1
|
Chen C, Park AK, Monroy I, Ren Y, Kim SI, Chaurasiya S, Priceman SJ, Fong Y. Using Oncolytic Virus to Retask CD19-Chimeric Antigen Receptor T Cells for Treatment of Pancreatic Cancer: Toward a Universal Chimeric Antigen Receptor T-Cell Strategy for Solid Tumor. J Am Coll Surg 2024; 238:436-447. [PMID: 38214445 DOI: 10.1097/xcs.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells targeting the B-cell antigen CD19 are standard therapy for relapsed or refractory B-cell lymphoma and leukemia. CAR T cell therapy in solid tumors is limited due to an immunosuppressive tumor microenvironment and a lack of tumor-restricted antigens. We recently engineered an oncolytic virus (CF33) with high solid tumor affinity and specificity to deliver a nonsignaling truncated CD19 antigen (CD19t), allowing targeting by CD19-CAR T cells. Here, we tested this combination against pancreatic cancer. STUDY DESIGN We engineered CF33 to express a CD19t (CF33-CD19t) target. Flow cytometry and ELISA were performed to quantify CD19t expression, immune activation, and killing by virus and CD19-CAR T cells against various pancreatic tumor cells. Subcutaneous pancreatic human xenograft tumor models were treated with virus, CAR T cells, or virus+CAR T cells. RESULTS In vitro, CF33-CD19t infection of tumor cells resulted in >90% CD19t cell-surface expression. Coculturing CD19-CAR T cells with infected cells resulted in interleukin-2 and interferon gamma secretion, upregulation of T-cell activation markers, and synergistic cell killing. Combination therapy of virus+CAR T cells caused significant tumor regression (day 13): control (n = 16, 485 ± 20 mm 3 ), virus alone (n = 20, 254 ± 23 mm 3 , p = 0.0001), CAR T cells alone (n = 18, 466 ± 25 mm 3 , p = NS), and virus+CAR T cells (n = 16, 128 ± 14 mm 3 , p < 0.0001 vs control; p = 0.0003 vs virus). CONCLUSIONS Engineered CF33-CD19t effectively infects and expresses CD19t in pancreatic tumors, triggering cell killing and increased immunogenic response by CD19-CAR T cells. Notably, CF33-CD19t can turn cold immunologic tumors hot, enabling solid tumors to be targetable by agents designed against liquid tumor antigens.
Collapse
Affiliation(s)
- Courtney Chen
- From the Departments of Surgery (Chen, Kim, Chaurasiya, Fong)
| | - Anthony K Park
- Hematology and Hematopoietic Cell Transplantation (Park, Monroy, Ren, Priceman)
- Irell and Manella Graduate School of Biological Sciences (Park), City of Hope, Duarte, CA
| | - Isabel Monroy
- Hematology and Hematopoietic Cell Transplantation (Park, Monroy, Ren, Priceman)
| | - Yuwei Ren
- Hematology and Hematopoietic Cell Transplantation (Park, Monroy, Ren, Priceman)
| | - Sang-In Kim
- From the Departments of Surgery (Chen, Kim, Chaurasiya, Fong)
| | | | - Saul J Priceman
- Hematology and Hematopoietic Cell Transplantation (Park, Monroy, Ren, Priceman)
- Immuno-Oncology, Beckman Research Institute (Priceman)
| | - Yuman Fong
- From the Departments of Surgery (Chen, Kim, Chaurasiya, Fong)
| |
Collapse
|
2
|
Nia GE, Nikpayam E, Farrokhi M, Bolhassani A, Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200788. [PMID: 38596310 PMCID: PMC10976516 DOI: 10.1016/j.omton.2024.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Elahe Nikpayam
- Department of Regenerative and Cancer Biology, Albany Medical College, Albany, NY, USA
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ralph Meuwissen
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
- Ege University Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Sakhi H, Arabi M, Ghaemi A, Movafagh A, Sheikhpour M. Oncolytic viruses in lung cancer treatment: a review article. Immunotherapy 2024; 16:75-97. [PMID: 38112057 DOI: 10.2217/imt-2023-0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.
Collapse
Affiliation(s)
- Hanie Sakhi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Abolfazl Movafagh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
4
|
Enow JA, Sheikh HI, Rahman MM. Tumor Tropism of DNA Viruses for Oncolytic Virotherapy. Viruses 2023; 15:2262. [PMID: 38005938 PMCID: PMC10675630 DOI: 10.3390/v15112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as one of the most promising cancer immunotherapy agents that selectively target and kill cancer cells while sparing normal cells. OVs are from diverse families of viruses and can possess either a DNA or an RNA genome. These viruses also have either a natural or engineered tropism for cancer cells. Oncolytic DNA viruses have the additional advantage of a stable genome and multiple-transgene insertion capability without compromising infection or replication. Herpes simplex virus 1 (HSV-1), a member of the oncolytic DNA viruses, has been approved for the treatment of cancers. This success with HSV-1 was achievable by introducing multiple genetic modifications within the virus to enhance cancer selectivity and reduce the toxicity to healthy cells. Here, we review the natural characteristics of and genetically engineered changes in selected DNA viruses that enhance the tumor tropism of these oncolytic viruses.
Collapse
Affiliation(s)
- Junior A. Enow
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hummad I. Sheikh
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Masmudur M. Rahman
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Nistal-Villan E, Rius-Rocabert S, Llinares-Pinel F. Oncolytic virotherapy in lung cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:221-239. [PMID: 37541725 DOI: 10.1016/bs.ircmb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Lung tumors are one of the most aggressive threats affecting humans. Current therapeutic approaches have improved patients' survival; however, further efforts are required to increase effectiveness and protection against tumor relapse and metastasis. Immunotherapy presents an alternative to previous treatments that focuses on stimulating of the patient's immune system to destroy tumor cells. Viruses can be used as part of the immune therapeutic approach as agents that could selectively infect tumor cells, triggering an immune response against the infection and against the tumor cells. Some viruses have been selected for specifically infecting and destroying cancer cells, activating the immune response, enhancing access, amplifying the cytotoxicity against the tumor cells, and improving the long-term memory that can prevent tumor relapse. Oncolytic virotherapy can then be used as a strategy to target the destruction of transformed cells at the tumor site and act in locations distant from the primary targeted tumor site. Some of the current challenges in lung cancer treatment can be addressed using traditional therapies combined with oncolytic virotherapy. Defining the best combination, including the choice of the right settings will be at the next frontier in lung cancer treatment.
Collapse
Affiliation(s)
- Estanislao Nistal-Villan
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain; Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Sergio Rius-Rocabert
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain; Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Francisco Llinares-Pinel
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
6
|
Chaurasiya S, Valencia H, Zhang Z, Kim SI, Yang A, Lu J, Woo Y, Warner SG, Ede NJ, Fong Y. An oncolytic poxvirus encoding hNIS, shows anti-tumor efficacy and allows tumor imaging in a liver cancer model. Mol Cancer Ther 2023; 22:MCT-22-0635. [PMID: 37196156 PMCID: PMC10320468 DOI: 10.1158/1535-7163.mct-22-0635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/25/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023]
Abstract
Oncolytic viruses (OVs) are live viruses that can selectively replicate in cancer cells. We have engineered an OV (CF33) to make it cancer-selective through the deletion of its J2R (thymidine kinase) gene. Additionally, this virus has been armed with a reporter gene, human sodium iodide symporter (hNIS), to facilitate non-invasive imaging of tumors using positron emission tomography (PET). In this study we evaluated the oncolytic properties of the virus (CF33-hNIS) in liver cancer model, and its usefulness in tumor imaging. The virus was found to efficiently kill liver cancer cells and the virus-mediated cell death exhibited characteristics of immunogenic death based on the analysis of 3 damage associate molecular patterns (DAMPs): calreticulin, ATP and HMGB1. Furthermore, local or systemic administration of a single dose of the virus showed anti-tumor efficacy against a liver cancer xenograft model in mice and significantly increased survival of treated mice. Lastly, PET scanning was performed following injection of the radioisotope I-124, for imaging of tumors, and a single dose of virus as low as 1E03 pfu, administered intratumorally (I.T.) or intravenously (I.V.), allowed for PET imaging of tumors. In conclusion, CF33-hNIS is safe and effective in controlling human tumor xenografts in nude mice, and it also facilitates non-invasive imaging of tumors.
Collapse
Affiliation(s)
| | - Hannah Valencia
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | | | | | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
7
|
Martin NT, Crupi MJF, Taha Z, Poutou J, Whelan JT, Vallati S, Petryk J, Marius R, Austin B, Azad T, Boulanger M, Burgess T, Sanders I, Victoor C, Dickinson BC, Diallo JS, Ilkow CS, Bell JC. Engineering Rapalog-Inducible Genetic Switches Based on Split-T7 Polymerase to Regulate Oncolytic Virus-Driven Production of Tumour-Localized IL-12 for Anti-Cancer Immunotherapy. Pharmaceuticals (Basel) 2023; 16:ph16050709. [PMID: 37242495 DOI: 10.3390/ph16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, despite promoting rapid clearance of the oncolytic virus itself. Herein, we developed an inducible expression system based on a Split-T7 RNA polymerase for oncolytic poxviruses to regulate the spatial and temporal expression of a beneficial transgene. This expression system utilizes approved anti-neoplastic rapamycin analogues for transgene induction. This treatment regimen thus offers a triple anti-tumour effect through the oncolytic virus, the induced transgene, and the pharmacologic inducer itself. More specifically, we designed our therapeutic transgene by fusing a tumour-targeting chlorotoxin (CLTX) peptide to interleukin-12 (IL-12), and demonstrated that the constructs were functional and cancer-selective. We next encoded this construct into the oncolytic vaccinia virus strain Copenhagen (VV-iIL-12mCLTX), and were able to demonstrate significantly improved survival in multiple syngeneic murine tumour models through both localized and systemic virus administration, in combination with rapalogs. In summary, our findings demonstrate that rapalog-inducible genetic switches based on Split-T7 polymerase allow for regulation of the oncolytic virus-driven production of tumour-localized IL-12 for improved anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Nikolas T Martin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jack T Whelan
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sydney Vallati
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ricardo Marius
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bradley Austin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Taha Azad
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mason Boulanger
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Tamara Burgess
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ilson Sanders
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Camille Victoor
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Monaco ML, Idris OA, Essani K. Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses. Cancers (Basel) 2023; 15:cancers15082393. [PMID: 37190321 DOI: 10.3390/cancers15082393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. TNBC diagnoses account for approximately one-fifth of all breast cancer cases globally. The lack of receptors for estrogen, progesterone, and human epidermal growth factor 2 (HER-2, CD340) results in a lack of available molecular-based therapeutics. This increases the difficulty of treatment and leaves more traditional as well as toxic therapies as the only available standards of care in many cases. Recurrence is an additional serious problem, contributing substantially to its higher mortality rate as compared to other breast cancers. Tumor heterogeneity also poses a large obstacle to treatment approaches. No driver of tumor development has been identified for TNBC, and large variations in mutational burden between tumors have been described previously. Here, we describe the biology of six different subtypes of TNBC, based on differential gene expression. Subtype differences can have a large impact on metastatic potential and resistance to treatment. Emerging antibody-based therapeutics, such as immune checkpoint inhibitors, have available targets for small subsets of TNBC patients, leading to partial responses and relatively low overall efficacy. Immuno-oncolytic viruses (OVs) have recently become significant in the pursuit of effective treatments for TNBC. OVs generally share the ability to ignore the heterogeneous nature of TNBC cells and allow infection throughout a treated tumor. Recent genetic engineering has allowed for the enhancement of efficacy against certain tumor types while avoiding the most common side effects in non-cancerous tissues. In this review, TNBC is described in order to address the challenges it presents to potential treatments. The OVs currently described preclinically and in various stages of clinical trials are also summarized, as are their strategies to enhance therapeutic potential.
Collapse
Affiliation(s)
- Michael L Monaco
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Omer A Idris
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
9
|
Yang A, Zhang Z, Chaurasiya S, Park AK, Jung A, Lu J, Kim SI, Priceman S, Fong Y, Woo Y. Development of the oncolytic virus, CF33, and its derivatives for peritoneal-directed treatment of gastric cancer peritoneal metastases. J Immunother Cancer 2023; 11:e006280. [PMID: 37019471 PMCID: PMC10083877 DOI: 10.1136/jitc-2022-006280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) that metastasizes to the peritoneum is fatal. CF33 and its genetically modified derivatives show cancer selectivity and oncolytic potency against various solid tumors. CF33-hNIS and CF33-hNIS-antiPDL1 have entered phase I trials for intratumoral and intravenous treatments of unresectable solid tumors (NCT05346484) and triple-negative breast cancer (NCT05081492). Here, we investigated the antitumor activity of CF33-oncolytic viruses (OVs) against GC and CF33-hNIS-antiPDL1 in the intraperitoneal (IP) treatment of GC peritoneal metastases (GCPM). METHODS We infected six human GC cell lines AGS, MKN-45, MKN-74, KATO III, SNU-1, and SNU-16 with CF33, CF33-GFP, or CF33-hNIS-antiPDL1 at various multiplicities of infection (0.01, 0.1, 1.0, and 10.0), and performed viral proliferation and cytotoxicity assays. We used immunofluorescence imaging and flow cytometric analysis to verify virus-encoded gene expression. We evaluated the antitumor activity of CF33-hNIS-antiPDL1 following IP treatment (3×105 pfu × 3 doses) in an SNU-16 human tumor xenograft model using non-invasive bioluminescence imaging. RESULTS CF33-OVs showed dose-dependent infection, replication, and killing of both diffuse and intestinal subtypes of human GC cell lines. Immunofluorescence imaging showed virus-encoded GFP, hNIS, and anti-PD-L1 antibody scFv expression in CF33-OV-infected GC cells. We confirmed GC cell surface PD-L1 blockade by virus-encoded anti-PD-L1 scFv using flow cytometry. In the xenograft model, CF33-hNIS-antiPDL1 (IP; 3×105 pfu × 3 doses) treatment significantly reduced peritoneal tumors (p<0.0001), decreased amount of ascites (62.5% PBS vs 25% CF33-hNIS-antiPDL1) and prolonged animal survival. At day 91, seven out of eight mice were alive in the virus-treated group versus one out of eight in the control group (p<0.01). CONCLUSIONS Our results show that CF33-OVs can deliver functional proteins and demonstrate effective antitumor activity in GCPM models when delivered intraperitoneally. These preclinical results will inform the design of future peritoneal-directed therapy in GCPM patients.
Collapse
Affiliation(s)
- Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Anthony K Park
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Audrey Jung
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Saul Priceman
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
10
|
Rabaan AA, Abas AH, Tallei TE, Al-Zaher MA, Al-Sheef NM, Fatimawali, Al-Nass EZ, Al-Ebrahim EA, Effendi Y, Idroes R, Alhabib MF, Al-Fheid HA, Adam AA, Bin Emran T. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. J Med Virol 2023; 95:e28306. [PMID: 36372558 DOI: 10.1002/jmv.28306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Monkeypox is a rare zoonotic disease caused by infection with the monkeypox virus. The disease can result in flu-like symptoms, fever, and a persistent rash. The disease is currently spreading throughout the world and prevention and treatment efforts are being intensified. Although there is no treatment that has been specifically approved for monkeypox virus infection, infected patients may benefit from using certain antiviral medications that are typically prescribed for the treatment of smallpox. The drugs are tecovirimat, brincidofovir, and cidofovir, all of which are currently in short supply due to the spread of the monkeypox virus. Resistance is also a concern, as widespread replication of the monkeypox virus can lead to mutations that produce monkeypox viruses that are resistant to the currently available treatments. This article discusses monkeypox disease, potential drug targets, and management strategies to overcome monkeypox disease. With the discovery of new drugs, it is hoped that the problem of insufficient drugs will be resolved, and it is not anticipated that drug resistance will become a major issue in the near future.
Collapse
Affiliation(s)
- Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.,Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abdul Hawil Abas
- Faculty of Bioscience and Engineering, Ghent University, Ghent, Belgium
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Mona A Al-Zaher
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Noor M Al-Sheef
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Esraa Z Al-Nass
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Eba A Al-Ebrahim
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Yunus Effendi
- Department of Biology, Faculty of Science and Technology, Al-Azhar Indonesia University, Jakarta, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Mather F Alhabib
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam, Saudi Arabia
| | - Hussain A Al-Fheid
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam, Saudi Arabia
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
12
|
Li Z, Feiyue Z, Gaofeng L, Haifeng L. Lung cancer and oncolytic virotherapy--enemy's enemy. Transl Oncol 2022; 27:101563. [PMID: 36244134 PMCID: PMC9561464 DOI: 10.1016/j.tranon.2022.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer.
Collapse
Affiliation(s)
- Zhang Li
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China
| | - Zhang Feiyue
- Department of Oncology, Yuxi People's Hospital, The Sixth Affiliated Hospital of Kunming Medical University, China
| | - Li Gaofeng
- Department of Thoracic Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, China
| | - Liang Haifeng
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China,Corresponding author.
| |
Collapse
|
13
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Lu J, Kim SI, Warner SG, Yuan YC, Liu Z, Han H, Von Hoff D, Fong Y, Woo Y. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy. Cancer Gene Ther 2022; 29:722-733. [PMID: 34108669 PMCID: PMC8896143 DOI: 10.1038/s41417-021-00350-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapeutic strategies that combine oncolytic virus (OV) and immune checkpoint inhibitors have the potential to overcome treatment resistance in pancreatic ductal adenocarcinoma (PDAC), one of the least immunogenic solid tumors. Oncolytic viral chimera, CF33-hNIS-antiPDL1 genetically modified to express anti-human PD-L1 antibody and CF33-hNIS-Δ without the anti-PD-L1 gene, were used to investigate the immunogenic effects of OVs and virus-delivered anti-PD-L1 in PDAC in vitro. Western blot, flow cytometry, and immunofluorescence microscopy were used to evaluate the effects of CF33-hNIS-Δ and IFNγ on PD-L1 upregulation in AsPC-1 and BxPC-3 cells, and CF33-hNIS-antiPDL1 production of anti-PD-L1 and surface PD-L1 blockade of AsPC-1 and BxPC-3 with or without cocultured activated T cells. The cytosolic and cell surface levels of PD-L1 in PDAC cell lines varied; only BxPC-3 showed high cell surface expression. Treatment of these cells with CF33-hNIS-Δ and IFNγ significantly upregulated PD-L1 expression and translocation of PD-L1 from the cytosol onto the cell surface. Following coculture of activated T cells and BxPC-3 with CF33-hNIS-antiPDL1, the cell surface PD-L1 blockade on BxPC-3 cells by virus-delivered anti-PD-L1 antibody increased granzyme B release and prevented virus-induced decrease of perforin release from activated CD8+ T cells. Our results suggest that CF33-IOVs can prime immune checkpoint inhibition of PDAC and enhance antitumor immune killing.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Anthony K Park
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanne G Warner
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yate-Ching Yuan
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Liu
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Haiyong Han
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Daniel Von Hoff
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
14
|
Chaurasiya S, Yang A, Zhang Z, Lu J, Valencia H, Kim SI, Woo Y, Warner SG, Olafsen T, Zhao Y, Wu X, Fein S, Cheng L, Cheng M, Ede N, Fong Y. A comprehensive preclinical study supporting clinical trial of oncolytic chimeric poxvirus CF33-hNIS-anti-PD-L1 to treat breast cancer. Mol Ther Methods Clin Dev 2022; 24:102-116. [PMID: 35024377 PMCID: PMC8718831 DOI: 10.1016/j.omtm.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/04/2021] [Indexed: 01/12/2023]
Abstract
CF33-hNIS-anti-PD-L1 is an oncolytic chimeric poxvirus encoding two transgenes: human sodium iodide symporter and a single-chain variable fragment against PD-L1. Comprehensive preclinical pharmacology studies encompassing primary and secondary pharmacodynamics and biodistribution and safety studies were performed to support the clinical development of CF33-hNIS-anti-PD-L1. Most of the studies were performed in triple-negative breast cancer (TNBC) models, as the phase I trial is planned for patients with TNBC. Biological functions of virus-encoded transgenes were confirmed, and the virus demonstrated anti-tumor efficacy against TNBC models in mice. In a good laboratory practice (GLP) toxicology study, the virus did not produce any observable adverse effects in mice, suggesting that the doses proposed for the clinical trial should be well tolerated in patients. Furthermore, no neurotoxic effects in mice were seen following intracranial injection of the virus. Also, the risk for horizontal transmission of CF33-hNIS-anti-PD-L1 was assessed in mice, and our results suggest that the virus is unlikely to transmit from infected patients to healthy individuals. Finally, the in-use stability and compatibility of CF33-hNIS-anti-PD-L1 tested under different conditions mimicking the clinical scenarios confirmed the suitability of the virus in clinical settings. The results of these preclinical studies support the use of CF33-hNIS-anti-PD-L1 in a first-in-human trial in patients with TNBC.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Hannah Valencia
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Suanne G Warner
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Tove Olafsen
- Small Animal Imaging Core, Shared Resources, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yuqi Zhao
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Familian Science building, Room#1100 1500 E Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Kim SI, Lu J, Olafsen T, Warner SG, Fong Y, Woo Y. PET imaging and treatment of pancreatic cancer peritoneal carcinomatosis after subcutaneous intratumoral administration of a novel oncolytic virus, CF33-hNIS-antiPDL1. Mol Ther Oncolytics 2022; 24:331-339. [PMID: 35118191 PMCID: PMC8784298 DOI: 10.1016/j.omto.2021.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
Peritoneal carcinomatosis of gastrointestinal malignancies remains fatal. CF33-hNIS-antiPDL1, a chimeric orthopoxvirus expressing the human sodium iodide symporter (hNIS) and anti-human programmed death-ligand 1 antibody, has demonstrated robust preclinical activity against pancreatic adenocarcinoma (PDAC). We investigated the ability of CF33-hNIS-antiPDL1 to infect, help detect, and kill peritoneal tumors following intratumoral (i.t.) injection of subcutaneous (s.c.) tumors in vivo. Human PDAC AsPC-1-ffluc cells were inoculated in both the s.c. space and the peritoneal cavity of athymic mice. After successful tumor engraftment, s.c. tumors were injected with CF33-hNIS-antiPDL1 or PBS. We assessed the ability of CF33-hNIS-antiPDL1 to infect, replicate in, and allow the imaging of tumors at both sites (immunohistochemistry [IHC] and 124I-based positron emission tomography/computed tomography [PET/CT] imaging), tumor burden (bioluminescence imaging), and animal survival. IHC staining for hNIS confirmed expression in s.c. and peritoneal tumors following virus treatment. Compared to the controls, CF33-hNIS-antiPDL1-treated mice showed significantly decreased s.c. and peritoneal tumor burden and improved survival (p < 0.05). Notably, 2 of 8 mice showed complete regression of disease. PET/CT avidity for 124I uptake in s.c. and peritoneal tumors was visible starting at day 7 following the first i.t. dose of CF33-hNIS-antiPDL1. We show that CF33-hNIS-antiPDL1 can help detect and kill both s.c. and peritoneal tumors following s.c. i.t. treatment.
Collapse
|
16
|
Chaurasiya S, Kim SI, O'Leary M, Park AK, Lu J, Kang S, Zhang Z, Yang A, Woo Y, Fong Y, Warner SG. Toward comprehensive imaging of oncolytic viroimmunotherapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:303-310. [PMID: 34786474 PMCID: PMC8569424 DOI: 10.1016/j.omto.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oncolytic viruses infect, replicate in, and kill cancer cells, leaving normal cells unharmed; they also recruit and activate immune cells against tumor cells. While clinical indications for viroimmunotherapy are growing, barriers to widespread treatment remain. Ensuring real-time tracking of viral replication and resulting anti-tumor immune responses will overcome some of these barriers and is thus a top priority. Clinically optimizing trackability of viral replication will promote safe dose increases, guide serial dosing, and enhance treatment effects. However, viral delivery is only half the story. Oncolytic viruses are known to upregulate immune checkpoint expression, thereby priming otherwise immunodeficient tumor immune microenvironments for treatment with checkpoint inhibitors. Novel modalities to track virus-induced changes in tumor microenvironments include non-invasive measurements of immune cell populations and responses to viroimmunotherapy such as (1) in situ use of radiotracers to track checkpoint protein expression or immune cell traffic, and (2) ex vivo labeling of immune cells followed by nuclear medicine imaging. Herein, we review clinical progress toward accurate imaging of oncolytic virus replication, and we further review the current status of functional imaging of immune responses to viroimmunotherapy.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Michael O'Leary
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Anthony K Park
- Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Seonah Kang
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Zhifang Zhang
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Annie Yang
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Pavilion 2226, Duarte, CA 91010, USA
| |
Collapse
|
17
|
Zhu W, Lv J, Xie X, Tian C, Liu J, Zhou H, Sun C, Li J, Hu Z, Li X. The oncolytic virus VT09X optimizes immune checkpoint therapy in low immunogenic melanoma. Immunol Lett 2021; 241:15-22. [PMID: 34774916 DOI: 10.1016/j.imlet.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Tumors with a low level of pre-existing immune cell infiltration respond poorly to immune checkpoint therapies. Oncolytic viruses optimize immunotherapies by modulating the tumor microenvironment and affecting multiple steps in the cancer-immunity cycle, making them an attractive agent for combination strategies. We engineered an HSV-1-based oncolytic virus and investigated its antitumor effects in combination with the marketed PD-1 antibody Keytruda (pembrolizumab) in hPD-1 knock-in mice bearing non-immunogenic B16-F10 melanoma. Our results showed enhanced CD8+ and CD4+ T cell infiltration, IFN-γ secretion and PD-L1 expression in tumors, subsequently leading to the prolonged overall survival of mice. Systemic changes in lymphocyte cell proportions were also observed in the peripheral blood. In summary, these findings provide evidence that oncolytic viruses can be engineered as a potential platform for combination therapies, especially to treat tumors that are poorly responsive to immune checkpoint therapy.
Collapse
Affiliation(s)
- Wei Zhu
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Jingwen Lv
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Xin Xie
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Chao Tian
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Jingfeng Li
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China; Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Zongfeng Hu
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Xiaopeng Li
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China; Beijing WellGene Company, Ltd, Beijing 100085, China.
| |
Collapse
|
18
|
Park AK, Fong Y, Kim SI, Yang J, Murad JP, Lu J, Jeang B, Chang WC, Chen NG, Thomas SH, Forman SJ, Priceman SJ. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci Transl Med 2021; 12:12/559/eaaz1863. [PMID: 32878978 DOI: 10.1126/scitranslmed.aaz1863] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor (CAR)-engineered T cell therapy for solid tumors is limited by the lack of both tumor-restricted and homogeneously expressed tumor antigens. Therefore, we engineered an oncolytic virus to express a nonsignaling, truncated CD19 (CD19t) protein for tumor-selective delivery, enabling targeting by CD19-CAR T cells. Infecting tumor cells with an oncolytic vaccinia virus coding for CD19t (OV19t) produced de novo CD19 at the cell surface before virus-mediated tumor lysis. Cocultured CD19-CAR T cells secreted cytokines and exhibited potent cytolytic activity against infected tumors. Using several mouse tumor models, delivery of OV19t promoted tumor control after CD19-CAR T cell administration. OV19t induced local immunity characterized by tumor infiltration of endogenous and adoptively transferred T cells. CAR T cell-mediated tumor killing also induced release of virus from dying tumor cells, which propagated tumor expression of CD19t. Our study features a combination immunotherapy approach using oncolytic viruses to promote de novo CAR T cell targeting of solid tumors.
Collapse
Affiliation(s)
- Anthony K Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA.,Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Brook Jeang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Nanhai G Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sandra H Thomas
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA. .,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
19
|
Oncolytic Virotherapy for Cancer: Clinical Experience. Biomedicines 2021; 9:biomedicines9040419. [PMID: 33924556 PMCID: PMC8069290 DOI: 10.3390/biomedicines9040419] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are a new class of therapeutics which are largely in the experimental stage, with just one virus approved by the FDA thus far. While the concept of oncolytic virotherapy is not new, advancements in the fields of molecular biology and virology have renewed the interest in using viruses as oncolytic agents. Backed by robust preclinical data, many oncolytic viruses have entered clinical trials. Oncolytic viruses that have completed some levels of clinical trials or are currently undergoing clinical trials are mostly genetically engineered viruses, with the exception of some RNA viruses. Reolysin, an unmodified RNA virus is clinically the most advanced oncolytic RNA virus that has completed different phases of clinical trials. Other oncolytic viruses that have been studied in clinical trials are mostly DNA viruses that belong to one of the three families: herpesviridae, poxviridae or adenoviridae. In this review work we discuss recent clinical studies with oncolytic viruses, especially herpesvirus, poxvirus, adenovirus and reovirus. In summary, the oncolytic viruses tested so far are well tolerated, even in immune-suppressed patients. For most oncolytic viruses, mild and acceptable toxicities are seen at the currently defined highest feasible doses. However, anti-tumor efficacies of oncolytic viruses have been modest, especially when used as monotherapy. Therefore, the potency of oncolytic viruses needs to be enhanced for more oncolytic viruses to hit the clinic. Aiming to achieve higher therapeutic benefits, oncolytic viruses are currently being studied in combination with other therapies. Here we discuss the currently available clinical data on oncolytic viruses, either as monotherapy or in combination with other treatments.
Collapse
|
20
|
Novel Chimeric Poxvirus CF17 Improves Survival in a Murine Model of Intraperitoneal Ovarian Cancer Metastasis. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:278-282. [PMID: 33251335 PMCID: PMC7672245 DOI: 10.1016/j.omto.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
Despite improvements in surgical techniques and chemotherapy, ovarian cancer remains the most lethal gynecologic cancer. Thus, there is an urgent need for more effective therapeutics, particularly for chemo-resistant peritoneal ovarian cancer metastases. Oncolytic virotherapy represents an innovative treatment paradigm; however, for oncolytic viruses tested from the last generation of genetically engineered viruses, the therapeutic benefits have been modest. To overcome these limitations, we generated a chimeric poxvirus, CF17, through the chimerization of nine species of orthopoxviruses. Compared with its parental viruses, CF17 has demonstrated superior oncolytic characteristics. Here, we report the oncolytic potential of CF17 in ovarian cancer. Replication of CF17 and its resulting cytotoxicity were observed at multiplicities of infection (MOIs) as low as 0.001 in human and mouse cancer cell lines in vitro. Furthermore, CF17 exerted potent antitumor effects in a syngeneic mouse model of ovarian cancer at doses as low as 6 × 106 plaque-forming units. Together, these data merit further investigation of the potential use of this novel chimeric poxvirus as an effective treatment for aggressive intraperitoneal ovarian cancer.
Collapse
|
21
|
Zhang S, Rabkin SD. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy? Expert Opin Drug Discov 2020; 16:391-410. [PMID: 33232188 DOI: 10.1080/17460441.2021.1850689] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Despite diverse treatment modalities and novel therapies, many cancers and patients are not effectively treated. Cancer immunotherapy has recently achieved breakthrough status yet is not effective in all cancer types or patients and can generate serious adverse effects. Oncolytic viruses (OVs) are a promising new therapeutic modality that harnesses virus biology and host interactions to treat cancer. OVs, genetically engineered or natural, preferentially replicate in and kill cancer cells, sparing normal cells/tissues, and mediating anti-tumor immunity.Areas covered: This review focuses on OVs as cancer therapeutic agents from a historical perspective, especially strategies to boost their immunotherapeutic activities. OVs offer a multifaceted platform, whose activities are modulated based on the parental virus and genetic alterations. In addition to direct viral effects, many OVs can be armed with therapeutic transgenes to also act as gene therapy vectors, and/or combined with other drugs or therapies.Expert opinion: OVs are an amazingly versatile and malleable class of cancer therapies. They tend to target cellular and host physiology as opposed to specific genetic alterations, which potentially enables broad responsiveness. The biological complexity of OVs have hindered their translation; however, the recent approval of talimogene laherparepvec (T-Vec) has invigorated the field.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Kim SI, Park AK, Chaurasiya S, Kang S, Lu J, Yang A, Sivanandam V, Zhang Z, Woo Y, Priceman SJ, Fong Y, Warner SG. Recombinant Orthopoxvirus Primes Colon Cancer for Checkpoint Inhibitor and Cross-Primes T Cells for Antitumor and Antiviral Immunity. Mol Cancer Ther 2020; 20:173-182. [PMID: 33262221 DOI: 10.1158/1535-7163.mct-20-0405] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
Although it is known that oncolytic viruses can inflame and recruit immune cells to otherwise immunosuppressed tumor microenvironments, the influence of the antiviral immune response on antitumor immunity is less clear across viral platforms and tumor types. CF33 is a recombinant orthopoxvirus backbone effective against colon cancer. We tested derivatives of CF33 with and without immune-checkpoint inhibition (anti-PD-L1) in mouse models of colon cancer. Results showed that the efficacy of CF33 backbone with J2R deletion (single-deleted) against colon cancer is not altered by additional deletion of F14.5L in vitro or in vivo CF33 infection upregulated PD-L1 expression on tumor cells and led to an increased influx of lymphocytes and macrophages in tumors. Also, the levels of active CD8+ (IFNγ+) T cells in the virus-treated tumors were higher than those in control-treated tumors. Furthermore, a combination of CF33 derivatives with anti-PD-L1 resulted in durable tumor regression and long-term survival, resistant to tumor rechallenge. Analysis of immune cells from the treated mice showed that tumor-specific T cell activation occurred more robustly in tumors treated with the virus and that T cells were more strongly activated against the virus than against tumor, in an MHC-I-dependent manner. Our findings warrant further studies on the role of cross-priming of T cells against viral and tumor antigens, in the overall success of viroimmunotherapy.
Collapse
Affiliation(s)
- Sang-In Kim
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Anthony K Park
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Shyambabu Chaurasiya
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Seonah Kang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Jianming Lu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Annie Yang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Venkatesh Sivanandam
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Zhifang Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Yanghee Woo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California.,Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, California
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Yuman Fong
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California.,Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, California
| | - Susanne G Warner
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California. .,Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
23
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
24
|
Vitamin D as a Primer for Oncolytic Viral Therapy in Colon Cancer Models. Int J Mol Sci 2020; 21:ijms21197326. [PMID: 33023064 PMCID: PMC7582493 DOI: 10.3390/ijms21197326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viroimmunotherapy is an exciting modality that can offer lasting anti-tumor immunity for aggressive malignancies like colon cancer. The impact of oncolytic viruses may be extended by combining them with agents to prime a tumor for viral susceptibility. This study investigates vitamin D analogue as an adjunct to oncolytic viral therapy for colon cancer. While vitamin D (VD) has historically been viewed as anti-viral, our in vitro investigations using human colon cancer cell lines showed that VD does not directly inhibit replication of recombinant chimeric poxvirus CF33. VD did restrict growth in HT29 but not HCT116 human colon cancer cells. In vivo investigations using HCT116 and HT29 xenograft models of colon cancer demonstrated that a VD analogue, calcipotriol, was additive with CF33-based viral therapy in VD-responsive HT29 but not in HCT116 tumors. Analyses of RNA-sequencing and gene expression data demonstrated a downregulation in the Jak-STAT signaling pathway with the addition of VD to viral therapy in HT29 models suggesting that the anti-inflammatory properties of VD may enhance the effects of viral therapy in some models. In conclusion, VD may prime oncolytic viral therapy in certain colon cancers.
Collapse
|
25
|
Hammad M, Cornejo YR, Batalla-Covello J, Majid AA, Burke C, Liu Z, Yuan YC, Li M, Dellinger TH, Lu J, Chen NG, Fong Y, Aboody KS, Mooney R. Neural Stem Cells Improve the Delivery of Oncolytic Chimeric Orthopoxvirus in a Metastatic Ovarian Cancer Model. Mol Ther Oncolytics 2020; 18:326-334. [PMID: 32775617 PMCID: PMC7394740 DOI: 10.1016/j.omto.2020.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy represents a promising approach for treating recurrent and/or drug-resistant ovarian cancer. However, its successful application in the clinic has been hampered by rapid immune-mediated clearance, which reduces viral delivery to the tumor. Patient-derived mesenchymal stem cells that home to tumors have been used as viral delivery tools, but variability associated with autologous cell isolations limits the clinical applicability of this approach. We previously developed an allogeneic, clonal neural stem cell (NSC) line (HB1.F3.CD21) that can be used to deliver viral cargo. Here, we demonstrate that this NSC line can improve the delivery of a thymidine kinase gene-deficient conditionally replication-competent orthopoxvirus, CF33, in a preclinical cisplatin-resistant peritoneal ovarian metastases model. Overall, our findings provide the basis for using off-the-shelf allogeneic cell-based delivery platforms for oncolytic viruses, thus providing a more efficient delivery alternative compared with the free virus administration approach.
Collapse
Affiliation(s)
- Mohamed Hammad
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| | - Yvonne R. Cornejo
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School for Biological Sciences at the Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jennifer Batalla-Covello
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School for Biological Sciences at the Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Asma Abdul Majid
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| | - Connor Burke
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| | - Zheng Liu
- Translational Bioinformatics Division, Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Translational Bioinformatics Division, Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Min Li
- Department of Information Sciences, Division of Biostatistics at the Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Thanh H. Dellinger
- Division of Gynecologic Surgery, Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Nanhai G. Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
- Center for Gene Therapy, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
- Center for Gene Therapy, City of Hope, Duarte, CA 91010, USA
| | - Karen S. Aboody
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
- Division of Neurosurgery, City of Hope, Duarte, CA 91010, USA
| | - Rachael Mooney
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
26
|
Park AK, Fong Y, Kim SI, Yang J, Murad JP, Lu J, Jeang B, Chang WC, Chen NG, Thomas SH, Forman SJ, Priceman SJ. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci Transl Med 2020. [DOI: 10.1126/scitranslmed.aaz1863
http://stm.sciencemag.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An effective combination immunotherapy using oncolytic viruses delivers de novo CD19 to promote CD19-CAR T cell therapy against solid tumors in mice.
Collapse
Affiliation(s)
- Anthony K. Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - John P. Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Brook Jeang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Nanhai G. Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sandra H. Thomas
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Saul J. Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
27
|
Kojima R, Aubel D, Fussenegger M. Building sophisticated sensors of extracellular cues that enable mammalian cells to work as "doctors" in the body. Cell Mol Life Sci 2020; 77:3567-3581. [PMID: 32185403 PMCID: PMC7452942 DOI: 10.1007/s00018-020-03486-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Mammalian cells are inherently capable of sensing extracellular environmental signals and activating complex biological functions on demand. Advances in synthetic biology have made it possible to install additional capabilities, which can allow cells to sense the presence of custom biological molecules and provide defined outputs on demand. When implanted/infused in patients, such engineered cells can work as intrabody "doctors" that diagnose disease states and produce and deliver therapeutic molecules when and where necessary. The key to construction of such theranostic cells is the development of a range of sensor systems for detecting various extracellular environmental cues that can be rewired to custom outputs. In this review, we introduce the state-of-art engineering principles utilized in the design of sensor systems to detect soluble factors and also to detect specific cell contact, and we discuss their potential role in treating intractable diseases by delivering appropriate therapeutic functions on demand. We also discuss the challenges facing these emerging technologies.
Collapse
Affiliation(s)
- Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Dominque Aubel
- IUTA Département Génie Biologique, Université Claude Bernard Lyon 1, Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
28
|
Chaurasiya S, Fong Y, Warner SG. Optimizing Oncolytic Viral Design to Enhance Antitumor Efficacy: Progress and Challenges. Cancers (Basel) 2020; 12:cancers12061699. [PMID: 32604787 PMCID: PMC7352900 DOI: 10.3390/cancers12061699] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The field of oncolytic virotherapy has seen remarkable advancements in last two decades, leading to approval of the first oncolytic immuno-virotherapy, Talimogene Laherparepvec, for the treatment of melanoma. A plethora of preclinical and clinical studies have demonstrated excellent safety profiles of other oncolytic viruses. While oncolytic viruses show clinical promise in already immunogenic malignancies, response rates are inconsistent. Response rates are even less consistent in immunosuppressed tumor microenvironments like those found in liver, pancreas, and MSI-stable colon cancers. Therefore, the efficacy of oncolytic viruses needs to be improved for more oncolytic viruses to enter mainstream cancer therapy. One approach to increase the therapeutic efficacy of oncolytic viruses is to use them as primers for other immunotherapeutics. The amenability of oncolytic viruses to transgene-arming provides an immense opportunity for investigators to explore different ways of improving the outcome of oncolytic therapy. In this regard, genes encoding immunomodulatory proteins are the most commonly studied genes for arming oncolytic viruses. Other transgenes used to arm oncolytic viruses include those with the potential to favorably modulate tumor stroma, making it possible to image the virus distribution and increase its suitability for combination with other therapeutics. This review will detail the progress made in arming oncolytic viruses with a focus on immune-modulatory transgenes, and will discuss the challenges that need to be addressed for more armed oncolytic viruses to find widespread clinical use.
Collapse
|
29
|
Sasso E, Froechlich G, Cotugno G, D'Alise AM, Gentile C, Bignone V, De Lucia M, Petrovic B, Campadelli-Fiume G, Scarselli E, Nicosia A, Zambrano N. Replicative conditioning of Herpes simplex type 1 virus by Survivin promoter, combined to ERBB2 retargeting, improves tumour cell-restricted oncolysis. Sci Rep 2020; 10:4307. [PMID: 32152425 PMCID: PMC7062820 DOI: 10.1038/s41598-020-61275-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is emerging as a promising therapeutic option for solid tumours. Several oncolytic vectors in clinical testing are based on attenuated viruses; thus, efforts are being taken to develop a new repertoire of oncolytic viruses, based on virulent viral genomes. This possibility, however, raises concerns dealing with the safety features of the virulent phenotypes. We generated a double regulated Herpes simplex type-1 virus (HSV-1), in which tumour cell restricted replicative potential was combined to selective entry via ERBB2 receptor retargeting. The transcriptional control of the viral alpha4 gene encoding for the infected cell protein-4 (ICP4) by the cellular Survivin/BIRC5 promoter conferred a tumour cell-restricted replicative potential to a virulent HSV-1 genome. The combination of the additional ERBB2 retargeting further improved the selectivity for tumour cells, conferring to the double regulated virus a very limited ability to infect and propagate in non-cancerous cells. Accordingly, a suitable replicative and cytotoxic potential was maintained in tumour cell lines, allowing the double regulated virus to synergize in vivo with immune checkpoint (anti-PD-1) blockade in immunocompetent mice. Thus, restricting the replicative spectrum and tropism of virulent HSV-1 genomes by combination of conditional replication and retargeting provides an improved safety, does not alter the oncolytic strength, and is exploitable for its therapeutic potential with immune checkpoint blockade in cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy. .,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy. .,Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy.
| | | | | | | | - Chiara Gentile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy
| | | | - Maria De Lucia
- Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy
| | | | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Elisa Scarselli
- Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy
| | - Alfredo Nicosia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy.,Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy
| |
Collapse
|
30
|
Chaurasiya S, Yang A, Kang S, Lu J, Kim SI, Park AK, Sivanandam V, Zhang Z, Woo Y, Warner SG, Fong Y. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology 2020; 9:1729300. [PMID: 32158622 PMCID: PMC7051185 DOI: 10.1080/2162402x.2020.1729300] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer is the most aggressive subtype of breast cancer and is difficult to treat. Breast cancer is considered to be poorly immunogenic and hence is less responsive to immunotherapies. We tested whether the oncolytic poxvirus CF33-hNIS-ΔF14.5 could modulate tumor immune microenvironment and make the tumors responsive to the immune checkpoint inhibitor anti-PD-L1. We found that virus infection causes the upregulation of PD-L1 levels on triple-negative breast cancer cells in vitro as well as in vivo in mice. In a mouse model of orthotopic triple-negative breast cancer, the virus was found to increase tumor infiltration by CD8+ T cells. Likewise, in mice treated with CF33-hNIS-ΔF14.5 high levels of proinflammatory cytokines IFNγ and IL-6 were found in the tumors but not in the serum. The levels of immune modulation were even higher in mice that were treated with a combination of the virus and anti-PD-L1 antibody. While CF33-hNIS-ΔF14.5 and anti-PD-L1 antibody failed to exert significant anti-tumor effect as a single agent, a combination of the two agents resulted in significant anti-tumor effect with 50% mice experiencing complete tumor regression when both agents were injected intra-tumorally. Furthermore, the ‘cured’ mice did not develop tumor after re-challenge with the same cancer cells suggesting that they developed immunity against those cancer cells. Taken together, our study shows that CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment in triple-negative breast cancer model making them responsive to the immune checkpoint inhibitor anti-PD-L1, and hence warrants further studies to determine the clinical applicability of this combination therapy.
Collapse
Affiliation(s)
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Seonah Kang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Anthony K Park
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanne G Warner
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|