1
|
Hsu HY, Chern YJ, Hsu MS, Yeh TL, Tsai MC, Jhuang JR, Hsieh CT, Chiang CJ, Lee WC, Hwang LC, Chien KL. Colorectal Cancer and Subsequent Diabetes Risk: A Population-Based Cohort Study in Taiwan. J Clin Endocrinol Metab 2025; 110:e592-e599. [PMID: 38661006 DOI: 10.1210/clinem/dgae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
CONTEXT The association between colorectal cancer (CRC) and new-onset diabetes mellitus remains unclear. OBJECTIVE To examine the association between CRC and the risk of subsequent diabetes mellitus and to further investigate the impact of chemotherapy on diabetes mellitus risk in CRC. METHODS In this nationwide cohort study using the Taiwan Cancer Registry database (2007-2018) linked with health databases, 86 268 patients with CRC and an equal propensity score-matched cohort from the general population were enrolled. Among them, 37 277 CRC patients from the Taiwan Cancer Registry (2007-2016) were analyzed for diabetes mellitus risk associated with chemotherapy. Chemotherapy exposure within 3 years of diagnosis was categorized as no chemotherapy, < 90 days, 90 to 180 days, and > 180 days. Differences in diabetes mellitus risk were assessed across these categories. RESULTS Each group involved 86 268 participants after propensity score matching. The patients with CRC had a 14% higher risk of developing diabetes mellitus than the matched general population (hazard ratio [HR]: 1.14; 95% CI, 1.09-1.20). The highest risk was observed within the first year after diagnosis, followed by a sustained elevated risk. Long-term chemotherapy (> 180 days within 3 years) was associated with a 60% to 70% increased risk of subsequent diabetes mellitus (HR: 1.64; 95% CI, 1.07-2.49). CONCLUSION Patients with CRC are associated with an elevated risk of diabetes mellitus, and long-term chemotherapy, particularly involving capecitabine, increases diabetes mellitus risk. Thus, monitoring blood glucose levels is crucial for patients with CRC, especially during extended chemotherapy.
Collapse
Affiliation(s)
- Hsin-Yin Hsu
- Department of Family Medicine, Mackay Memorial Hospital, Taipei City 104217, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 10055, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Yih-Jong Chern
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
| | - Min-Shu Hsu
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City 251020, Taiwan
| | - Tzu-Lin Yeh
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Family Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu City 300044, Taiwan
| | - Ming-Chieh Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 10055, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Division of Endocrinology, Department of Internal Medicine, Mackay Memorial Hospital, Tamsui Branch, New Taipei City 251020, Taiwan
| | - Jing-Rong Jhuang
- Institute of Statistical Science, Academia Sinica, Taipei City 115004, Taiwan
| | - Cheng-Tzu Hsieh
- Department of Epidemiology, University of California, Los Angeles, CA 90095-1772, USA
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 10055, Taiwan
- Taiwan Cancer Registry, Taipei City 10055, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 10055, Taiwan
- Taiwan Cancer Registry, Taipei City 10055, Taiwan
| | - Lee-Ching Hwang
- Department of Family Medicine, Mackay Memorial Hospital, Taipei City 104217, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 10055, Taiwan
- Population Health Research Center, National Taiwan University, Taipei City 10055, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City 100229, Taiwan
| |
Collapse
|
2
|
Baby B, Sam N, M P N, Anjaneyan G, M P R. Therapy-related hand-foot syndrome: a review. J Chemother 2024:1-12. [PMID: 39651796 DOI: 10.1080/1120009x.2024.2437336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Anti-tumor drugs cause hand-foot syndrome through a variety of pathogenic mechanisms. Some chemotherapeutic medications that can cause HFS include 5FU, doxorubicin, capecitabine, high dose cytarabine, and others. These medications each have a unique mechanism resulting in HFS. The histopathological characteristics, clinical manifestations, and variations in gender, ethnicity, or genetic makeup might also impact the development of HFS as an adverse drug reaction. Even though the disease might not become life-threatening, it is nevertheless vital to manage it with therapeutic interventions or by withholding the medication in order to enhance the patient's outcome. Current developments in pharmacological and non-pharmacological therapeutic approaches for managing symptoms also emphasis the same.
Collapse
Affiliation(s)
- Bilha Baby
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Nevin Sam
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Narmadha M P
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Gopikrishnan Anjaneyan
- Department of Dermatology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Rakesh M P
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
3
|
Trepka KR, Kidder WA, Kyaw TS, Halsey T, Olson CA, Ortega EF, Noecker C, Upadhyay V, Stanfield D, Steiding P, Guthrie BGH, Spanogiannopoulos P, Dumlao D, Turnbaugh JA, Stachler MD, Van Blarigan EL, Venook AP, Atreya CE, Turnbaugh PJ. Expansion of a bacterial operon during cancer treatment ameliorates drug toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597471. [PMID: 38895199 PMCID: PMC11185696 DOI: 10.1101/2024.06.04.597471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene sequencing revealed significant shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which is sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA + bacteria depleted 5-FU in gut microbiota grown ex vivo and the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA + E. coli, or preTA-high CRC patient stool. Finally, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach is generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.
Collapse
Affiliation(s)
- Kai R. Trepka
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Wesley A. Kidder
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco; San Francisco, USA
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Than S. Kyaw
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Taylor Halsey
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Christine A. Olson
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Edwin F. Ortega
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Cecilia Noecker
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Vaibhav Upadhyay
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Dalila Stanfield
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Paige Steiding
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Benjamin G. H. Guthrie
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Darren Dumlao
- Department of Gastroenterology, University of California San Francisco; San Francisco, USA
| | - Jessie A. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Matthew D. Stachler
- Department of Pathology, University of California San Francisco; San Francisco, USA
| | - Erin L. Van Blarigan
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco; San Francisco, USA
- Department of Urology, University of California San Francisco; San Francisco, USA
| | - Alan P. Venook
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco; San Francisco, USA
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Chloe E. Atreya
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco; San Francisco, USA
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
- Chan Zuckerberg Biohub-San Francisco; San Francisco, USA
| |
Collapse
|
4
|
Takano-Mochizuki M, Nakajima K, Ishida T, Ohta E, Moriyama T, Asakura S. A novel animal model of tegafur-induced hand-foot syndrome. Toxicol Appl Pharmacol 2024; 487:116977. [PMID: 38789014 DOI: 10.1016/j.taap.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Hand-foot syndrome (HFS) is a common side effect of fluoropyrimidine anticancer drugs and often becomes a dose-limiting manifestation of toxicity once it occurs. The precise mechanism of HFS remains unclear, and effective measures to prevent or relieve it are currently limited. To investigate the pathogenesis of HFS and effective measures for treating or preventing it, establishment of animal models is crucial. Here, we gave male SD rats 170 mg/kg of tegafur (prodrug of 5-FU) daily for 35 days and evaluated their clinical and histopathological characteristics and pain-related behavioral tests. TUNEL-positive apoptotic cells and 5-FU concentrations in the plantar skin were also evaluated to investigate the mode of toxicity. Tegafur treatment induced hypersensitivity to mechanical pressure on the plantar surface beginning in Week 3, with decreased locomotor activity. Focal desquamation of the plantar skin was observed almost concomitantly and gradually worsened to palmar and plantar skin thickening with severe desquamation, cracks, or both. Histopathological lesions in the plantar skin at treatment end included desquamation and thickening, with epidermal cell swelling and spongiosis and focal inflammation in the dermis. The time-course of development and the characteristics of the tegafur-induced skin lesions were highly similar to those in human fluoropyrimidine-induced HFS, indicating that a HFS rat model was successfully established. Localized high concentrations of 5-FU in the palmar and plantar skin, with increased apoptosis, are likely involved in the mode of toxicity. Our model should clarify the pathogenesis of HFS, providing new insights into the best supportive care and prevention.
Collapse
Affiliation(s)
- Misato Takano-Mochizuki
- Global Drug Safety, Biopharmaceutical Assessment Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Kota Nakajima
- Global Drug Safety, Biopharmaceutical Assessment Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Tomomi Ishida
- Global Drug Metabolism and Pharmacokinetics, Biopharmaceutical Assessment Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Etsuko Ohta
- Global Drug Safety, Biopharmaceutical Assessment Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Tomoyuki Moriyama
- Global Drug Safety, Biopharmaceutical Assessment Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Shoji Asakura
- Global Drug Safety, Biopharmaceutical Assessment Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| |
Collapse
|
5
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
6
|
Hu Y, Liu Y, Zong L, Zhang W, Liu R, Xing Q, Liu Z, Yan Q, Li W, Lei H, Liu X. The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles. Cell Death Dis 2023; 14:836. [PMID: 38104141 PMCID: PMC10725489 DOI: 10.1038/s41419-023-06382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Pyroptosis is a novel regulated cell death (RCD) mode associated with inflammation and innate immunity. Gasdermin E (GSDME), a crucial component of the gasdermin (GSDM) family proteins, has the ability to convert caspase-3-mediated apoptosis to pyroptosis of cancer cells and activate anti-tumor immunity. Accumulating evidence indicates that GSDME methylation holds tremendous potential as a biomarker for early detection, diagnosis, prognosis, and treatment of tumors. In fact, GSDME-mediated pyroptosis performs a dual role in anti-tumor therapy. On the one side, pyroptotic cell death in tumors caused by GSDME contributes to inflammatory cytokines release, which transform the tumor immune microenvironment (TIME) from a 'cold' to a 'hot' state and significantly improve anti-tumor immunotherapy. However, due to GSDME is expressed in nearly all body tissues and immune cells, it can exacerbate chemotherapy toxicity and partially block immune response. How to achieve a balance between the two sides is a crucial research topic. Meanwhile, the potential functions of GSDME-mediated pyroptosis in anti-programmed cell death protein 1 (PD-1) therapy, antibody-drug conjugates (ADCs) therapy, and chimeric antigen receptor T cells (CAR-T cells) therapy have not yet been fully understood, and how to improve clinical outcomes persists obscure. In this review, we systematically summarize the latest research regarding the molecular mechanisms of pyroptosis and discuss the role of GSDME-mediated pyroptosis in anti-tumor immunity and its potential applications in cancer treatment.
Collapse
Affiliation(s)
- Yixiang Hu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Ya Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Wenyou Zhang
- Department of Pharmacy, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Renzhu Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qichang Xing
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Zheng Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qingzi Yan
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wencan Li
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Haibo Lei
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| | - Xiang Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| |
Collapse
|