1
|
Guo J, Huang R, Mei Y, Lu S, Gong J, Wang L, Ding L, Wu H, Pan D, Liu W. Application of stress granule core element G3BP1 in various diseases: A review. Int J Biol Macromol 2024; 282:137254. [PMID: 39515684 DOI: 10.1016/j.ijbiomac.2024.137254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Ras-GTPase-activating protein-binding protein 1 (G3BP1) is a core component and crucial regulatory switch in stress granules (SGs). When the concentration of free RNA within cells increases, it can trigger RNA-dependent liquid-liquid phase separation (LLPS) with G3BP1 as the core, thereby forming SGs that affect cell survival or death. In addition, G3BP1 interacts with various host proteins to regulate the expression of SGs. As a multifunctional binding protein, G3BP1 has diverse biological functions, influencing cell proliferation, differentiation, apoptosis, and RNA metabolism and serving as a crucial regulator in signaling pathways such as Rac1-PAK1, TSC-mTORC1, NF-κB, and STAT3. Therefore, it plays a significant role in the regulation of neurodegenerative diseases, myocardial hypertrophy, and congenital immunity, and is involved in the proliferation, invasion, and metastasis of cancer cells. G3BP1 is an important antiviral factor that interacts with viral proteins, and regulates SG assembly to exert antiviral effects. This article focuses on the recent discoveries and progress of G3BP1 in biology, including its structure and function, regulation of SG formation and dissolution, and its relationships with non-neoplastic diseases, tumors, and viruses.
Collapse
Affiliation(s)
- Jieyu Guo
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Rongyi Huang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Yan Mei
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Siao Lu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Long Wang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Liqiong Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Hongnian Wu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Dan Pan
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Wu Liu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
2
|
He SL, Wang X, Kim SI, Kong L, Liu A, Wang L, Wang Y, Shan L, He P, Jang JC. Modulation of stress granule dynamics by phosphorylation and ubiquitination in plants. iScience 2024; 27:111162. [PMID: 39569378 PMCID: PMC11576400 DOI: 10.1016/j.isci.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
The Arabidopsis tandem CCCH zinc finger 1 (TZF1) is an RNA-binding protein that plays a pivotal role in plant growth and stress response. In this report, we show that TZF1 contains two intrinsically disordered regions necessary for its localization to stress granules (SGs). TZF1 recruits mitogen-activated protein kinase (MAPK) signaling components and an E3 ubiquitin ligase KEEP-ON-GOING (KEG) to SGs. TZF1 is phosphorylated by MPKs and ubiquitinated by KEG. Using a high throughput Arabidopsis protoplasts transient expression system, mutant studies reveal that the phosphorylation of specific residues plays differential roles in enhancing or reducing TZF1 SG assembly and protein-protein interaction with mitogen-activated kinase kinase 5 in SGs. Ubiquitination appears to play a positive role in TZF1 SG assembly, because mutations cause a reduction of typical SGs, while enhancing the assembly of large SGs encompassing the nucleus. Together, our results demonstrate that plant SG assembly is distinctively regulated by phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Siou-Luan He
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ailing Liu
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Ying Wang
- Plant Pathology Department and Plant Molecular Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Qin M, Fan W, Chen F, Ruan K, Liu D. Caprin1 Bridges PRMT1 to G3BP1 and Spaces Them to Ensure Proper Stress Granule Formation. J Mol Biol 2024; 436:168727. [PMID: 39079611 DOI: 10.1016/j.jmb.2024.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
5
|
Zhou Y, Zhang T, Wang S, Jiao Z, Lu K, Liu X, Li H, Jiang W, Zhang X. Metal-polyphenol-network coated R612F nanoparticles reduce drug resistance in hepatocellular carcinoma by inhibiting stress granules. Cell Death Discov 2024; 10:384. [PMID: 39198406 PMCID: PMC11358291 DOI: 10.1038/s41420-024-02161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Stress granules (SGs) are considered to be the nonmembrane discrete assemblies present in the cytoplasm to cope with various environmental stress. SGs can promote the progression and drug resistance of hepatocellular carcinoma (HCC). Therefore, it is important to explore the mechanism of SG formation to reduce drug resistance in HCC. In this study, we demonstrate that p110α is required for SGs assembly. Mechanistically, the Arg-Gly (RG) motif of p110α is required for SG competence and regulates the recruitment of SG components. The methylation of p110α mediated by protein arginine methyltransferase 1 (PRMT1) interferes with the recruitment of p110α to SG components, thereby inhibiting the promotion of p110α to SGs. On this basis, we generated metal-polyphenol-network-coated R612F nanoparticles (MPN-R612F), which can efficiently enter HCC cells and maintain the hypermethylation state of p110α, thereby inhibiting the assembly of SGs and ultimately reducing the resistance of HCC cells to sorafenib. The combination of MPN-R612F nanoparticles and sorafenib can kill HCC cells more effectively and play a stronger anti-tumor effect. This study provides a new perspective for targeting SGs in the treatment of HCC.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Tongjia Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Shujie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Zitao Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Kejia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xinyi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China.
| |
Collapse
|
6
|
Jia Y, Jia R, Dai Z, Zhou J, Ruan J, Chng W, Cai Z, Zhang X. Stress granules in cancer: Adaptive dynamics and therapeutic implications. iScience 2024; 27:110359. [PMID: 39100690 PMCID: PMC11295550 DOI: 10.1016/j.isci.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Stress granules (SGs), membrane-less cellular organelles formed via liquid-liquid phase separation, are central to how cells adapt to various stress conditions, including endoplasmic reticulum stress, nutrient scarcity, and hypoxia. Recent studies have underscored a significant link between SGs and the process of tumorigenesis, highlighting that proteins, associated components, and signaling pathways that facilitate SG formation are often upregulated in cancer. SGs play a key role in enhancing tumor cell proliferation, invasion, and migration, while also inhibiting apoptosis, facilitating immune evasion, and driving metabolic reprogramming through multiple mechanisms. Furthermore, SGs have been identified as crucial elements in the development of resistance against chemotherapy, immunotherapy, and radiotherapy across a variety of cancer types. This review delves into the complex role of SGs in cancer development and resistance, bringing together the latest progress in the field and exploring new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengfeng Dai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - WeeJoo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
7
|
Cui Q, Liu Z, Bai G. Friend or foe: The role of stress granule in neurodegenerative disease. Neuron 2024; 112:2464-2485. [PMID: 38744273 DOI: 10.1016/j.neuron.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles that form in response to cellular stress. SGs are predominantly composed of RNA and RNA-binding proteins that assemble through liquid-liquid phase separation. Although the formation of SGs is considered a transient and protective response to cellular stress, their dysregulation or persistence may contribute to various neurodegenerative diseases. This review aims to provide a comprehensive overview of SG physiology and pathology. It covers the formation, composition, regulation, and functions of SGs, along with their crosstalk with other membrane-bound and membraneless organelles. Furthermore, this review discusses the dual roles of SGs as both friends and foes in neurodegenerative diseases and explores potential therapeutic approaches targeting SGs. The challenges and future perspectives in this field are also highlighted. A more profound comprehension of the intricate relationship between SGs and neurodegenerative diseases could inspire the development of innovative therapeutic interventions against these devastating diseases.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
| | - Zongyu Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ge Bai
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Shi W, Ding R, Chen Y, Ji F, Ji J, Ma W, Jin J. The HRD1-SEL1L ubiquitin ligase regulates stress granule homeostasis in couple with distinctive signaling branches of ER stress. iScience 2024; 27:110196. [PMID: 38979013 PMCID: PMC11228786 DOI: 10.1016/j.isci.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Stress granules (SGs) are membrane-less cellular compartments which are dynamically assembled via biomolecular condensation mechanism when eukaryotic cells encounter environmental stresses. SGs are important for gene expression and cell fate regulation. Dysregulation of SG homeostasis has been linked to human neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we report that the HRD1-SEL1L ubiquitin ligase complex specifically regulates the homeostasis of heat shock-induced SGs through the ubiquitin-proteasome system (UPS) and the UPS-associated ATPase p97. Mechanistically, the HRD1-SEL1L complex mediates SG homeostasis through the BiP-coupled PERK-eIF2α signaling axis of endoplasmic reticulum (ER) stress, thereby coordinating the unfolded protein response (UPR) with SG dynamics. Furthermore, we show that the distinctive branches of ER stress play differential roles in SG homeostasis. Our study indicates that the UPS and the UPR together via the HRD1-SEL1L ubiquitin ligase to maintain SG homeostasis in a stressor-dependent manner.
Collapse
Affiliation(s)
- Wenbo Shi
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ran Ding
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fubo Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weirui Ma
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Liao Y, Andronov L, Liu X, Lin J, Guerber L, Lu L, Agote-Arán A, Pangou E, Ran L, Kleiss C, Qu M, Schmucker S, Cirillo L, Zhang Z, Riveline D, Gotta M, Klaholz BP, Sumara I. UBAP2L ensures homeostasis of nuclear pore complexes at the intact nuclear envelope. J Cell Biol 2024; 223:e202310006. [PMID: 38652117 PMCID: PMC11040503 DOI: 10.1083/jcb.202310006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.
Collapse
Affiliation(s)
- Yongrong Liao
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Integrated Structural Biology, Centre for Integrative Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Xiaotian Liu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Junyan Lin
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Lucile Guerber
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Linjie Lu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Arantxa Agote-Arán
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Li Ran
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Charlotte Kleiss
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mengdi Qu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Stephane Schmucker
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Luca Cirillo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Zhirong Zhang
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Daniel Riveline
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Bruno P. Klaholz
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Integrated Structural Biology, Centre for Integrative Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Izabela Sumara
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
11
|
Antal CE, Oh TG, Aigner S, Luo EC, Yee BA, Campos T, Tiriac H, Rothamel KL, Cheng Z, Jiao H, Wang A, Hah N, Lenkiewicz E, Lumibao JC, Truitt ML, Estepa G, Banayo E, Bashi S, Esparza E, Munoz RM, Diedrich JK, Sodir NM, Mueller JR, Fraser CR, Borazanci E, Propper D, Von Hoff DD, Liddle C, Yu RT, Atkins AR, Han H, Lowy AM, Barrett MT, Engle DD, Evan GI, Yeo GW, Downes M, Evans RM. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer. Nat Commun 2023; 14:5195. [PMID: 37673892 PMCID: PMC10482938 DOI: 10.1038/s41467-023-40798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Corina E Antal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tania Campos
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhang Cheng
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Henry Jiao
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nasun Hah
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Jan C Lumibao
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Morgan L Truitt
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Senada Bashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ruben M Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Nicole M Sodir
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Genentech, Department of Translational Oncology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cory R Fraser
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
- Scottsdale Pathology Associates, Scottsdale, AZ, 85260, USA
| | - Erkut Borazanci
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - David Propper
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Andrew M Lowy
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael T Barrett
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Dannielle D Engle
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gerard I Evan
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Šimčíková D, Gelles-Watnick S, Neugebauer KM. Tudor-dimethylarginine interactions: the condensed version. Trends Biochem Sci 2023; 48:689-698. [PMID: 37156649 PMCID: PMC10524826 DOI: 10.1016/j.tibs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Biomolecular condensates (BMCs) can facilitate or inhibit diverse cellular functions. BMC formation is driven by noncovalent protein-protein, protein-RNA, and RNA-RNA interactions. Here, we focus on Tudor domain-containing proteins - such as survival motor neuron protein (SMN) - that contribute to BMC formation by binding to dimethylarginine (DMA) modifications on protein ligands. SMN is present in RNA-rich BMCs, and its absence causes spinal muscular atrophy (SMA). SMN's Tudor domain forms cytoplasmic and nuclear BMCs, but its DMA ligands are largely unknown, highlighting open questions about the function of SMN. Moreover, DMA modification can alter intramolecular interactions and affect protein localization. Despite these emerging functions, the lack of direct methods of DMA detection remains an obstacle to understanding Tudor-DMA interactions in cells.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sara Gelles-Watnick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Baymiller M, Moon SL. Stress Granules as Causes and Consequences of Translation Suppression. Antioxid Redox Signal 2023; 39:390-409. [PMID: 37183403 PMCID: PMC10443205 DOI: 10.1089/ars.2022.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Significance: Stress granules (SGs) are biomolecular condensates that form upon global translation suppression during stress. SGs are enriched in translation factors and messenger RNAs (mRNAs), which they may sequester away from the protein synthesis machinery. While this is hypothesized to remodel the functional transcriptome during stress, it remains unclear whether SGs are a cause, or simply a consequence, of translation repression. Understanding the function of SGs is particularly important because they are implicated in numerous diseases including viral infections, cancer, and neurodegeneration. Recent Advances: We synthesize recent SG research spanning biological scales, from observing single proteins and mRNAs within one cell to measurements of the entire transcriptome or proteome of SGs in a cell population. We use the emerging understanding from these studies to suggest that SGs likely have less impact on global translation, but instead may strongly influence the translation of individual mRNAs localized to them. Critical Issues: Development of a unified model that links stress-induced RNA-protein condensation to regulation of downstream gene expression holds promise for understanding the mechanisms of cellular resilience. Future Directions: Therefore, upcoming research should clarify what influence SGs exert on translation at all scales as well as the molecular mechanisms that enable this. The resulting knowledge will be required to drive discovery in how SGs allow organisms to adapt to challenges and support health or go awry and lead to disease. Antioxid. Redox Signal. 39, 390-409.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L. Moon
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Abstract
Biomolecular condensates are reversible compartments that form through a process called phase separation. Post-translational modifications like ADP-ribosylation can nucleate the formation of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) chains are remarkably transient modifications with turnover rates on the order of minutes, yet they can be required for the formation of granules in response to oxidative stress, DNA damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase transitions in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein-PAR interactions. We review substantial progress in recent efforts to determine the molecular mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify the exact pathway from PARylation to condensate formation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Hou XN, Tang C. The pros and cons of ubiquitination on the formation of protein condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1084-1098. [PMID: 37294105 PMCID: PMC10423694 DOI: 10.3724/abbs.2023096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chun Tang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Center for Quantitate BiologyPKU-Tsinghua Center for Life ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
16
|
Zhou H, Luo J, Mou K, Peng L, Li X, Lei Y, Wang J, Lin S, Luo Y, Xiang L. Stress granules: functions and mechanisms in cancer. Cell Biosci 2023; 13:86. [PMID: 37179344 PMCID: PMC10182661 DOI: 10.1186/s13578-023-01030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Stress granules (SGs) are non-enveloped structures formed primarily via protein and RNA aggregation under various stress conditions, including hypoxia and viral infection, as well as oxidative, osmotic, and heat-shock stress. SGs assembly is a highly conserved cellular strategy to reduce stress-related damage and promote cell survival. At present, the composition and dynamics of SGs are well understood; however, data on the functions and related mechanisms of SGs are limited. In recent years, SGs have continued to attract attention as emerging players in cancer research. Intriguingly, SGs regulate the biological behavior of tumors by participating in various tumor-associated signaling pathways, including cell proliferation, apoptosis, invasion and metastasis, chemotherapy resistance, radiotherapy resistance, and immune escape. This review discusses the roles and mechanisms of SGs in tumors and suggests novel directions for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
17
|
Asano-Inami E, Yokoi A, Sugiyama M, Hyodo T, Hamaguchi T, Kajiyama H. The association of UBAP2L and G3BP1 mediated by small nucleolar RNA is essential for stress granule formation. Commun Biol 2023; 6:415. [PMID: 37059803 PMCID: PMC10104854 DOI: 10.1038/s42003-023-04754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Stress granules (SGs) are dynamic, non-membranous structures composed of non-translating mRNAs and various proteins and play critical roles in cell survival under stressed conditions. Extensive proteomics analyses have been performed to identify proteins in SGs; however, the molecular functions of these components in SG formation remain unclear. In this report, we show that ubiquitin-associated protein 2-like (UBAP2L) is a crucial component of SGs. UBAP2L localized to SGs in response to various stresses, and its depletion significantly suppressed SG organization. Proteomics and RNA sequencing analyses found that UBAP2L formed a protein-RNA complex with Ras-GTP-activating protein SH3 domain binding protein 1 (G3BP1) and small nucleolar RNAs (snoRNAs). In vitro binding analysis demonstrated that snoRNAs were required for UBAP2L association with G3BP1. In addition, decreased expression of snoRNAs reduced the interaction between UBAP2L and G3BP1 and suppressed SG formation. Our results reveal a critical role of SG component, the UBAP2L/snoRNA/G3BP1 protein-RNA complex, and provide new insights into the regulation of SG assembly.
Collapse
Affiliation(s)
- Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Mai Sugiyama
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| |
Collapse
|
18
|
Wang F, Wang L, Gan S, Feng S, Ouyang S, Wang X, Yuan S. SERBP1 Promotes Stress Granule Clearance by Regulating 26S Proteasome Activity and G3BP1 Ubiquitination and Protects Male Germ Cells from Thermostimuli Damage. RESEARCH (WASHINGTON, D.C.) 2023; 6:0091. [PMID: 37223481 PMCID: PMC10202183 DOI: 10.34133/research.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 04/18/2024]
Abstract
Stress granules (SGs) are membraneless cytoplasmic condensates that dynamically assemble in response to various stressors and reversibly disassemble after stimulus removal; however, the mechanisms underlying SG dynamics and their physiological roles in germ cell development are elusive. Here, we show that SERBP1 (SERPINE1 mRNA binding protein 1) is a universal SG component and conserved regulator of SG clearance in somatic and male germ cells. SERBP1 interacts with the SG core component G3BP1 and 26S proteasome proteins PSMD10 and PSMA3 and recruits them to SGs. In the absence of SERBP1, reduced 20S proteasome activity, mislocalized valosin containing protein (VCP) and Fas associated factor family member 2 (FAF2), and diminished K63-linked polyubiquitination of G3BP1 during the SG recovery period were observed. Interestingly, the depletion of SERBP1 in testicular cells in vivo causes increased germ cell apoptosis upon scrotal heat stress. Accordingly, we propose that a SERBP1-mediated mechanism regulates 26S proteasome activity and G3BP1 ubiquitination to facilitate SG clearance in both somatic and germ cell lines.
Collapse
Affiliation(s)
- Fengli Wang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sijin Ouyang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
- Laboratory of Animal Center,
Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Xing F, Qin Y, Xu J, Wang W, Zhang B. Stress granules dynamics and promising functions in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188885. [PMID: 36990249 DOI: 10.1016/j.bbcan.2023.188885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Stress granules (SGs), non-membrane subcellular organelles made up of non-translational messenger ribonucleoproteins (mRNPs), assemble in response to various environmental stimuli in cancer cells, including pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC) which has a low 5-year survival rate of 10%. The pertinent research on SGs and pancreatic cancer has not, however, been compiled. In this review, we talk about the dynamics of SGs and their positive effects on pancreatic cancer such as SGs promote PDAC viability and repress apoptosis, meanwhile emphasizing the connection between SGs in pancreatic cancer and signature mutations such KRAS, P53, and SMAD4 as well as the functions of SGs in antitumor drug resistance. This novel stress management technique may open the door to better treatment options in the future.
Collapse
|
20
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
21
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
22
|
Jin G, Zhang Z, Wan J, Wu X, Liu X, Zhang W. G3BP2: Structure and Function. Pharmacol Res 2022; 186:106548. [DOI: 10.1016/j.phrs.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
23
|
Fefilova AS, Antifeeva IA, Gavrilova AA, Turoverov KK, Kuznetsova IM, Fonin AV. Reorganization of Cell Compartmentalization Induced by Stress. Biomolecules 2022; 12:1441. [PMID: 36291650 PMCID: PMC9599104 DOI: 10.3390/biom12101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of intrinsically disordered proteins (IDPs) that do not have an ordered structure and nevertheless perform essential functions has opened a new era in the understanding of cellular compartmentalization. It threw the bridge from the mostly mechanistic model of the organization of the living matter to the idea of highly dynamic and functional "soft matter". This paradigm is based on the notion of the major role of liquid-liquid phase separation (LLPS) of biopolymers in the spatial-temporal organization of intracellular space. The LLPS leads to the formation of self-assembled membrane-less organelles (MLOs). MLOs are multicomponent and multifunctional biological condensates, highly dynamic in structure and composition, that allow them to fine-tune the regulation of various intracellular processes. IDPs play a central role in the assembly and functioning of MLOs. The LLPS importance for the regulation of chemical reactions inside the cell is clearly illustrated by the reorganization of the intracellular space during stress response. As a reaction to various types of stresses, stress-induced MLOs appear in the cell, enabling the preservation of the genetic and protein material during unfavourable conditions. In addition, stress causes structural, functional, and compositional changes in the MLOs permanently present inside the cells. In this review, we describe the assembly of stress-induced MLOs and the stress-induced modification of existing MLOs in eukaryotes, yeasts, and prokaryotes in response to various stress factors.
Collapse
Affiliation(s)
| | | | | | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of RAS, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
24
|
Jia X, Zhang S, Tan S, Du B, He M, Qin H, Chen J, Duan X, Luo J, Chen F, Ouyang L, Wang J, Chen G, Yu B, Zhang G, Zhang Z, Lyu Y, Huang Y, Jiao J, Chen JY(H, Swoboda KJ, Agolini E, Novelli A, Leoni C, Zampino G, Cappuccio G, Brunetti-Pierri N, Gerard B, Ginglinger E, Richer J, McMillan H, White-Brown A, Hoekzema K, Bernier RA, Kurtz-Nelson EC, Earl RK, Meddens C, Alders M, Fuchs M, Caumes R, Brunelle P, Smol T, Kuehl R, Day-Salvatore DL, Monaghan KG, Morrow MM, Eichler EE, Hu Z, Yuan L, Tan J, Xia K, Shen Y, Guo H. De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders. SCIENCE ADVANCES 2022; 8:eabo7112. [PMID: 35977029 PMCID: PMC9385150 DOI: 10.1126/sciadv.abo7112] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 05/25/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.
Collapse
Affiliation(s)
- Xiangbin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Senwei Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bing Du
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Mei He
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China
| | - Haisong Qin
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jia Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Xinyu Duan
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Luping Ouyang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bin Yu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ge Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Zimin Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jian Jiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jin Yun (Helen) Chen
- Massachusetts General Hospital Neurogenetics Unit, Department of Neurology, Massachusetts General Brigham, Boston, MA 02114, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy
- Fondazione Policlinico Universitario Agostino Gemelli Dipartimento Scienze della Salute della Donna e del Bambino, Rome, Italy
- Università Cattolica S. Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Rome, Italy
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Benedicte Gerard
- Institut de Génétique Médicale d’Alsace (IGMA), Laboratoire de Diagnostic Génétique, Hôpitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | | | - Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Hugh McMillan
- Department of Pediatrics, Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Canada
| | - Alexandre White-Brown
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Rachel K. Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claartje Meddens
- Amsterdam University Medical Center, Department of Clinical Genetics, Amsterdam, Netherlands
- University Medical Center Utrecht, Department of Paediatrics, Utrecht, Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Roseline Caumes
- CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000 Lille, France
| | - Perrine Brunelle
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Thomas Smol
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Ryan Kuehl
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | - Debra-Lynn Day-Salvatore
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | | | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ling Yuan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200000, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan 410078, China
| |
Collapse
|
25
|
Li Z, Liu X, Liu M. Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:2356-2370. [PMID: 35905138 DOI: 10.1021/acschemneuro.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.
Collapse
Affiliation(s)
- Zhanxu Li
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
26
|
Jeon P, Ham HJ, Park S, Lee JA. Regulation of Cellular Ribonucleoprotein Granules: From Assembly to Degradation via Post-translational Modification. Cells 2022; 11:cells11132063. [PMID: 35805146 PMCID: PMC9265587 DOI: 10.3390/cells11132063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cells possess membraneless ribonucleoprotein (RNP) granules, including stress granules, processing bodies, Cajal bodies, or paraspeckles, that play physiological or pathological roles. RNP granules contain RNA and numerous RNA-binding proteins, transiently formed through the liquid–liquid phase separation. The assembly or disassembly of numerous RNP granules is strongly controlled to maintain their homeostasis and perform their cellular functions properly. Normal RNA granules are reversibly assembled, whereas abnormal RNP granules accumulate and associate with various neurodegenerative diseases. This review summarizes current studies on the physiological or pathological roles of post-translational modifications of various cellular RNP granules and discusses the therapeutic methods in curing diseases related to abnormal RNP granules by autophagy.
Collapse
|
27
|
MicroRNA-1224-5p Aggravates Sepsis-Related Acute Lung Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9493710. [PMID: 35799888 PMCID: PMC9256451 DOI: 10.1155/2022/9493710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
Oxidative stress and inflammation are implicated in the development of sepsis-related acute lung injury (ALI). MicroRNA-1224-5p (miR-1224-5p) plays critical roles in regulating inflammatory response and reactive oxygen species (ROS) production. The present study is aimed at investigating the role and underlying mechanisms of miR-1224-5p in sepsis-related ALI. Mice were intratracheally injected with lipopolysaccharide (LPS, 5 mg/kg) for 12 h to induce sepsis-related ALI. To manipulate miR-1224-5p level, mice were intravenously injected with the agomir, antagomir, or matched controls for 3 consecutive days. Murine peritoneal macrophages were stimulated with LPS (100 ng/mL) for 6 h to further validate the role of miR-1224-5p in vitro. To inhibit adenosine 5′-monophosphate-activated protein kinase alpha (AMPKα) or peroxisome proliferator activated receptor-gamma (PPAR-γ), compound C or GW9662 was used in vivo and in vitro. We found that miR-1224-5p levels in lungs were elevated by LPS injection, and that the miR-1224-5p antagomir significantly alleviated LPS-induced inflammation, oxidative stress, and ALI in mice. Conversely, the miR-1224-5p agomir aggravated inflammatory response, ROS generation, and pulmonary dysfunction in LPS-treated mice. In addition, the miR-1224-5p antagomir reduced, while the miR-1224-5p agomir aggravated LPS-induced inflammation and oxidative stress in murine peritoneal macrophages. Further findings revealed that miR-1224-5p is directly bound to the 3′-untranslated regions of PPAR-γ and subsequently suppressed PPAR-γ/AMPKα axis, thereby aggravating LPS-induced ALI in vivo and in vitro. We demonstrate for the first time that endogenous miR-1224-5p is a critical pathogenic factor for inflammation and oxidative damage during LPS-induced ALI through inactivating PPAR-γ/AMPKα axis. Targeting miR-1224-5p may help to develop novel approaches to treat sepsis-related ALI.
Collapse
|
28
|
Guerber L, Pangou E, Sumara I. Ubiquitin Binding Protein 2-Like (UBAP2L): is it so NICE After All? Front Cell Dev Biol 2022; 10:931115. [PMID: 35794863 PMCID: PMC9250975 DOI: 10.3389/fcell.2022.931115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin Binding Protein 2-like (UBAP2L, also known as NICE-4) is a ubiquitin- and RNA-binding protein, highly conserved in metazoans. Despite its abundance, its functions have only recently started to be characterized. Several studies have demonstrated the crucial involvement of UBAP2L in various cellular processes such as cell cycle regulation, stem cell activity and stress-response signaling. In addition, UBAP2L has recently emerged as a master regulator of growth and proliferation in several human cancers, where it is suggested to display oncogenic properties. Given that this versatile protein is involved in the regulation of multiple and distinct cellular pathways, actively contributing to the maintenance of cell homeostasis and survival, UBAP2L might represent a good candidate for future therapeutic studies. In this review, we discuss the current knowledge and latest advances on elucidating UBAP2L cellular functions, with an aim to highlight the importance of targeting UBAP2L for future therapies.
Collapse
Affiliation(s)
- Lucile Guerber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- *Correspondence: Izabela Sumara,
| |
Collapse
|
29
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
30
|
Tang S, Cao Y, Cai Z, Nie X, Ruan J, Zhou Z, Ruan G, Zhu Z, Han W, Ding C. The lncRNA PILA promotes NF-κB signaling in osteoarthritis by stimulating the activity of the protein arginine methyltransferase PRMT1. Sci Signal 2022; 15:eabm6265. [PMID: 35609127 DOI: 10.1126/scisignal.abm6265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory cytokine-induced activation of nuclear factor κB (NF-κB) signaling plays a critical role in the pathogenesis of osteoarthritis (OA). We identified PILA as a long noncoding RNA (lncRNA) that enhances NF-κB signaling and OA. The abundance of PILA was increased in damaged cartilage from patients with OA and in human articular chondrocytes stimulated with the proinflammatory cytokine tumor necrosis factor (TNF). Knockdown of PILA inhibited TNF-induced NF-κB signaling, extracellular matrix catabolism, and apoptosis in chondrocytes, whereas ectopic expression of PILA promoted NF-κB signaling and matrix degradation. PILA promoted PRMT1-mediated arginine methylation of DExH-box helicase 9 (DHX9), leading to an increase in the transcription of the gene encoding transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of NF-κB signaling. Furthermore, intra-articular injection of an adenovirus vector encoding PILA triggered spontaneous cartilage loss and exacerbated posttraumatic OA in mice. This study provides insight into the regulation of NF-κB signaling in OA and identifies a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Yumei Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Zhaopeng Cai
- Department of Orthopedics, Eighth Affiliated Hospital, Sun Yat-sen University, 518033 Shenzhen, Guangdong, China
| | - Xiaoyu Nie
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Zuoqing Zhou
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Department of Orthopedics, First Affiliated Hospital, Shaoyang University, 422099 Shaoyang, Hunan, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, 7000 Hobart, Tasmania, Australia
| |
Collapse
|
31
|
Role of the Ubiquitin System in Stress Granule Metabolism. Int J Mol Sci 2022; 23:ijms23073624. [PMID: 35408984 PMCID: PMC8999021 DOI: 10.3390/ijms23073624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells react to various stress conditions with the rapid formation of membrane-less organelles called stress granules (SGs). SGs form by multivalent interactions between RNAs and RNA-binding proteins and are believed to protect stalled translation initiation complexes from stress-induced degradation. SGs contain hundreds of different mRNAs and proteins, and their assembly and disassembly are tightly controlled by post-translational modifications. The ubiquitin system, which mediates the covalent modification of target proteins with the small protein ubiquitin (‘ubiquitylation’), has been implicated in different aspects of SG metabolism, but specific functions in SG turnover have only recently emerged. Here, we summarize the evidence for the presence of ubiquitylated proteins at SGs, review the functions of different components of the ubiquitin system in SG formation and clearance, and discuss the link between perturbed SG clearance and the pathogenesis of neurodegenerative disorders. We conclude that the ubiquitin system plays an important, medically relevant role in SG biology.
Collapse
|
32
|
Li O, Zhao C, Zhang J, Li FN, Yang ZY, Liu SL, Cai C, Jia ZY, Gong W, Shu YJ, Dong P. UBAP2L promotes gastric cancer metastasis by activating NF-κB through PI3K/AKT pathway. Cell Death Discov 2022; 8:123. [PMID: 35304439 PMCID: PMC8933503 DOI: 10.1038/s41420-022-00916-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-associated protein 2-like (UBAP2L) is highly expressed in various types of tumors and has been shown to participate in tumor growth and metastasis; however, its role in gastric cancer (GC) remains unknown. In this study, we observed that UBAP2L expression was markedly elevated in GC tissues and five GC cell lines. Higher expression of UBAP2L was associated with poor prognosis as revealed by bioinformatics analysis on online websites and laboratory experiments. Knockdown of UBAP2L impeded the migration and invasion abilities of GC cell lines. In contrast, its overexpression enhanced the migration and invasion abilities of GC cell lines. Overexpression of UBAP2L also increased the number and size of lung metastatic nodules in vivo. According to the results of mass spectrometry and pathway annotation of the identified proteins, the PI3K/AKT pathway was found to be related to UBAP2L regulation. Further exploration and rescue experiments revealed that UBAP2L stimulates the expression and nuclear aggregation of p65 and promotes the expression of SP1 by activating the PI3K/AKT pathway. In summary, our findings indicate that UBAP2L regulates GC metastasis through the PI3K/AKT/SP1/NF-κB axis. Thus, targeting UBAP2L may be a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Ou Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Jian Zhang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Feng-Nan Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Zi-Yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Shi-Lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Chen Cai
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Zi-Yao Jia
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Yi-Jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| |
Collapse
|
33
|
Wang J, Gan Y, Cao J, Dong X, Ouyang W. Pathophysiology of stress granules: An emerging link to diseases (Review). Int J Mol Med 2022; 49:44. [PMID: 35137915 PMCID: PMC8846937 DOI: 10.3892/ijmm.2022.5099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Under unfavorable environmental conditions, eukaryotic cells may form stress granules (SGs) in the cytosol to protect against injury and promote cell survival. The initiation, mRNA and protein composition, distribution and degradation of SGs are subject to multiple intracellular post-translational modifications and signaling pathways to cope with stress damage. Despite accumulated comprehensive knowledge of their composition and dynamics, the function of SGs remains poorly understood. When the stress persists, aberrant and/or persistent intracellular SGs and aggregation of SGs-related proteins may lead to various diseases. In the present article, the research progress regarding the generation, modification and function of SGs was reviewed. The regulatory effects and influencing factors of SGs in the development of tumors, cardiovascular diseases, viral infections and neurodegenerative diseases were also summarized, which may provide novel insight for preventing and treating SG-related diseases.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yixia Gan
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jian Cao
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xuefen Dong
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Wei Ouyang
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| |
Collapse
|
34
|
Abbatemarco S, Bondaz A, Schwager F, Wang J, Hammell CM, Gotta M. PQN-59 and GTBP-1 contribute to stress granule formation but are not essential for their assembly in C. elegans embryos. J Cell Sci 2021; 134:273437. [PMID: 34661238 PMCID: PMC8645233 DOI: 10.1242/jcs.258834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/09/2021] [Indexed: 11/04/2022] Open
Abstract
When exposed to stressful conditions, eukaryotic cells respond by inducing the formation of cytoplasmic ribonucleoprotein complexes called stress granules. Here, we use C. elegans to study two proteins that are important for stress granule assembly in human cells – PQN-59, the human UBAP2L ortholog, and GTBP-1, the human G3BP1 and G3BP2 ortholog. Both proteins assemble into stress granules in the embryo and in the germline when C. elegans is exposed to stressful conditions. Neither of the two proteins is essential for the assembly of stress-induced granules, as shown by the single and combined depletions by RNAi, and neither pqn-59 nor gtbp-1 mutant embryos show higher sensitivity to stress than control embryos. We find that pqn-59 mutants display reduced progeny and a high percentage of embryonic lethality, phenotypes that are not dependent on stress exposure and that are not shared with gtbp-1 mutants. Our data indicate that, in contrast to human cells, PQN-59 and GTBP-1 are not required for stress granule formation but that PQN-59 is important for C. elegans development. Summary: In contrast to human cells, where the UBAP2L and G3BP1 and G3BP2 proteins are crucial nucleators of stress granules, the C. elegans orthologs are not essential for this process in worms.
Collapse
Affiliation(s)
- Simona Abbatemarco
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Alexandra Bondaz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Jing Wang
- Cold Spring Harbor Laboratory, New York, NY 11724, USA
| | | | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Maniaci M, Boffo FL, Massignani E, Bonaldi T. Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach. Front Mol Biosci 2021; 8:688973. [PMID: 34557518 PMCID: PMC8454774 DOI: 10.3389/fmolb.2021.688973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/03/2022] Open
Abstract
RNA binding proteins (RBPs) bind RNAs through specific RNA-binding domains, generating multi-molecular complexes known as ribonucleoproteins (RNPs). Various post-translational modifications (PTMs) have been described to regulate RBP structure, subcellular localization, and interactions with other proteins or RNAs. Recent proteome-wide experiments showed that RBPs are the most representative group within the class of arginine (R)-methylated proteins. Moreover, emerging evidence suggests that this modification plays a role in the regulation of RBP-RNA interactions. Nevertheless, a systematic analysis of how changes in protein-R-methylation can affect globally RBPs-RNA interactions is still missing. We describe here a quantitative proteomics approach to profile global changes of RBP-RNA interactions upon the modulation of type I and II protein arginine methyltransferases (PRMTs). By coupling the recently described Orthogonal Organic Phase Separation (OOPS) strategy with the Stable Isotope Labelling with Amino acids in Cell culture (SILAC) and pharmacological modulation of PRMTs, we profiled RNA-protein interaction dynamics in dependence of protein-R-methylation. Data are available via ProteomeXchange with identifier PXD024601.
Collapse
Affiliation(s)
- Marianna Maniaci
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy
| | - Francesca Ludovica Boffo
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy
| | - Enrico Massignani
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy
| | - Tiziana Bonaldi
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy
| |
Collapse
|
36
|
Guan W, Yang N, Zuo X, Wang X, Cao P, Chu Y, Qin Z, Cheng H, Shi X, Ma T, Xu Z, Sun Y. Heritable Variants in the Chromosome 1q22 Locus Increase Gastric Cancer Risk via Altered Chromatin Looping and Increased UBAP2L Expression. Mol Cancer Res 2021; 19:1992-2002. [PMID: 34535561 DOI: 10.1158/1541-7786.mcr-21-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022]
Abstract
Genome-wide association studies (GWAS) have implicated the 1q22 gastric cancer risk locus in disease, but little is known about its underlying oncogenic functions. This study represents a systematic investigation of the biological significance and potential mechanism associated with the gastric cancer risk of SNP rs2075570(C>T) in 1q22. We identified two functional germline variations (rs2049805-C and rs2974931-G) in an active enhancer in a 64.8 kb high-linkage disequilibrium block of rs2075570. The enhancer upregulated ubiquitin associated protein 2 like (UBAP2L) gene expression over a 960 kb distance by chromatin looping. Gastric cancer tissues expressed significantly higher levels of UBAP2L than was observed in the matched noncancerous tissues, and the UBAP2L expression was negatively correlated with patient survival. Downregulation of UBAP2L inhibited the proliferation and invasion of human gastric cancer cells in vitro and in a xenograft mouse model. Notably, the two mutant variations significantly enforced the enhancer activity and UBAP2L expression. In conclusion, this study revealed two causal variations in the 1q22 region using tag-SNP rs2075570 as a genetic marker. These variations may affect the occurrence and progression of gastric cancer by reinforcing the expression of the 1q22-Enh enhancer-regulated UBAP2L target gene. IMPLICATIONS: Our study provides an important clue of how noncoding germline variations contribute to gastric cancer, which gives a novel insight into understanding the genetic mechanism of gastric cancer.
Collapse
Affiliation(s)
- Wei Guan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xianglin Zuo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuchun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Pingping Cao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Chu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhongyong Qin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - He Cheng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tingzheng Ma
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China. .,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
38
|
Maruri-López I, Figueroa NE, Hernández-Sánchez IE, Chodasiewicz M. Plant Stress Granules: Trends and Beyond. FRONTIERS IN PLANT SCIENCE 2021; 12:722643. [PMID: 34434210 PMCID: PMC8381727 DOI: 10.3389/fpls.2021.722643] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 05/20/2023]
Abstract
Stress granules (SGs) are dynamic membrane-less condensates transiently assembled through liquid-liquid phase separation (LLPS) in response to stress. SGs display a biphasic architecture constituted of core and shell phases. The core is a conserved SG fraction fundamental for its assembly and consists primarily of proteins with intrinsically disordered regions and RNA-binding domains, along with translational-related proteins. The shell fraction contains specific SG components that differ among species, cell type, and developmental stage and might include metabolic enzymes, receptors, transcription factors, untranslated mRNAs, and small molecules. SGs assembly positively correlates with stalled translation associated with stress responses playing a pivotal role during the adaptive cellular response, post-stress recovery, signaling, and metabolic rewire. After stress, SG disassembly releases mRNA and proteins to the cytoplasm to reactivate translation and reassume cell growth and development. However, under severe stress conditions or aberrant cellular behavior, SG dynamics are severely disturbed, affecting cellular homeostasis and leading to cell death in the most critical cases. The majority of research on SGs has focused on yeast and mammals as model organism. Nevertheless, the study of plant SGs has attracted attention in the last few years. Genetics studies and adapted techniques from other non-plant models, such as affinity capture coupled with multi-omics analyses, have enriched our understanding of SG composition in plants. Despite these efforts, the investigation of plant SGs is still an emerging field in plant biology research. In this review, we compile and discuss the accumulated progress of plant SGs regarding their composition, organization, dynamics, regulation, and their relation to other cytoplasmic foci. Lastly, we will explore the possible connections among the most exciting findings of SGs from mammalian, yeast, and plants, which might help provide a complete view of the biology of plant SGs in the future.
Collapse
Affiliation(s)
| | | | | | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
39
|
Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021; 297:100959. [PMID: 34265304 PMCID: PMC8350409 DOI: 10.1016/j.jbc.2021.100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.
Collapse
Affiliation(s)
- Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
40
|
Cai T, Yu Z, Wang Z, Liang C, Richard S. Arginine methylation of SARS-Cov-2 nucleocapsid protein regulates RNA binding, its ability to suppress stress granule formation, and viral replication. J Biol Chem 2021; 297:100821. [PMID: 34029587 PMCID: PMC8141346 DOI: 10.1016/j.jbc.2021.100821] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Viral proteins are known to be methylated by host protein arginine methyltransferases (PRMTs) necessary for the viral life cycle, but it remains unknown whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins are methylated. Herein, we show that PRMT1 methylates SARS-CoV-2 nucleocapsid (N) protein at residues R95 and R177 within RGG/RG motifs, preferred PRMT target sequences. We confirmed arginine methylation of N protein by immunoblotting viral proteins extracted from SARS-CoV-2 virions isolated from cell culture. Type I PRMT inhibitor (MS023) or substitution of R95 or R177 with lysine inhibited interaction of N protein with the 5'-UTR of SARS-CoV-2 genomic RNA, a property required for viral packaging. We also defined the N protein interactome in HEK293 cells, which identified PRMT1 and many of its RGG/RG substrates, including the known interacting protein G3BP1 as well as other components of stress granules (SGs), which are part of the host antiviral response. Methylation of R95 regulated the ability of N protein to suppress the formation of SGs, as R95K substitution or MS023 treatment blocked N-mediated suppression of SGs. Also, the coexpression of methylarginine reader Tudor domain-containing protein 3 quenched N protein-mediated suppression of SGs in a dose-dependent manner. Finally, pretreatment of VeroE6 cells with MS023 significantly reduced SARS-CoV-2 replication. Because type I PRMT inhibitors are already undergoing clinical trials for cancer treatment, inhibiting arginine methylation to target the later stages of the viral life cycle such as viral genome packaging and assembly of virions may represent an additional therapeutic application of these drugs.
Collapse
Affiliation(s)
- Ting Cai
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec, Canada
| | - Zhenbao Yu
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec, Canada
| | - Zhen Wang
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research and Department of Medicine, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Chen Liang
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research and Department of Medicine, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
41
|
Wang L, Yang W, Li B, Yuan S, Wang F. Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Prolif 2021; 54:e13086. [PMID: 34170048 PMCID: PMC8349659 DOI: 10.1111/cpr.13086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is indispensable for cells to adapt and respond to environmental stresses, in order for organisms to survive. Stress granules (SGs) are condensed membrane‐less organelles dynamically formed in the cytoplasm of eukaryotes cells to cope with diverse intracellular or extracellular stress factors, with features of liquid‐liquid phase separation. They are composed of multiple constituents, including translationally stalled mRNAs, translation initiation factors, RNA‐binding proteins and also non‐RNA‐binding proteins. SG formation is triggered by stress stimuli, viral infection and signal transduction, while aberrant assembly of SGs may contribute to tissue degenerative diseases. Recently, a growing body of evidence has emerged on SG response mechanisms for cells facing high temperatures, oxidative stress and osmotic stress. In this review, we aim to summarize factors affecting SGs assembly, present the impact of SGs on germ cell development and other biological processes. We particularly emphasize the significance of recently reported RNA modifications in SG stress responses. In parallel, we also review all current perspectives on the roles of SGs in male germ cells, with a particular focus on the dynamics of SG assembly.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weina Yang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuiqiao Yuan
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Fengli Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
42
|
Lavalée M, Curdy N, Laurent C, Fournié JJ, Franchini DM. Cancer cell adaptability: turning ribonucleoprotein granules into targets. Trends Cancer 2021; 7:902-915. [PMID: 34144941 DOI: 10.1016/j.trecan.2021.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Stress granules (SGs) and processing bodies (P-bodies) are membraneless cytoplasmic condensates of ribonucleoproteins (RNPs). They both regulate RNA fate under physiological and pathological conditions, and are thereby involved in the regulation and maintenance of cellular integrity. During tumorigenesis, cancer cells use these granules to thrive, to adapt to the harsh conditions of the tumor microenvironment (TME), and to protect themselves from anticancer treatments. This ability to provide multiple outcomes not only makes RNP granules promising targets for cancer therapy but also emphasizes the need for more knowledge about the biology of these granules to achieve clinical use. In this review we focus on the role of RNP granules in cancer, and on how their composition and regulation might be used to elaborate therapeutic strategies.
Collapse
Affiliation(s)
- Margot Lavalée
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Nicolas Curdy
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Camille Laurent
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Département de Pathologie, Centre Hospitalier Universitaire (CHU) de Toulouse, 31059 Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France.
| |
Collapse
|
43
|
Ruff KM, Dar F, Pappu RV. Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates. BIOPHYSICS REVIEWS 2021; 2:021302. [PMID: 34179888 PMCID: PMC8211317 DOI: 10.1063/5.0050059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
Cellular matter can be spatially and temporally organized into membraneless biomolecular condensates. The current thinking is that these condensates form and dissolve via phase transitions driven by one or more condensate-specific multivalent macromolecules known as scaffolds. Cells likely regulate condensate formation and dissolution by exerting control over the concentrations of regulatory molecules, which we refer to as ligands. Wyman and Gill introduced the framework of polyphasic linkage to explain how ligands can exert thermodynamic control over phase transitions. This review focuses on describing the concepts of polyphasic linkage and the relevance of such a mechanism for controlling condensate formation and dissolution. We describe how ligand-mediated control over scaffold phase behavior can be quantified experimentally. Further, we build on recent studies to highlight features of ligands that make them suppressors vs drivers of phase separation. Finally, we highlight areas where advances are needed to further understand ligand-mediated control of condensates in complex cellular environments. These advances include understanding the effects of networks of ligands on condensate behavior and how ligands modulate phase transitions controlled by different combinations of homotypic and heterotypic interactions among scaffold macromolecules. Insights gained from the application of polyphasic linkage concepts should be useful for designing novel pharmaceutical ligands to regulate condensates.
Collapse
Affiliation(s)
- Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
44
|
Hamey JJ, Nguyen A, Wilkins MR. Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in Saccharomyces cerevisiae. J Proteome Res 2021; 20:2420-2434. [PMID: 33856219 DOI: 10.1021/acs.jproteome.0c00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of condensates in membraneless organelles is thought to be driven by protein phase separation. Arginine methylation and serine/threonine phosphorylation are important in the phase separation process; however, these post-translational modifications are often present in intrinsically disordered regions that are difficult to analyze with standard proteomic techniques. To understand their presence and co-occurrence in condensate-associated proteins, here, we use a multiprotease and multi-tandem mass spectrometry (MS/MS) fragmentation approach, coupled with heavy methyl stable isotope labeling of amino acids in cell culture (SILAC) and phospho- or methyl-peptide enrichment. For Saccharomyces cerevisiae, we report a 50% increase in the known arginine methylproteome, involving 15 proteins that are all condensate-associated. Importantly, some of these proteins have arginine methylation on all predicted sites-providing evidence that this modification can be pervasive. We explored whether arginine-methylated, condensate-associated proteins are also phosphorylated and found 12 such proteins to carry phosphorylated serine or threonine. In Npl3, Ded1, and Sbp1, single peptides were found to carry both modifications, indicating a co-occurrence in close proximity and on the same protein molecule. These co-modifications occur in regions of disorder, whereas arginine methylation is typically on regions of disorder that are also basic. For phosphorylation, its association with charged regions of condensate-associated proteins was less consistent, although some regions with multisite phosphorylation sites were strongly acidic. We conclude that arginine-methylated proteins associated with condensates are typically also modified with protein phosphorylation.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Amy Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
45
|
Gill AL, Premasiri AS, Vieira FG. Hypothesis and Theory: Roles of Arginine Methylation in C9orf72-Mediated ALS and FTD. Front Cell Neurosci 2021; 15:633668. [PMID: 33833668 PMCID: PMC8021787 DOI: 10.3389/fncel.2021.633668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hexanucleotide repeat expansion (G4C2n) mutations in the gene C9ORF72 account for approximately 30% of familial cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as well as approximately 7% of sporadic cases of ALS. G4C2n mutations are known to result in the production of five species of dipeptide repeat proteins (DRPs) through non-canonical translation processes. Arginine-enriched dipeptide repeat proteins, glycine-arginine (polyGR), and proline-arginine (polyPR) have been demonstrated to be cytotoxic and deleterious in multiple experimental systems. Recently, we and others have implicated methylation of polyGR/polyPR arginine residues in disease processes related to G4C2n mutation-mediated neurodegeneration. We previously reported that inhibition of asymmetric dimethylation (ADMe) of arginine residues is protective in cell-based models of polyGR/polyPR cytotoxicity. These results are consistent with the idea that PRMT-mediated arginine methylation in the context of polyGR/polyPR exposure is harmful. However, it remains unclear why. Here we discuss the influence of arginine methylation on diverse cellular processes including liquid-liquid phase separation, chromatin remodeling, transcription, RNA processing, and RNA-binding protein localization, and we consider how methylation of polyGR/polyPR may disrupt processes essential for normal cellular function and survival.
Collapse
Affiliation(s)
- Anna L Gill
- ALS Therapy Development Institute, Cambridge, MA, United States
| | | | | |
Collapse
|
46
|
Dao TP, Castañeda CA. Ubiquitin-Modulated Phase Separation of Shuttle Proteins: Does Condensate Formation Promote Protein Degradation? Bioessays 2020; 42:e2000036. [PMID: 32881044 PMCID: PMC7737676 DOI: 10.1002/bies.202000036] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) has recently emerged as a possible mechanism that enables ubiquitin-binding shuttle proteins to facilitate the degradation of ubiquitinated substrates via distinct protein quality control (PQC) pathways. Shuttle protein LLPS is modulated by multivalent interactions among their various domains as well as heterotypic interactions with polyubiquitin chains. Here, the properties of three different shuttle proteins (hHR23B, p62, and UBQLN2) are closely examined, unifying principles for the molecular determinants of their LLPS are identified, and how LLPS is connected to their functions is discussed. Evidence supporting LLPS of other shuttle proteins is also found. In this review, it is proposed that shuttle protein LLPS leads to spatiotemporal regulation of PQC activities by mediating the recruitment of PQC machinery (including proteasomes or autophagic components) to biomolecular condensates, assembly/disassembly of condensates, selective enrichment of client proteins, and extraction of ubiquitinated proteins from condensates in cells.
Collapse
Affiliation(s)
- Thuy P Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
- Bioinspired Institute, Syracuse University, Syracuse, NY, 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
47
|
Hofmann S, Kedersha N, Anderson P, Ivanov P. Molecular mechanisms of stress granule assembly and disassembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118876. [PMID: 33007331 DOI: 10.1016/j.bbamcr.2020.118876] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
Stress granules (SGs) are membrane-less ribonucleoprotein (RNP)-based cellular compartments that form in the cytoplasm of a cell upon exposure to various environmental stressors. SGs contain a large set of proteins, as well as mRNAs that have been stalled in translation as a result of stress-induced polysome disassembly. Despite the fact that SGs have been extensively studied for many years, their function is still not clear. They presumably help the cell to cope with the encountered stress, and facilitate the recovery process after stress removal upon which SGs disassemble. Aberrant formation of SGs and impaired SG disassembly majorly contribute to various pathological phenomena in cancer, viral infections, and neurodegeneration. The assembly of SGs is largely driven by liquid-liquid phase separation (LLPS), however, the molecular mechanisms behind that are not fully understood. Recent studies have proposed a novel mechanism for SG formation that involves the interplay of a large interaction network of mRNAs and proteins. Here, we review this novel concept of SG assembly, and discuss the current insights into SG disassembly.
Collapse
Affiliation(s)
- Sarah Hofmann
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Kedersha
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Anderson
- Brigham and Women's Hospital, Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Pavel Ivanov
- Brigham and Women's Hospital, Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26:5223-5247. [PMID: 32994684 PMCID: PMC7504244 DOI: 10.3748/wjg.v26.i35.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Lawrence, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
49
|
Somasekharan SP, Zhang F, Saxena N, Huang JN, Kuo IC, Low C, Bell R, Adomat H, Stoynov N, Foster L, Gleave M, Sorensen PH. G3BP1-linked mRNA partitioning supports selective protein synthesis in response to oxidative stress. Nucleic Acids Res 2020; 48:6855-6873. [PMID: 32406909 PMCID: PMC7337521 DOI: 10.1093/nar/gkaa376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Cells limit energy-consuming mRNA translation during stress to maintain metabolic homeostasis. Sequestration of mRNAs by RNA binding proteins (RBPs) into RNA granules reduces their translation, but it remains unclear whether RBPs also function in partitioning of specific transcripts to polysomes (PSs) to guide selective translation and stress adaptation in cancer. To study transcript partitioning under cell stress, we catalogued mRNAs enriched in prostate carcinoma PC-3 cell PSs, as defined by polysome fractionation and RNA sequencing (RNAseq), and compared them to mRNAs complexed with the known SG-nucleator protein, G3BP1, as defined by spatially-restricted enzymatic tagging and RNAseq. By comparing these compartments before and after short-term arsenite-induced oxidative stress, we identified three major categories of transcripts, namely those that were G3BP1-associated and PS-depleted, G3BP1-dissociated and PS-enriched, and G3BP1-associated but also PS-enriched. Oxidative stress profoundly altered the partitioning of transcripts between these compartments. Under arsenite stress, G3BP1-associated and PS-depleted transcripts correlated with reduced expression of encoded mitochondrial proteins, PS-enriched transcripts that disassociated from G3BP1 encoded cell cycle and cytoprotective proteins whose expression increased, while transcripts that were both G3BP1-associated and PS-enriched encoded proteins involved in diverse stress response pathways. Therefore, G3BP1 guides transcript partitioning to reprogram mRNA translation and support stress adaptation.
Collapse
Affiliation(s)
| | - Fan Zhang
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Neetu Saxena
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Jia Ni Huang
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - I-Chih Kuo
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Caitlin Low
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Robert Bell
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Nikolay Stoynov
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Poul H Sorensen
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
50
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|