
- Department of Medical Quality Control and Health Affairs Management, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuan Yuan
- Department of Medical Quality Control and Health Affairs Management, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shiyuan Fang
- Department of Medical Quality Control and Health Affairs Management, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Little MP, Pawel D, Misumi M, Hamada N, Cullings HM, Wakeford R, Ozasa K. Lifetime Mortality Risk from Cancer and Circulatory Disease Predicted from the Japanese Atomic Bomb Survivor Life Span Study Data Taking Account of Dose Measurement Error. Radiat Res 2020; 194:259-276. [PMID: 32942303 PMCID: PMC7646983 DOI: 10.1667/rr15571.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/24/2020] [Indexed: 11/03/2022]
Abstract
Dosimetric measurement error is known to potentially bias the magnitude of the dose response, and can also affect the shape of dose response. In this report, generalized relative and absolute rate models are fitted to the latest Japanese atomic bomb survivor solid cancer, leukemia and circulatory disease mortality data (followed from 1950 through 2003), with the latest (DS02R1) dosimetry, using Bayesian techniques to adjust for errors in dose estimates and assessing other model uncertainties. Linear-quadratic models are fitted and used to assess lifetime mortality risks for contemporary UK, USA, French, Russian, Japanese and Chinese populations. For a test dose of 0.1 Gy absorbed dose weighted by neutron relative biological effectiveness, solid cancer, leukemia and circulatory disease mortality risks for a UK population using a generalized linear-quadratic relative rate model were estimated to be 3.88% Gy-1 [95% Bayesian credible interval (BCI): 1.17, 6.97], 0.35% Gy-1 (95% BCI: -0.03, 0.78) and 2.24% Gy-1 (95% BCI: -0.17, 13.76), respectively. Using a generalized absolute rate linear-quadratic model at 0.1 Gy, the lifetime risks for these three end points were estimated to be 3.56% Gy-1 (95% BCI: 0.54, 6.78), 0.41% Gy-1 (95% BCI: 0.01, 0.86) and 1.56% Gy-1 (95% BCI: -1.10, 7.21), respectively. There was substantial evidence of curvature for solid cancer (in particular, the group of solid cancers excluding lung, breast and stomach cancers) and leukemia, so that for solid cancer and leukemia, estimates of excess risk per unit dose were nearly doubled by increasing the dose from 0.01 to 1.0 Gy, with most of the increase occurring in the interval from 0.1 to 1.0 Gy. For circulatory disease, the dose-response curvature was inverse, so that risk per unit dose was nearly halved by going from 0.01 t o 1.0 Gy weighted absorbed dose, although there were substantial uncertainties. In general, there were higher radiation risks for females compared to males. This was true for solid cancer and circulatory disease overall, as well as for lung, breast, stomach and the group of other solid cancers, and was the case whether relative or absolute rate projection models were employed; however, for leukemia this pattern was reversed. Risk estimates varied somewhat between populations, with lower cancer risks in aggregate for China and Russia, but higher circulatory disease risks for Russia, particularly using the relative rate model. There was more pronounced variation for certain cancer sites and certain types of projection models, so that breast cancer risk was markedly lower in China and Japan using a relative rate model, but the opposite was the case for stomach cancer. There was less variation between countries using the absolute rate models for stomach cancer and breast cancer, but this was not the case for lung cancer and the group of other solid cancers, or for circulatory disease.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland 20892-9778
| | - David Pawel
- Office of Air and Radiation, Environmental Protection Agency, Washington, DC 20004
| | | | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan
| | | | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| |
Collapse
|
12
|
Zekioğlu A, Parlar Ş. Investigation of awareness level concerning radiation safety among healthcare professionals who work in a radiation environment. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1777657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aysu Zekioğlu
- Faculty of Health Sciences, Health Management Department, Trakya University, Edirne, Turkey
| | - Şule Parlar
- Vocational School of Health, Radiotherapy Department, Trakya University, Edirne, Turkey
| |
Collapse
|
13
|
Muhogora WE, Banzi FP, Ngaile JE, Ngoye WM, Lema US, Shao D, Chuma F, Masoud AO, Kileo A, Mikidadi S, Salum SK. OCCUPATIONAL EXPOSURE TO EXTERNAL IONISING RADIATION IN TANZANIA (2011-17). RADIATION PROTECTION DOSIMETRY 2019; 185:208-214. [PMID: 30624741 DOI: 10.1093/rpd/ncy297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/08/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
The objectives of this paper were to evaluate the occupational radiation exposure data from 2011 to 2017 and to compare the results with status in 1996-2010 periods. The evaluation was performed in terms of annual collective effective dose, the average annual effective dose, the individual dose distribution ratio and the annual collective effective dose distribution ratio. Irrespective of work category, the results indicate that the average effective dose ranged from 0.64 to 1.55 mSv and broadly comparable to data in the previous analysis. Over seven year period, the maximum annual individual dose was 4 mSv and therefore below the dose limit of 20 mSv y-1. The impact of radiological practice on the exposed population was <1.1 person.Sv. The results demonstrate satisfactory radiation protection conditions at workplaces, a situation which is mainly explained by the existing effective regulatory enforcement and improved workers' awareness.
Collapse
Affiliation(s)
- Wilbroad Edward Muhogora
- Research and Development Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Firm Paul Banzi
- Research and Development Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Justin Emanuel Ngaile
- Ionizing Radiation Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Wilson Maliyatabu Ngoye
- Ionizing Radiation Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Usha Sara Lema
- Research and Development Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Didas Shao
- Research and Development Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Furaha Chuma
- Ionizing Radiation Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Ali Omar Masoud
- Research and Development Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Abdallah Kileo
- Research and Development Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Salehe Mikidadi
- Ionizing Radiation Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| | - Salum K Salum
- Ionizing Radiation Department, Tanzania Atomic Energy Commission, 23114 Block J Njiro, United Republic of Tanzania
| |
Collapse
|
14
|
Boice JD, Held KD, Shore RE. Radiation epidemiology and health effects following low-level radiation exposure. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S14-S27. [PMID: 31272090 DOI: 10.1088/1361-6498/ab2f3d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation epidemiology is the study of human disease following radiation exposure to populations. Epidemiologic studies of radiation-exposed populations have been conducted for nearly 100 years, starting with the radium dial painters in the 1920s and most recently with large-scale studies of radiation workers. As radiation epidemiology has become increasingly sophisticated it is used for setting radiation protection standards as well as to guide the compensation programmes in place for nuclear weapons workers, nuclear weapons test participants, and other occupationally exposed workers in the United States and elsewhere. It is known with high assurance that radiation effects at levels above 100-150 mGy can be detected as evidenced in multiple population studies conducted around the world. The challenge for radiation epidemiology is evaluating the effects at low doses, below about 100 mGy of low-linear energy transfer radiation, and assessing the risks following low dose-rate exposures over years. The weakness of radiation epidemiology in directly studying low dose and low dose-rate exposures is that the signal, i.e. the excess numbers of cancers associated with low-level radiation exposure, is so very small that it cannot be seen against the very high background occurrence of cancer in the population, i.e. a lifetime risk of incidence reaching up to about 38% (i.e. 1 in 3 persons will develop a cancer in their lifetime). Thus, extrapolation models are used for the management of risk at low doses and low dose rates, but having adequate information from low dose and low dose-rate studies would be highly desirable. An overview of recently conducted radiation epidemiologic studies which evaluate risk following low-level radiation exposures is presented. Future improvements in risk assessment for radiation protection may come from increasingly informative epidemiologic studies, combined with mechanistic radiobiologic understanding of adverse outcome pathways, with both incorporated into biologically based models.
Collapse
Affiliation(s)
- J D Boice
- National Council on Radiation Protection and Measurements, Bethesda, Maryland, United States of America. Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | |
Collapse
|
15
|
Pritchard C, Silk A, Hansen L. Are rises in Electro-Magnetic Field in the human environment, interacting with multiple environmental pollutions, the tripping point for increases in neurological deaths in the Western World? Med Hypotheses 2019; 127:76-83. [PMID: 31088653 DOI: 10.1016/j.mehy.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Whilst humans evolved in the earth's Electro-Magnetic-Field (EMF) and sun-light, both being essential to life but too much sun and we burn. What happens if background EMF rise to critical levels, coinciding with increasing environmental pollutants? Two of the authors can look back over 50 clinical years and appreciate the profound changes in human morbidity across a range of disparate conditions - autoimmune diseases, asthma, earlier cancer incidence and reduced male sperm counts. In particular have been increased autism, dyslexia, Attention Deficit Hyperactivity Disorder and neurological diseases, such as Amyotrophic Lateral Sclerosis, Multiple Sclerosis, Parkinson's Disease, Early Onset Dementia, Multiple System Atrophy and Progressive Supranuclear Palsy. What might have caused these changes-whilst genetic factors are taken as given, multiple environmental pollutants are associated with neurological disease although the mechanisms are unclear. The pace of increased neurological deaths far exceeds any Gompertzian explanation - that because people are living longer they are more likely to develop more age-related problems such as neurological disease. Using WHO global mortality categories of Neurological Disease Deaths (NDD) and Alzheimer's and Dementia deaths (Alz), updated June 2018, together they constitute Total Neurological Mortality (TNM), to calculate mortality rates per million for people aged 55-74 and for the over-75's in twenty-one Western countries. Recent increases in American people aged over-75's rose 49% from 1989 to 2015 but US neurological deaths increased five-fold. In 1989 based on Age-Standardised-Deaths-Rates America USA was 17th at 324 pm but rising to 539 pm became second highest. Different environmental/occupational factors have been found to be associated with neuro-degenerative diseases, including background EMF. We briefly explore how levels of EMF interact upon the human body, which can be described as a natural antennae and provide new evidence that builds upon earlier research to propose the following hypothesis. Based upon recent and new evidence we hypothesise that a major contribution for the relative sudden upsurge in neurological morbidity in the Western world (1989-2015), is because of increased background EMF that has become the tipping point-impacting upon any genetic predisposition, increasing multiple-interactive pollutants, such as rises in petro-chemicals, hormone disrupting chemicals, industrial, agricultural and domestic chemicals. The unprecedented neurological death rates, all within just twenty-five years, demand a re-examination of long-term EMF safety related to the increasing background EMF on human health. We do not wish to 'stop the modern world', only make it safer.
Collapse
Affiliation(s)
- Colin Pritchard
- Faculty of Health & Social Sciences, Bournemouth University, United Kingdom.
| | - Anne Silk
- Faculty of Health & Social Sciences, Bournemouth University, United Kingdom
| | - Lars Hansen
- Southern Health, Dept of Psychiatry, University of Southampton, United Kingdom
| |
Collapse
|
16
|
Abstract
PURPOSE The study of low dose and low-dose rate exposure is of immeasurable value in understanding the possible range of health effects from prolonged exposures to radiation. The Million Person Study (MPS) of low-dose health effects was designed to evaluate radiation risks among healthy American workers and veterans who are more representative of today's populations than are the Japanese atomic bomb survivors exposed briefly to high-dose radiation in 1945. A million persons were needed for statistical reasons to evaluate low-dose and dose-rate effects, rare cancers, intakes of radioactive elements, and differences in risks between women and men. METHODS AND MATERIALS The MPS consists of five categories of workers and veterans exposed to radiation from 1939 to the present. The U.S. Department of Energy (DOE) Health and Mortality study began over 40 years ago and is the source of ∼360,000 workers. Over 25 years ago, the National Cancer Institute (NCI) collaborated with the U.S. Nuclear Regulatory Commission (NRC) to effectively create a cohort of nuclear power plant workers (∼150,000) and industrial radiographers (∼130,000). For over 30 years, the Department of Defense (DoD) collected data on aboveground nuclear weapons test participants (∼115,000). At the request of NCI in 1978, Landauer, Inc., (Glenwood, IL) saved their dosimetry databases which became the source of a cohort of ∼250,000 medical and other workers. RESULTS Overall, 29 individual cohorts comprise the MPS of which 21 have been or are under active study (∼810,000 persons). The remaining eight cohorts (∼190,000 persons) will be studied as resources become available. The MPS is a national effort with critical support from the NRC, DOE, National Aeronautics and Space Administration (NASA), DoD, NCI, the Centers for Disease Control and Prevention (CDC), the Environmental Protection Agency (EPA), Landauer, Inc., and national laboratories. CONCLUSIONS The MPS is designed to address the major unanswered question in radiation risk understanding: What is the level of health effects when exposure is gradual over time and not delivered briefly. The MPS will provide scientific understandings of prolonged exposure which will improve guidelines to protect workers and the public; improve compensation schemes for workers, veterans and the public; provide guidance for policy and decision makers; and provide evidence for or against the continued use of the linear nonthreshold dose-response model in radiation protection.
Collapse
Affiliation(s)
- John D Boice
- a National Council on Radiation Protection and Measurements , Bethesda , MD , USA.,b Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center , Nashville , TN , USA
| | | | - Michael T Mumma
- d International Epidemiology Institute , Rockville , MD , USA
| | | |
Collapse
|