1
|
Zhou S, Hu Y, Liu L, Li L, Deng F, Mo L, Huang H, Liang Q. Extract of Nanhaia speciosa J. Compton & Schrire alleviates LPS-induced acute lung injury via the NF-κB/Nrf2/AQPs pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118831. [PMID: 39278292 DOI: 10.1016/j.jep.2024.118831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nanhaia speciosas J. Compton & Schrire (the name Nanhaia speciosas J. Compton & Schrire has been accepted by the World Checklist of Vascular Plants https://www.worldfloraonline.org/taxon/wfo-0001444004) is a traditional Zhuang medicine that have been widely used for centuries. It has been used in the treatment of lung inflammation, tuberculosis, rheumatic pain, lumbar muscle strain, and various other ailments, such as chronic hepatitis, menoxenia, leukorrhea, and injuries. In addition, N. speciosa has also been used to treat acute lung injury (ALI). AIM OF THE STUDY The objective of this study was to conduct a comparative analysis of the effects of various constituents present in N. speciosas extract (NSE) on ALI and the related mechanisms while also elucidating the potential active monomeric components. MATERIALS AND METHODS NSE was extracted using an AB-8 macroporous resin column, and five fractions (Fr. 0%, 25%, 50%, 75% and 95%) were obtained. The anti-inflammatory and antioxidant capacities of the five fractions were evaluated in an A549 cell-based in vitro model, with the aim of evaluating their potential therapeutic effects. The anti-inflammatory and antioxidant capacities of NSE were assessed in a murine model of ALI induced by intratracheal injection of LPS. We utilized an in vitro model to analyse the critical molecular mechanisms through which NSE ameliorates ALI. The chemical composition of the optimal fraction was analysed and confirmed using UHPLC/MS. RESULTS Different fractions (especially Fr. 75%) significantly reduced inflammation and oxidative stress in A549 cells. Fr.75% abrogated LPS-induced pathological alterations and decreased the lung W/D ratio, total protein concentration in BALF, and the levels of the proinflammatory factors TNF-α, IL-6, and IL-1β. Moreover, Fr.75% reduced MPO and MDA concentrations and elevated SOD and GSH concentrations in pulmonary tissues. Additionally, it decreased the pulmonary tissue inflammation caused by LPS by downregulating the expression of p-NF-κB p65 and upregulating the expression of Nrf2, AQP1 and AQP5. Fr. 75% decreased p-NF-κB p65 protein levels; increased Keap1, Nrf2, HO-1, NQO1, AQP1 and AQP5 protein levels; and promoted the entry of Nrf2 into the nucleus. After UHPLC/MS analysis was conducted, the flavonoid Maackiain was determined to potentially play a pivotal role in this process. CONCLUSION Fr.75% alleviates ALI by regulating the NF-κB/Nrf2/AQPs signalling pathway. The flavonoid Maackiain may also play an important role in this process. Overall, N. speciosas may be a potential therapeutic agent for the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Shiyao Zhou
- Guilin Medical University, Guilin, 541199, China
| | - Yuting Hu
- Guilin Medical University, Guilin, 541199, China
| | - Lihua Liu
- Guilin Medical University, Guilin, 541199, China
| | - Lilan Li
- Guilin Medical University, Guilin, 541199, China
| | - Fang Deng
- Guilin Medical University, Guilin, 541199, China
| | - Luhe Mo
- Guilin Medical University, Guilin, 541199, China
| | - Huixue Huang
- Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Guilin, 541199, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, 530200, China.
| | - Qiuyun Liang
- Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Guilin, 541199, China.
| |
Collapse
|
2
|
Gu X, Chen C, Chen Y, Zeng C, Lin Y, Guo R, Xu S, Lin C. Bioinformatics approach reveals the critical role of inflammation-related genes in age-related hearing loss. Sci Rep 2025; 15:2687. [PMID: 39837906 DOI: 10.1038/s41598-024-83428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and selection operator regression analysis and converted them into human genes. The ROC curve indicated that Alox5ap expression presented a high accuracy in distinguishing between different groups. By CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play a role in the development of ARHL, providing a deeper understanding of the underlying causes of this disease.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Yuqing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruosi Guo
- Fujian Medical University, Fuzhou, China
| | - Shujin Xu
- Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Shengnan L, Jiayan X, Meng S, Li L, Shengyun C, Mingjuan X. Regulator of G protein signaling-1 facilitates ovarian cancer development by modulating NF-kB signal pathway. Sci Rep 2025; 15:864. [PMID: 39757280 DOI: 10.1038/s41598-024-85071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025] Open
Abstract
Regulator of G protein signaling 1 (RGS1) is known to be highly expressed in various tumors, but its specific effects and regulatory mechanism in ovarian cancer (OC) progression are not well understood. To delve into the tumor biology, a predictive risk model for OC was developed, incorporating RGS1, PRKG2, CD24, and ABCB1, with RGS1 exhibiting the strongest correlation. The model's reliability and validity were confirmed through Kaplan-Meier analysis, receiver operating characteristic (ROC) curve, and principal component analysis (PCA). The risk score was validated as an independent indicator of overall survival, and a nomogram model was created to predict overall survival. Moreover, RGS1 expression was found to be up-regulated and associated with a poor prognosis in OC. Functional studies revealed that deleting RGS1 inhibited OC cell proliferation both in vitro and in vivo, while overexpression of RGS1 enhanced cell proliferation. Additionally, blocking the NF-kB pathway was shown to impede RGS1-induced proliferation, and overexpression of p65 partially reversed the effects of RGS1 deletion, promoting the tumorigenic properties of OC cells. These findings suggest that RGS1 could be a valuable biomarker for predicting prognosis and a potential novel therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Liu Shengnan
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xi Jiayan
- Shanghai Pudong New Area Zhoupu Community Health Service Center, Shanghai, 201318, China
| | - Sun Meng
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Li Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cai Shengyun
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Xu Mingjuan
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Zhang S, Zhao X, Lv Y, Niu J, Wei X, Luo Z, Wang X, Chen XL. Exosomes of different cellular origins: prospects and challenges in the treatment of acute lung injury after burns. J Mater Chem B 2024. [PMID: 39704476 DOI: 10.1039/d4tb02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Acute lung injury (ALI) is a critical clinical disease caused by direct factors (inhalation injury, gastroesophageal reflux, etc.) or indirect factors (including infection, sepsis, burn, shock, trauma, acute pancreatitis, fat embolism, drug overdose, etc.). ALI is characterized mainly by diffuse interstitial and alveolar edema caused by an uncontrolled inflammatory response and damage to the alveoli-capillary barrier and has very high morbidity and mortality rates. Currently, there is no effective treatment strategy other than mechanical ventilation, fluid management or other supportive treatments. Exosomes are nanovesicle-like vesicles with double-membrane structures detached from the cell membrane or secreted by cells. These vesicles can be used as drug carriers because of their unique biological properties, such as anti-inflammatory, anti-apoptotic, pro-cell growth and immunomodulatory functions, and have been applied in the treatment of ALI in recent years. In this study, the mechanism and pathophysiological characteristics of ALI were first systematically described. The different cellular sources and characteristics of exosomes are summarized, and their functions and value as drug carriers in the treatment of ALI are discussed, as are the challenges that may be faced in the treatment of ALI with exosomes.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yang Lv
- Plastic Surgery Department, The Second Affiliated Hospital of Anhui Medical University, 230061, P. R. China
| | - Jianguo Niu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xiaolong Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
5
|
Li Y, He Y. Therapeutic applications of stem cell-derived exosomes in radiation-induced lung injury. Cancer Cell Int 2024; 24:403. [PMID: 39695650 DOI: 10.1186/s12935-024-03595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Radiation-induced lung injury is a common complication of chest tumor radiotherapy; however, effective clinical treatments are still lacking. Stem cell-derived exosomes, which contain various signaling molecules such as proteins, lipids, and miRNAs, not only retain the tissue repair and reconstruction properties of stem cells but also offer improved stability and safety. This presents significant potential for treating radiation-induced lung injury. Nonetheless, the clinical adoption of stem cell-derived exosomes for this purpose remains limited due to scientific, practical, and regulatory challenges. In this review, we highlight the current pathology and therapies for radiation-induced lung injury, focusing on the potential applications and therapeutic mechanisms of stem cell-derived exosomes. We also discuss the limitations of existing stem cell-derived exosomes and outline future directions for exosome-based treatments for radiation-induced lung injury.
Collapse
Affiliation(s)
- Ying Li
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan He
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Song JQ, Shen LJ, Wang HJ, Liu QB, Ye LB, Liu K, Shi L, Cai B, Lin HS, Pang T. Discovery of Balasubramide Derivative with Tissue-Specific Anti-Inflammatory Activity Against Acute Lung Injury by Targeting VDAC1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410550. [PMID: 39556713 DOI: 10.1002/advs.202410550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Macrophage-mediated inflammatory responses including pyroptosis are involved in the pathogenesis of sepsis and acute lung injury (ALI), for which there are currently no effective therapeutic treatments. The natural product (+)-Balasubramide is an eight-membered lactam compound extracted from the leaves of the Sri Lanka plant Clausena Indica and has shown anti-inflammatory activities, but its poor pharmacokinetic properties limit its further application for ALI. In this study, a compound (+)3C-20 is discovered with improved both pharmacokinetic properties and anti-inflammatory activity from a series of (+)-Balasubramide derivatives. The compound (+)3C-20 exhibits a markedly enhanced inhibitory effect against LPS-induced expressions of pro-inflammatory factors in mouse macrophages and human PBMCs from ALI patients and shows a preferable lung tissue distribution in mice. (+)3C-20 remarkably attenuates LPS-induced ALI through lung tissue-specific anti-inflammatory actions. Mechanistically, a chemical proteomics study shows that (+)3C-20 directly binds to mitochondrial VDAC1 and inhibits VDAC1 oligomerization to block mtDNA release, further preventing NLRP3 inflammasome activation. These findings identify (+)3C-20 as a novel VDAC1 inhibitor with promising therapeutic potential for ALI associated with inflammation.
Collapse
Affiliation(s)
- Jin-Qian Song
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Li-Juan Shen
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Hao-Jie Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qi-Bing Liu
- Department of Pharmacy, the First Affiliated Hospital of Hainan Medical University & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, 571199, P.R. China
| | - Lian-Bao Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian, 116044, P. R. China
| | - Bin Cai
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Han-Sen Lin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
7
|
Yang Y, Lv M, Xu Q, Wang X, Fang Z. Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Pathogenesis, Biomarkers and Innovative Therapeutic Strategies. Int J Nanomedicine 2024; 19:12593-12614. [PMID: 39619058 PMCID: PMC11606342 DOI: 10.2147/ijn.s491335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease caused by aberrant deposition of extracellular matrix in the lungs with significant morbidity and mortality. The therapeutic choices for IPF remain limited. Extracellular vesicles (EVs), as messengers for intercellular communication, are cell-secreted lipid bilayer nanoscale particles found in body fluids, and regulate the epithelial phenotype and profibrotic signaling pathways by transporting bioactive cargo to recipients in the pathogenesis of IPF. Furthermore, an increasing number of studies suggests that EVs derived from stem cells can be employed as a cell-free therapeutic approach for IPF, given their intrinsic tissue-homing capabilities and regeneration characteristics. This review highlights new sights of EVs in the pathogenesis of IPF, their potential as diagnostic and prognostic biomarkers, and prospects as novel drug delivery systems and next-generation therapeutics against IPF. Notably, bringing engineering strategies to EVs holds great promise for enhancing the therapeutic effect of anti-pulmonary fibrosis and promoting clinical transformation.
Collapse
Affiliation(s)
- Yibao Yang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Mengen Lv
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Qing Xu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
8
|
Li X, Liu S, Xie J, Liu L, Duan C, Yang L, Wang Y, Wu Y, Shan N, Zhang Y, Zhang Y, Zhuang R. Salvianolic acid B improves the microcirculation in a mouse model of sepsis through a mechanism involving the platelet receptor CD226. Br J Pharmacol 2024. [PMID: 39443080 DOI: 10.1111/bph.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/03/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Salvianolic acid B (SalB) demonstrates diverse clinical applications, particularly in cardiovascular and cerebral protection. This study primarily investigated the effects of SalB on sepsis. EXPERIMENTAL APPROACH The model of sepsis via caecal ligation puncture (CLP) was established in male C57BL/6 mice. Therapeutic effects of SalB on hepatic and pulmonary injury, inflammatory responses and microcirculatory disturbances in sepsis were evaluated. Platelet aggregation and adhesion were measured via flow cytometry and an adhesion test. After overexpression of platelet-related activating molecules by 293T cells, the efficient binding of SalB and platelet CD226 molecules was further evaluated. Finally, neutralizing antibody experiments were used to assess the mechanism of SalB in alleviating the progression of sepsis. KEY RESULTS SalB mitigated hepatic and pulmonary impairments, reduced inflammatory cytokine levels and enhanced mesenteric microvascular blood flow in septic mice. SalB enhanced CLP-induced reduction of platelet count and platelet pressure cumulative volume. SalB reduced platelet adhesion to endothelial cells and platelet aggregation to leukocytes. A high binding efficiency was observed between SalB and the platelet adhesion molecule CD226. Ex vivo, interactions between SalB and platelets from CD226-knockout mice were markedly decreased. In vivo administration of CD226 neutralizing antibodies significantly delayed disease progression and enhanced mesenteric microcirculation in septic mice. CONCLUSION AND IMPLICATIONS In our murine model of sepsis, treatment with SalB improved the microcirculatory disturbance and hindered the progression of sepsis by inhibiting platelet CD226 function. Our results suggest SalB is a promising therapeutic approach to the treatment of sepsis.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Shanshou Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yilin Wu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Niqi Shan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yun Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Zhou Z, Xie Y, Wei Q, Zhang X, Xu Z. Revisiting the role of MicroRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1470875. [PMID: 39479511 PMCID: PMC11521927 DOI: 10.3389/fcell.2024.1470875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic pulmonary fibrosis disease characterized by alveolar epithelial cell damage, fibroblast proliferation and activation, excessive extracellular matrix deposition, and abnormal epithelial-mesenchymal transition (EMT), resulting in tissue remodeling and irreversible structural distortion. The mortality rate of IPF is very high, with a median survival time of 2-3 years after diagnosis. The exact cause of IPF remains unknown, but increasing evidence supports the central role of epigenetic changes, particularly microRNA (miRNA), in IPF. Approximately 10% of miRNAs in IPF lung tissue exhibit differential expression compared to normal lung tissue. Diverse miRNA phenotypes exert either a pro-fibrotic or anti-fibrotic influence on the progression of IPF. In the context of IPF, epigenetic factors such as DNA methylation and long non-coding RNAs (lncRNAs) regulate differentially expressed miRNAs, which in turn modulate various signaling pathways implicated in this process, including transforming growth factor-β1 (TGF-β1)/Smad, mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathways. Therefore, this review presents the epidemiology of IPF, discusses the multifaceted regulatory roles of miRNAs in IPF, and explores the impact of miRNAs on IPF through various pathways, particularly the TGF-β1/Smad pathway and its constituent structures. Consequently, we investigate the potential for targeting miRNAs as a treatment for IPF, thereby contributing to advancements in IPF research.
Collapse
Affiliation(s)
| | | | | | | | - Zhihao Xu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
10
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
11
|
Jadamba B, Jin Y, Lee H. Harmonising cellular conversations: decoding the vital roles of extracellular vesicles in respiratory system intercellular communications. Eur Respir Rev 2024; 33:230272. [PMID: 39537245 PMCID: PMC11558538 DOI: 10.1183/16000617.0272-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) released by various cells play crucial roles in intercellular communication within the respiratory system. This review explores the historical context and significance of research into extracellular vesicles. Categorised into exosomes (sized 30-150 nm), microvesicles (sized 50-1000 nm) and apoptotic bodies (sized 500-2000nm), based on their generation mechanisms, extracellular vesicles carry diverse cargoes of biomolecules, including proteins, lipids and nucleic acids. Respiratory ailments are the primary contributors to both mortality and morbidity across various populations globally, significantly impacting public health. Recent studies have underscored the pivotal role of extracellular vesicles, particularly their cargo content, in mediating intercellular communication between lung cells in respiratory diseases. This comprehensive review provides insights into extracellular vesicle mechanisms and emphasises their significance in major respiratory conditions, including acute lung injury, COPD, pulmonary hypertension, pulmonary fibrosis, asthma and lung cancer.
Collapse
Affiliation(s)
- Budjav Jadamba
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
12
|
Xu Y, Qu X, Liang M, Huang D, Jin M, Sun L, Chen X, Liu F, Qiu Z. Focus on the role of calcium signaling in ferroptosis: a potential therapeutic strategy for sepsis-induced acute lung injury. Front Med (Lausanne) 2024; 11:1457882. [PMID: 39355841 PMCID: PMC11442327 DOI: 10.3389/fmed.2024.1457882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
By engaging in redox processes, ferroptosis plays a crucial role in sepsis-induced acute lung injury (ALI). Although iron stimulates calcium signaling through the stimulation of redox-sensitive calcium pathways, the function of calcium signals in the physiological process of ferroptosis in septic ALI remains unidentified. Iron homeostasis disequilibrium in ferroptosis is frequently accompanied by aberrant calcium signaling. Intracellular calcium overflow can be a symptom of dysregulation of the cellular redox state, which is characterized by iron overload during the early phase of ferroptosis. This can lead to disruptions in calcium homeostasis and calcium signaling. The mechanisms controlling iron homeostasis and ferroptosis are reviewed here, along with their significance in sepsis-induced acute lung injury, and the potential role of calcium signaling in these processes is clarified. We propose that the development of septic acute lung injury is a combined process involving the bidirectional interaction between iron homeostasis and calcium signaling. Our goal is to raise awareness about the pathophysiology of sepsis-induced acute lung injury and investigate the relationship between these mechanisms and ferroptosis. We also aimed to develop calcium-antagonistic therapies that target ferroptosis in septic ALI and improve the quality of survival for patients suffering from acute lung injury.
Collapse
Affiliation(s)
- Yifei Xu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintian Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minyan Jin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianhai Chen
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fen Liu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhanjun Qiu
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Jiang Y, Zhang X, Wang B, Tang L, Liu X, Ding X, Dong Y, Lei H, Wang D, Feng H. Single-cell transcriptomic analysis reveals a decrease in the frequency of macrophage-RGS1 high subsets in patients with osteoarticular tuberculosis. Mol Med 2024; 30:118. [PMID: 39123125 PMCID: PMC11316427 DOI: 10.1186/s10020-024-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cell subsets differentially modulate host immune responses to Mycobacterium tuberculosis (MTB) infection. However, the nature and functions of these subsets against osteoarticular tuberculosis (OTB) are unclear. Here, we aimed to understand the phenotypes and functions of immune cell subsets in patients with OTB using single-cell RNA sequencing (scRNA-Seq). METHODS Pathological and healthy adjacent tissues were isolated from patients with OTB and subjected to scRNA-Seq. Unsupervised clustering of cells was performed based on gene expression profiles, and uniform manifold approximation and projection was used for clustering visualization. RESULTS Thirteen cell subsets were identified in OTB tissues. scRNA-seq datasets of patients and healthy controls (HCs) showed that infection changed the frequency of immune cell subsets in OTB tissues. Myeloid cell examination revealed nine subsets. The frequency of macrophage-RGS1high subsets decreased in OTB tissues; this increased MTB susceptibility in an SLC7A11/ferroptosis-dependent manner. Immunohistochemistry assays and flow cytometry for patients with OTB and osteoarticular bacterial infection (OBI) and HCs verified that the frequency of macrophage-RGS1high subset decreased in OTB tissues and blood samples, thereby distinguishing patients with OTB from HCs and patients with OBI. CONCLUSION The macrophage-RGS1high subset levels were decreased in patients with OTB, and would be up-regulated after effective treatment. Therefore, the clinical significance of this study is to discover that macrophage-RGS1high subset may serve as a potential biomarker for OTB diagnosis and treatment efficacy monitoring.
Collapse
Affiliation(s)
- Ying Jiang
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China
| | - Xinqiang Zhang
- Emergency Department, Chengde Central Hospital, Chengde, 067000, Hebei, People's Republic of China
| | - Bo Wang
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China
| | - Liping Tang
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China
| | - Xin Liu
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China
| | - Xiudong Ding
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China
| | - Yueming Dong
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China
| | - Hong Lei
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China.
| | - Di Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.
| | - Huicheng Feng
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, People's Republic of China.
| |
Collapse
|
14
|
Gong T, Zhang X, Liu X, Ye Y, Tian Z, Yin S, Zhang M, Tang J, Liu Y. Exosomal Tenascin-C primes macrophage pyroptosis amplifying aberrant inflammation during sepsis-induced acute lung injury. Transl Res 2024; 270:66-80. [PMID: 38604333 DOI: 10.1016/j.trsl.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a serious complication of sepsis and the predominant cause of death. Exosomes released by lung tissue cells critically influence the progression of ALI during sepsis by modulating the inflammatory microenvironment. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbates ALI in septic infection remain undefined. Our study found increased levels of exosomal Tenascin-C (TNC) in the plasma of both patients and mice with ALI, showing a strong association with disease progression. By integrating exosomal proteomics with transcriptome sequencing and experimental validation, we elucidated that LPS induce unresolved endoplasmic reticulum stress (ERs) in alveolar epithelial cells (AECs), ultimately leading to the release of exosomal TNC through the activation of PERK-eIF2α and the transcription factor CHOP. In the sepsis mouse model with TNC knockout, we noted a marked reduction in macrophage pyroptosis. Our detailed investigations found that exosomal TNC binds to TLR4 on macrophages, resulting in an augmented production of ROS, subsequent mitochondrial damage, activation of the NF-κB signaling pathway, and induction of DNA damage response. These interconnected events culminate in macrophage pyroptosis, thereby amplifying the release of inflammatory cytokines. Our findings demonstrate that exosomal Tenascin-C, released from AECs under unresolved ER stress, exacerbates acute lung injury by intensifying sepsis-associated inflammatory responses. This research provides new insights into the complex cellular interactions underlying sepsis-induced ALI.
Collapse
Affiliation(s)
- Ting Gong
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Xuedi Zhang
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolei Liu
- Department of Anaesthetics, Affiliated Hospital of Guangdong Medical University, No.57 People Avenue South, Zhanjiang, 524001, Guangdong, China
| | - Yinfeng Ye
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiyuan Tian
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuang Yin
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Min Zhang
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jing Tang
- Department of Anaesthetics, Affiliated Hospital of Guangdong Medical University, No.57 People Avenue South, Zhanjiang, 524001, Guangdong, China.
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Ge Z, Chen Y, Ma L, Hu F, Xie L. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1444964. [PMID: 39131154 PMCID: PMC11310026 DOI: 10.3389/fimmu.2024.1444964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.
Collapse
Affiliation(s)
- Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangjun Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Lubin Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Zhang H, Zhou Y, Jiang C, Jian N, Wang J. Crosstalk of ubiquitin system and non-coding RNA in fibrosis. Int J Biol Sci 2024; 20:3802-3822. [PMID: 39113708 PMCID: PMC11302871 DOI: 10.7150/ijbs.93644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic tissue injury triggers changes in the cell type and microenvironment at the site of injury and eventually fibrosis develops. Current research suggests that fibrosis is a highly dynamic and reversible process, which means that human intervention after fibrosis has occurred has the potential to slow down or cure fibrosis. The ubiquitin system regulates the biological functions of specific proteins involved in the development of fibrosis, and researchers have designed small molecule drugs to treat fibrotic diseases on this basis, but their therapeutic effects are still limited. With the development of molecular biology technology, researchers have found that non-coding RNA (ncRNA) can interact with the ubiquitin system to jointly regulate the development of fibrosis. More in-depth explorations of the interaction between ncRNA and ubiquitin system will provide new ideas for the clinical treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Huamin Zhang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| |
Collapse
|
17
|
Yuan L, Jiang N, Li Y, Wang X, Wang W. RGS1 Enhancer RNA Promotes Gene Transcription by Recruiting Transcription Factor FOXJ3 and Facilitates Osteoclastogenesis Through PLC-IP3R-dependent Ca 2+ Response in Rheumatoid Arthritis. Inflammation 2024:10.1007/s10753-024-02067-6. [PMID: 38904871 DOI: 10.1007/s10753-024-02067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca2+ response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca2+ response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Nan Jiang
- Department of Price, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, P.R. China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, P.R. China
| | - Xin Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Wei Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China.
| |
Collapse
|
18
|
Li Y, Xu H, Wang Y, Zhu Y, Xu K, Yang Z, Li Y, Guo C. Epithelium-derived exosomes promote silica nanoparticles-induced pulmonary fibroblast activation and collagen deposition via modulating fibrotic signaling pathways and their epigenetic regulations. J Nanobiotechnology 2024; 22:331. [PMID: 38867284 PMCID: PMC11170844 DOI: 10.1186/s12951-024-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In the context of increasing exposure to silica nanoparticles (SiNPs) and ensuing respiratory health risks, emerging evidence has suggested that SiNPs can cause a series of pathological lung injuries, including fibrotic lesions. However, the underlying mediators in the lung fibrogenesis caused by SiNPs have not yet been elucidated. RESULTS The in vivo investigation verified that long-term inhalation exposure to SiNPs induced fibroblast activation and collagen deposition in the rat lungs. In vitro, the uptake of exosomes derived from SiNPs-stimulated lung epithelial cells (BEAS-2B) by fibroblasts (MRC-5) enhanced its proliferation, adhesion, and activation. In particular, the mechanistic investigation revealed SiNPs stimulated an increase of epithelium-secreted exosomal miR-494-3p and thereby disrupted the TGF-β/BMPR2/Smad pathway in fibroblasts via targeting bone morphogenetic protein receptor 2 (BMPR2), ultimately resulting in fibroblast activation and collagen deposition. Conversely, the inhibitor of exosomes, GW4869, can abolish the induction of upregulated miR-494-3p and fibroblast activation in MRC-5 cells by the SiNPs-treated supernatants of BEAS-2B. Besides, inhibiting miR-494-3p or overexpression of BMPR2 could ameliorate fibroblast activation by interfering with the TGF-β/BMPR2/Smad pathway. CONCLUSIONS Our data suggested pulmonary epithelium-derived exosomes serve an essential role in fibroblast activation and collagen deposition in the lungs upon SiNPs stimuli, in particular, attributing to exosomal miR-494-3p targeting BMPR2 to modulate TGF-β/BMPR2/Smad pathway. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against lung injury elicited by SiNPs.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Ying Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
19
|
Memet O, Cao C, Hu H, Dun Y, Bao X, Liu F, Zhang L, Zhou J, Shen J. Galectin-3 inhibition ameliorates alveolar epithelial cell pyroptosis in phosgene-induced acute lung injury. Int Immunopharmacol 2024; 132:111965. [PMID: 38583242 DOI: 10.1016/j.intimp.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Phosgene is a type of poisonous gas that can cause acute lung injury (ALI) upon accidental exposure. Casualties still occur due to phosgene-induced acute lung injury (P-ALI) from accidents resulting from improper operations. The pathological mechanisms of P-ALI are still understudied. Thus, we performed scRNA-seq on cells isolated from all subpopulations of the BALF in P-ALI and found that Gal3 expression was significantly higher in the gas group than in the control group. Further analysis revealed a ligand-receptor correspondence between alveolar macrophages (AMs) and alveolar epithelial cells (AEC), with Gal3 playing a key role in this interaction. To confirm and elaborate on this discovery, we selected four time points during the previous week: sham (day 0), day 1, day 3, and day 7 in the P-ALI mouse model and found that Gal3 expression was significantly elevated in P-ALI, most abundantly expressed in AM cells. This was further confirmed with the use of a Gal3 inhibitor. The inhibition of Gal3 and elimination of AMs in mice both attenuated epithelial cell pyroptosis, as confirmed in in vitro experiments, and revealed the Gal3/caspase-8/GSDMD signaling pathway. These findings suggest that Galectin-3 inhibition can ameliorate AEC pyroptosis by inhibiting the Gal3/caspase-8/GSDMD signaling pathway, thus reducing alveolar damage in mice with P-ALI. This finding provides novel insights for improving treatment efficacy for P-ALI.
Collapse
Affiliation(s)
- Obulkasim Memet
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China.
| | - Chao Cao
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Hanbing Hu
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yu Dun
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Xuanrong Bao
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Fuli Liu
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Lin Zhang
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Jian Zhou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Shen
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China.
| |
Collapse
|
20
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
22
|
Gong T, Liu YT, Fan J. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction. Mil Med Res 2024; 11:24. [PMID: 38644472 PMCID: PMC11034107 DOI: 10.1186/s40779-024-00527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Sepsis, a severe systemic inflammatory response to infection, remains a leading cause of morbidity and mortality worldwide. Exosomes, as mediators of intercellular communication, play a pivotal role in the pathogenesis of sepsis through modulating immune responses, metabolic reprogramming, coagulopathy, and organ dysfunction. This review highlights the emerging significance of exosomes in these processes. Initially, it provides an in-depth insight into exosome biogenesis and characterization, laying the groundwork for understanding their diverse and intricate functions. Subsequently, it explores the regulatory roles of exosomes in various immune cells such as neutrophils, macrophages, dendritic cells, T cells, and B cells. This analysis elucidates how exosomes are pivotal in modulating immune responses, thus contributing to the complexity of sepsis pathophysiology. Additionally, this review delves into the role of exosomes in the regulation of metabolism and subsequent organ dysfunction in sepsis. It also establishes a connection between exosomes and the coagulation cascade, which affects endothelial integrity and promotes thrombogenesis in sepsis. Moreover, the review discusses the dual role of exosomes in the progression and resolution of sepsis, exploring their complex involvement in inflammation and healing processes. Furthermore, it underscores their potential as biomarkers and therapeutic targets. Understanding these mechanisms presents new opportunities for novel interventions to mitigate the severe outcomes of sepsis, emphasizing the therapeutic promise of exosome research in critical care settings.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China.
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
23
|
Kang J, Hua P, Wu X, Wang B. Exosomes: efficient macrophage-related immunomodulators in chronic lung diseases. Front Cell Dev Biol 2024; 12:1271684. [PMID: 38655063 PMCID: PMC11035777 DOI: 10.3389/fcell.2024.1271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages, the predominant immune cells in the lungs, play a pivotal role in maintaining the delicate balance of the pulmonary immune microenvironment. However, in chronic inflammatory lung diseases and lung cancer, macrophage phenotypes undergo distinct transitions, with M1-predominant macrophages promoting inflammatory damage and M2-predominant macrophages fostering cancer progression. Exosomes, as critical mediators of intercellular signaling and substance exchange, participate in pathological reshaping of macrophages during development of pulmonary inflammatory diseases and lung cancer. Specifically, in inflammatory lung diseases, exosomes promote the pro-inflammatory phenotype of macrophages, suppress the anti-inflammatory phenotype, and subsequently, exosomes released by reshaped macrophages further exacerbate inflammatory damage. In cancer, exosomes promote pro-tumor tumor-associated macrophages (TAMs); inhibit anti-tumor TAMs; and exosomes released by TAMs further enhance tumor proliferation, metastasis, and resistance to chemotherapy. Simultaneously, exosomes exhibit a dual role, holding the potential to transmit immune-modulating molecules and load therapeutic agents and offering prospects for restoring immune dysregulation in macrophages during chronic inflammatory lung diseases and lung cancer. In chronic inflammatory lung diseases, this is manifested by exosomes reshaping anti-inflammatory macrophages, inhibiting pro-inflammatory macrophages, and alleviating inflammatory damage post-reshaping. In lung cancer, exosomes reshape anti-tumor macrophages, inhibit pro-tumor macrophages, and reshaped macrophages secrete exosomes that suppress lung cancer development. Looking ahead, efficient and targeted exosome-based therapies may emerge as a promising direction for treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Jianxiong Kang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peiyan Hua
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaojing Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Wang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Wu M, Xu X, Yang C, An Q, Zhang J, Zhao Z, Feng Y, Liang W, Fu Y, Zhang G, Jiang T. Regulator of G protein signaling 1 is a potential target in gastric cancer and impacts tumor-associated macrophages. Cancer Sci 2024; 115:1085-1101. [PMID: 38287908 PMCID: PMC11006993 DOI: 10.1111/cas.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Regulator of G protein signaling 1 (RGS1) is closely associated with the tumor immune microenvironment and is highly expressed in various tumors and immune cells. The specific effects of RGS1 in the dynamic progression from chronic gastritis to gastric cancer have not been reported, and the role of tumor-associated macrophages (TAMs) is also unclear. In the present study, RGS1 was identified as an upregulated gene in different pathological stages ranging from chronic gastritis to gastric cancer by using Gene Expression Omnibus (GEO) screening together with pancancer analysis of The Cancer Genome Atlas and clinical prognostic analysis. The results indicated that RGS1 is highly expressed in gastric cancer and has potential prognostic value. We confirmed through in vivo experiments that RGS1 inhibited the proliferation of gastric cancer cells and promoted apoptosis, which was further corroborated by in vitro experiments. Additionally, RGS1 influenced cell migration and invasion. In our subsequent investigation of RGS1, we discovered its role in the immune response. Through analyses of single-cell and GEO database data, we confirmed its involvement in immune cell regulation, specifically TAM activation. Subsequently, we conducted in vivo and in vitro experiments to confirm the involvement of RGS1 in polarizing M1 macrophages while indirectly regulating M2 macrophages through tumor cells. In conclusion, RGS1 could be a potential target for the transformation of chronic gastritis into gastric cancer and has a measurable impact on TAMs, which warrants further in-depth research.
Collapse
Affiliation(s)
- Mengting Wu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Xuefei Xu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Chuqi Yang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Qingwen An
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Jingcheng Zhang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Zhengqi Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Yewen Feng
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Weiyu Liang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Yufei Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Guangji Zhang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| | - Tao Jiang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Labortory of Blood‐Stasis‐Toxin Syndrome of Zhejiang ProvinceHangzhouChina
- Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of ZhejiangHangzhouChina
| |
Collapse
|
25
|
Osorio-Valencia S, Zhou B. Roles of Macrophages and Endothelial Cells and Their Crosstalk in Acute Lung Injury. Biomedicines 2024; 12:632. [PMID: 38540245 PMCID: PMC10968255 DOI: 10.3390/biomedicines12030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), present life-threatening conditions characterized by inflammation and endothelial injury, leading to increased vascular permeability and lung edema. Key players in the pathogenesis and resolution of ALI are macrophages (Mφs) and endothelial cells (ECs). The crosstalk between these two cell types has emerged as a significant focus for potential therapeutic interventions in ALI. This review provides a brief overview of the roles of Mφs and ECs and their interplay in ALI/ARDS. Moreover, it highlights the significance of investigating perivascular macrophages (PVMs) and immunomodulatory endothelial cells (IMECs) as crucial participants in the Mφ-EC crosstalk. This sheds light on the pathogenesis of ALI and paves the way for innovative treatment approaches.
Collapse
Affiliation(s)
| | - Bisheng Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
26
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
27
|
Liu K, Xia D, Bian H, Peng L, Dai S, Liu C, Jiang C, Wang Y, Jin J, Bi L. Regulator of G protein signaling-1 regulates immune infiltration and macrophage polarization in clear cell renal cell carcinoma. Int Urol Nephrol 2024; 56:451-466. [PMID: 37735297 PMCID: PMC10808153 DOI: 10.1007/s11255-023-03794-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To better understand how to clear cell renal cell cancer (ccRCC) is affected by the regulator of G protein signaling-1 (RGS1), its effect on immune infiltration, macrophage polarization, tumor proliferation migration, and to explore whether RGS1 may serve as a marker and therapeutic target for ccRCC. PATIENTS AND METHODS In this study, a total of 20 surgical specimens of patients with pathological diagnosis of ccRCC admitted to the Department of Urology of the Second Affiliated Hospital of Anhui Medical University from November 2021 to June 2022 were selected for pathological and protein testing, while the expression of RGS1 in tumors, immune infiltration, and macrophage polarization, particularly M2 macrophage linked to the development of tumor microenvironment (TME), were combined with TGCA database and GO analysis. We also further explored and studied the expression and function of RGS1 in TME, investigated how RGS1 affected tumor growth, migration, apoptosis, and other traits, and initially explored the signaling pathways and mechanisms that RGS1 may affect. RESULTS RGS1 was found to be expressed at higher quantities in ccRCC than in normal cells or tissues, according to bioinformatics analysis and preliminary experimental data from this work. Using the TCGA database and GO analysis to describe the expression of RGS1 in a range of tumors, it was found that ccRCC had a much higher level of RGS1 expression than other tumor types. The results of gene enrichment analysis indicated that overexpression of RGS1 may be associated with immune infiltration. The outcomes of in vitro tests revealed that RGS1 overexpression in ccRCC did not significantly alter the proliferation and migration ability of ccRCC, but RGS1 overexpression promoted apoptosis in ccRCC. By in vitro co-culture experiments, RGS1 overexpression inhibited M2 macrophage polarization and also suppressed the Jagged-1/Notch signaling pathway. CONCLUSIONS RGS1 is highly expressed in ccRCC, while overexpression of RGS1 may increase immune infiltration in the TME and reduce the polarization of M2 macrophages while promoting apoptosis in ccRCC.
Collapse
Affiliation(s)
- Kun Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dian Xia
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hege Bian
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Longfei Peng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chao Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
28
|
Guo Y, Zhou J, Wang Y, Wu X, Mou Y, Song X. Cell type-specific molecular mechanisms and implications of necroptosis in inflammatory respiratory diseases. Immunol Rev 2024; 321:52-70. [PMID: 37897080 DOI: 10.1111/imr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
| |
Collapse
|
29
|
Wang L, Zhang H, Gu X, Wang Y. Blood regulator of G protein signalling 1 as a potential prognostic biomarker in surgical nonsmall cell lung cancer patients: Correlation with clinical features and survival. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13712. [PMID: 38081176 PMCID: PMC10807578 DOI: 10.1111/crj.13712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Regulator of G protein signalling 1 (RGS1) closely regulates malignant phenotypes and tumour immunity in several cancers, while its clinical value in nonsmall cell lung cancer (NSCLC) is by far rarely reported. Consequently, this study aimed to explore the linkage of blood RGS1 with clinical features and prognosis in surgical NSCLC patients. METHODS Two-hundred and ten surgical NSCLC patients were consecutively enrolled in this study, whose RGS1 in peripheral blood mononuclear cells was determined before treatment via reverse transcriptional-quantitative polymerase chain reaction. Additionally, the blood RGS1 was also collected from 30 healthy controls (HCs). RESULTS Blood RGS1 was increased in NSCLC patients compared with HCs (P < 0.001). Elevated blood RGS1 was related to lymph node (LYN) metastasis (P = 0.001), higher tumour-nodes-metastasis (TNM) stage (P = 0.004), neoadjuvant chemotherapy administration (P = 0.044), shortened accumulative disease-free survival (DFS) (P = 0.008) and overall survival (OS) (P = 0.013) in NSCLC patients. A multivariate Cox's regression analysis showed that blood RGS1 high expression could independently reflect shortened DFS (hazard ratio = 1.499, P = 0.023), whereas it could not independently predict OS (P > 0.050). Furthermore, blood RGS1 high expression was associated with shortened OS (P = 0.020) in patients with neoadjuvant therapy and with worse DFS (P = 0.028) and OS (P = 0.026) in patients with adjuvant therapy, while blood RGS1 was not linked with DFS or OS in patients without neoadjuvant or adjuvant therapy (all P > 0.050). CONCLUSION Elevated blood RGS1 correlates with LYN metastasis, neoadjuvant chemotherapy administration, worse DFS and OS, which might serve as a useful prognostic biomarker for surgical NSCLC patients.
Collapse
Affiliation(s)
- Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouChina
| | - Hui Zhang
- Department of Medical IconographyBaotou Cancer HospitalBaotouChina
| | - Xinliang Gu
- Department of OncologyBaotou Cancer HospitalBaotouChina
| | - Ying Wang
- Department of OncologyBaotou Cancer HospitalBaotouChina
| |
Collapse
|
30
|
Lu T, Chen S, Xu J. RGS1 mediates renal interstitial fibrosis through activation of the inflammatory response. Arch Biochem Biophys 2023; 750:109744. [PMID: 37696381 DOI: 10.1016/j.abb.2023.109744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Renal interstitial fibrosis (RIF) is considered as a common pathway for all patients with chronic kidney disease (CKD) to progress to end-stage kidney disease (ESRD). The basic pathological manifestation is the increase of matrix component in the tubular interstitium, while the injury of tubular epithelial cells in the renal interstitium and the excessive accumulation of matrix will eventually lead to tubular atrophy and obstruction, loss of effective renal units, and finally impaired renal filtration function. The relevant mechanism of RIF remains unclear. The present study will investigate the function and relevant mechanism of RGS1 in RIF. The RIF-related microarrays GSE22459 and GSE76882 were downloaded and analyzed. Renal parenchymal atrophic calyx tissues were collected from clinical RIF patients. Cellular inflammation, fibrosis and animal RIF models were constructed using Lipopolysaccharide (LPS), TGF-β1 and unilateral ureteral occlusion (UUO). HE and Masson staining were performed to detect morphological alterations of renal tissue samples. qRT-PCR, Western blot and ELISA were carried out to detect the expression of relevant genes/proteins. RGS1 is a gene co-differentially expressed by GSE22459 and GSE76882. RGS1 expression was elevated in renal tissues of RIF patients, cells and animal RIF models. Knockdown of RGS1 inhibited renal cell inflammatory response, fibrosis and renal fibrosis in RIF mice. Overexpression of RGS1 plays the opposite role. Knockdown of RGS1 inhibited the inflammatory response in the RIF cell and mouse model. Targeting RGS1 might be a potential therapeutic strategy for RIF treatment.
Collapse
Affiliation(s)
- Tefei Lu
- Department of Urology, Ningbo Medical Central Lihuili Hospital, Ningbo, 315040, Zhejiang, China
| | - Sheng Chen
- Department of Urology, Ningbo Medical Central Lihuili Hospital, Ningbo, 315040, Zhejiang, China
| | - Jianting Xu
- Department of Urology, Ningbo Medical Central Lihuili Hospital, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
31
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A, Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis 2023; 14:691. [PMID: 37863894 PMCID: PMC10589261 DOI: 10.1038/s41419-023-06206-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.
Collapse
Affiliation(s)
- Pengbo Hou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Qiang Sun
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
32
|
Liang H, Zhang L, Zhao X, Rong J. The therapeutic potential of exosomes in lung cancer. Cell Oncol (Dordr) 2023; 46:1181-1212. [PMID: 37365450 DOI: 10.1007/s13402-023-00815-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Lung cancer (LC) is one of the most common malignancies globally. Besides early detection and surgical resection, there is currently no effective curative treatment for metastatic advanced LC. Exosomes are endogenous nano-extracellular vesicles produced by somatic cells that play an important role in the development and maintenance of normal physiology. Exosomes can carry proteins, peptides, lipids, nucleic acids, and various small molecules for intra- and intercellular material transport or signal transduction. LC cells can maintain their survival, proliferation, migration, invasion, and metastasis, by producing or interacting with exosomes. Basic and clinical data also show that exosomes can be used to suppress LC cell proliferation and viability, induce apoptosis, and enhance treatment sensitivity. Due to the high stability and target specificity, good biocompatibility, and low immunogenicity of exosomes, they show promise as vehicles of LC therapy. CONCLUSION We have written this comprehensive review to communicate the LC treatment potential of exosomes and their underlying molecular mechanisms. We found that overall, LC cells can exchange substances or crosstalk with themselves or various other cells in the surrounding TME or distant organs through exosomes. Through this, they can modulate their survival, proliferation, stemness, migration, and invasion, EMT, metastasis, and apoptotic resistance.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210, BaiTa Street, Hunnan District, Shenyang, 110001, People's Republic of China
| | - Xiangxuan Zhao
- Health Sciences Institute, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110022, People's Republic of China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning Province, 110004, People's Republic of China.
| |
Collapse
|
33
|
Liang H, Liu G, Zeng W, Fan Q, Nie Z, Hu H, Zhang R, Xie S. MEGF6 prevents sepsis-induced acute lung injury in mice. Int Immunopharmacol 2023; 123:110727. [PMID: 37597402 DOI: 10.1016/j.intimp.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) is featured as excessive inflammatory response and oxidative damage, and results in high death rate of septic patients. This research intends to determine the function of multiple EGF like domains 6 (MEGF6) in sepsis-induced ALI. METHODS Mice were intratracheally treated with adenovirus to knock down or overexpress MEGF6 in lung tissues, and then were subjected to cecum ligation and puncture (CLP) operation to induce ALI. Primary peritoneal macrophages were isolated, and were knocked down or overexpressed with MEGF6, and then, were stimulated with lipopolysaccharide (LPS) to confirm its role in vitro. RESULTS Serum and lung MEGF6 levels were significantly elevated in septic mice. MEGF6 knockdown exacerbated, while MEGF6 overexpression prevented inflammation, oxidative damage and ALI in CLP mice. Meanwhile, LPS-elicited inflammatory response and oxidative damage in primary macrophages were reduced by MEGF6 overexpression, but were further aggravated by MEGF6 knockdown. Mechanistic studies revealed that MEGF6 reduced cluster of differentiation 38 (CD38) expression and subsequently elevated intracellular nicotinamide adenine dinucleotide levels, thereby activating sirtuin 1 (SIRT1) without affecting the protein expression. SIRT1 suppression or CD38 overexpression with either genetic or pharmacologic methods remarkably blunted the lung protective effects of MEGF6 in CLP mice. CONCLUSION MEGF6 prevents CLP-induced ALI through CD38/SIRT1 pathway, and it might be a valuable therapeutic candidate for the management of sepsis-induced ALI.
Collapse
Affiliation(s)
- Hui Liang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Wenhui Zeng
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Qinglu Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zhihao Nie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Haifeng Hu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
34
|
Lin P, Gao R, Fang Z, Yang W, Tang Z, Wang Q, Wu Y, Fang J, Yu W. Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. Int J Pharm 2023; 644:123321. [PMID: 37591476 DOI: 10.1016/j.ijpharm.2023.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and critical diseases in clinics and have no effective treatment to date. With the concept of "precision medicine", research into the precise drug delivery of therapeutic and diagnostic drugs has become a frontier in nanomedicine research and has entered the era of design of precise nanodrug delivery systems (NDDSs) with cell-specific targeting. Owing to the distinctive characteristics of ALI/ARDS, designing NDDSs for specific focal sites is an important strategy for changing drug distribution in the body and specifically increasing drug concentration at target sites while decreasing drug concentration at non-target sites. This strategy enhances drug efficacy, reduces adverse reactions, and ensures accurate nano-targeted treatment. On the basis of the characteristics of pathological ALI/ARDS microenvironments, this paper reviews NDDSs targeting vascular endothelial cells, neutrophils, alveolar macrophages, and alveolar epithelial cells to provide reference for designing accurate NDDSs for ALI/ARDS and novel insights into targeted treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Yueguo Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China.
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
35
|
Peng W, Xie Y, Luo Z, Liu Y, Xu J, Li C, Qin T, Lu H, Hu J. UTX deletion promotes M2 macrophage polarization by epigenetically regulating endothelial cell-macrophage crosstalk after spinal cord injury. J Nanobiotechnology 2023; 21:225. [PMID: 37454119 DOI: 10.1186/s12951-023-01986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Macrophages polarized to the M2 subtype after spinal cord injury (SCI) are beneficial for promoting neurological recovery. The crosstalk between endothelial cells (ECs) and macrophages is crucial for the imbalance between proinflammatory and pro-resolving responses caused by macrophage heterogeneity; however, this crosstalk is strengthened post-SCI, leading to inflammatory cascades and second damage. As a powerful means to regulate gene expression, epigenetic regulation of the interaction between immune cells and ECs in SCI is still largely unknown. Our previous research demonstrated that the histone demethylase UTX deletion in ECs (UTX-/- ECs) promotes neurological recovery, while the precise mechanism is unrevealed. Here, we discovered that UTX-/- ECs polarize macrophages toward the M2 subtype post-SCI. Macrophage deficiency could block the neurological recovery caused by the knockdown of UTX. The exosomes from UTX-/- ECs mediate this crosstalk. In addition, we found UTX, H3K27, and miR-467b-3p/Sfmbt2 promoters forming a regulatory complex that upregulates the miR-467b-3p in UTX-/- ECs. And then, miR-467b-3p transfers to macrophages by exosomes and activates the PI3K/AKT/mTOR signaling by decreasing PTEN expression, finally polarizing macrophage to the M2 subtype. This study reveals a mechanism by epigenetic regulation of ECs-macrophages crosstalk and identifies potential targets, which may provide opportunities for treating SCI.
Collapse
Affiliation(s)
- Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Spine Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
36
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
37
|
Geng C, Wang X, Chen J, Sun N, Wang Y, Li Z, Han L, Hou S, Fan H, Li N, Gong Y. Repetitive Low-Level Blast Exposure via Akt/NF-κB Signaling Pathway Mediates the M1 Polarization of Mouse Alveolar Macrophage MH-S Cells. Int J Mol Sci 2023; 24:10596. [PMID: 37445774 DOI: 10.3390/ijms241310596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Repetitive low-level blast (rLLB) exposure is a potential risk factor for the health of soldiers or workers who are exposed to it as an occupational characteristic. Alveolar macrophages (AMs) are susceptible to external blast waves and produce pro-inflammatory or anti-inflammatory effects. However, the effect of rLLB exposure on AMs is still unclear. Here, we generated rLLB waves through a miniature manual Reddy-tube and explored their effects on MH-S cell morphology, phenotype transformation, oxidative stress status, and apoptosis by immunofluorescence, real-time quantitative PCR (qPCR), western blotting (WB) and flow cytometry. Ipatasertib (GDC-0068) or PDTC was used to verify the role of the Akt/NF-κB signaling pathway in these processes. Results showed that rLLB treatment could cause morphological irregularities and cytoskeletal disorders in MH-S cells and promote their polarization to the M1 phenotype by increasing iNOS, CD86 and IL-6 expression. The molecular mechanism is through the Akt/NF-κB signaling pathway. Moreover, we found reactive oxygen species (ROS) burst, Ca2+ accumulation, mitochondrial membrane potential reduction, and early apoptosis of MH-S cells. Taken together, our findings suggest rLLB exposure may cause M1 polarization and early apoptosis of AMs. Fortunately, it is blocked by specific inhibitors GDC-0068 or PDTC. This study provides a new treatment strategy for preventing and alleviating health damage in the occupational population caused by rLLB exposure.
Collapse
Affiliation(s)
- Chenhao Geng
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jiale Chen
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Zizheng Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
38
|
Zhu J, Wang S, Yang D, Xu W, Qian H. Extracellular vesicles: emerging roles, biomarkers and therapeutic strategies in fibrotic diseases. J Nanobiotechnology 2023; 21:164. [PMID: 37221595 DOI: 10.1186/s12951-023-01921-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Extracellular vesicles (EVs), a cluster of cell-secreted lipid bilayer nanoscale particles, universally exist in body fluids, as well as cell and tissue culture supernatants. Over the past years, increasing attention have been paid to the important role of EVs as effective intercellular communicators in fibrotic diseases. Notably, EV cargos, including proteins, lipids, nucleic acids, and metabolites, are reported to be disease-specific and can even contribute to fibrosis pathology. Thus, EVs are considered as effective biomarkers for disease diagnosis and prognosis. Emerging evidence shows that EVs derived from stem/progenitor cells have great prospects for cell-free therapy in various preclinical models of fibrotic diseases and engineered EVs can improve the targeting and effectiveness of their treatment. In this review, we will focus on the biological functions and mechanisms of EVs in the fibrotic diseases, as well as their potential as novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Junyan Zhu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Sicong Wang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dakai Yang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Qian
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
39
|
Xue Y, Wang M, Han H. Interaction between alveolar macrophages and epithelial cells during Mycoplasma pneumoniae infection. Front Cell Infect Microbiol 2023; 13:1052020. [PMID: 37113130 PMCID: PMC10126420 DOI: 10.3389/fcimb.2023.1052020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Mycoplasma pneumoniae, as one of the most common pathogens, usually causes upper respiratory tract infections and pneumonia in humans and animals. It accounts for 10% to 40% of community-acquired pneumonia in children. The alveolar epithelial cells (AECs) are the first barrier against pathogen infections, triggering innate immune responses by recruiting and activating immune cells when pathogens invade into the lung. Alveolar macrophages (AMs) are the most plentiful innate immune cells in the lung, and are the first to initiate immune responses with pathogens invasion. The cross-talk between the alveolar epithelium and macrophages is necessary to maintain physiological homeostasis and to eradicate invaded pathogen by regulating immune responses during Mycoplasma pneumoniae infections. This review summarizes the communications between alveolar macrophages and epithelial cells during Mycoplasma pneumoniae infections, including cytokines-medicated communications, signal transduction by extracellular vesicles, surfactant associated proteins-medicated signal transmission and establishment of intercellular gap junction channels.
Collapse
Affiliation(s)
- Yazhi Xue
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengyao Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Lai X, Zhong J, Zhang B, Zhu T, Liao R. Exosomal Non-Coding RNAs: Novel Regulators of Macrophage-Linked Intercellular Communication in Lung Cancer and Inflammatory Lung Diseases. Biomolecules 2023; 13:536. [PMID: 36979471 PMCID: PMC10046066 DOI: 10.3390/biom13030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Macrophages are innate immune cells and often classified as M1 macrophages (pro-inflammatory states) and M2 macrophages (anti-inflammatory states). Exosomes are cell-derived nanovesicles that range in diameter from 30 to 150 nm. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are abundant in exosomes and exosomal ncRNAs influence immune responses. Exosomal ncRNAs control macrophage-linked intercellular communication via their targets or signaling pathways, which can play positive or negative roles in lung cancer and inflammatory lung disorders, including acute lung injury (ALI), asthma, and pulmonary fibrosis. In lung cancer, exosomal ncRNAs mediated intercellular communication between lung tumor cells and tumor-associated macrophages (TAMs), coordinating cancer proliferation, migration, invasion, metastasis, immune evasion, and therapy resistance. In inflammatory lung illnesses, exosomal ncRNAs mediate macrophage activation and inflammation to promote or inhibit lung damage. Furthermore, we also discussed the possible applications of exosomal ncRNA-based therapies for lung disorders.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Boyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ren Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Feng Z, Jing Z, Li Q, Chu L, Jiang Y, Zhang X, Yan L, Liu Y, Jiang J, Xu P, Chen Q, Wang M, Yang H, Zhou G, Jiang X, Chen X, Xia H. Exosomal STIMATE derived from type II alveolar epithelial cells controls metabolic reprogramming of tissue-resident alveolar macrophages. Theranostics 2023; 13:991-1009. [PMID: 36793853 PMCID: PMC9925314 DOI: 10.7150/thno.82552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Background: Complete abolition of alveolar epithelial cells (AECs) is characteristic of end-stage lung disease. Transplantation therapy of type II AECs (AEC-IIs) or AEC-IIs-derived exosomes (ADEs) have been proposed as a means of repairing injury and preventing fibrosis. However, the mechanism by which ADEs balances airway immunity and alleviates damage and fibrosis remains unknown. Methods: We investigated STIM-activating enhancer-positive ADEs (STIMATE+ ADEs) in the lung of 112 ALI/ARDS and 44 IPF patients, and observed the correlation between STIMATE+ ADEs and subpopulation proportion and metabolic status of tissue-resident alveolar macrophages (TRAMs). We constructed the conditional knockout mice STIMATE sftpc , in which STIMATE was specifically knocked out in mouse AEC-IIs and observed the effects of STIMATE+ ADEs deficiency on disease progression, immune selection and metabolic switching of TRAMs. We constructed a BLM-induced AEC-IIs injury model to observe the salvage treatment of damage/fibrosis progression with STIMATE+ ADEs supplementation. Results: In clinical analysis, the distinct metabolic phenotypes of AMs in ALI/ARFS and IPF were significantly perturbed by STIMATE+ ADEs. The immune and metabolic status of TRAMs in the lungs of STIMATE sftpc mice was imbalanced, resulting in spontaneous inflammatory injury and respiratory disorders. STIMATE+ ADEs are taken up by tissue-resident alveolar macrophages TRAMs to regulate high Ca2+ responsiveness and long-term Ca2+ signal transduction, which maintains M2-like immunophenotype and metabolism selection. This involves calcineurin (CaN)-PGC-1α pathway mediated mitochondrial biogenesis and mtDNA coding. In a bleomycin-induced mouse fibrosis model, supplementation with inhaled STIMATE+ ADEs lessened early acute injury, prevented advanced fibrosis, alleviated ventilatory impairment and reduced mortality.
Collapse
Affiliation(s)
- Zunyong Feng
- School of Biological Sciences and Medical Engineering & Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China.,The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College and Anhui Normal University, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore. Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore.,Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Zhou Jing
- Department of Anatomy & Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Qiang Li
- Department of Anatomy & Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Liuxi Chu
- School of Biological Sciences and Medical Engineering & Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China
| | - YuXin Jiang
- Department of Pathogenic Biology and Immunology, School of Medicine, Jiaxing University, Jiaxing, China
| | - Xuanbo Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore. Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Liang Yan
- Department of Anatomy & Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yinhua Liu
- Department of Pathology & Central Laboratory Intensive & Care Unit, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jing Jiang
- Department of Anatomy & Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Ping Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Qun Chen
- Department of Pathology & Central Laboratory Intensive & Care Unit, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Yang
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College and Anhui Normal University, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College and Anhui Normal University, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore. Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Hongping Xia
- School of Biological Sciences and Medical Engineering & Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China.,The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College and Anhui Normal University, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.,Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Growth Differentiation Factor 7 Prevents Sepsis-Induced Acute Lung Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3676444. [PMID: 36588594 PMCID: PMC9800101 DOI: 10.1155/2022/3676444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022]
Abstract
Objective Acute lung injury (ALI) is a life-threatening complication during sepsis and contributes to multiple organ failure and high mortality for septic patients. The present study aims to investigate the role and molecular basis of growth differentiation factor 7 (GDF7) in sepsis-induced ALI. Methods Mice were subcutaneously injected with recombinant mouse GDF7 Protein (rmGDF7) and then intratracheally injected with lipopolysaccharide (LPS) to generate sepsis-induced ALI. Primary peritoneal macrophages were isolated to further evaluate the role and underlying mechanism of GDF7 in vitro. Results GDF7 was downregulated in LPS-stimulated lung tissues, and rmGDF7 treatment significantly inhibited inflammation and oxidative stress in ALI mice, thereby preventing LPS-induced pulmonary injury and dysfunction. Mechanistically, we found that rmGDF7 activated AMP-activated protein kinase (AMPK), and AMPK inhibition significantly blocked the anti-inflammatory and antioxidant effects of rmGDF7 during LPS-induced ALI. Further findings revealed that rmGDF7 activated AMPK through a downregulated stimulator of interferon gene (STING) in vivo and in vitro. Conclusion GDF7 prevents LPS-induced inflammatory response, oxidative stress, and ALI by regulating the STING/AMPK pathway. Our findings for the first time identify GDF7 as a potential agent for the treatment of sepsis-induced ALI.
Collapse
|
43
|
Li X, Sun M, Qi H, Ju C, Chen Z, Gao X, Lin Z. Identification of a Chromosome 1 Substitution Line B6-Chr1BLD as a Novel Hyperlipidemia Model via Phenotyping Screening. Metabolites 2022; 12:metabo12121276. [PMID: 36557314 PMCID: PMC9781061 DOI: 10.3390/metabo12121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperlipidemia is a chronic disease that seriously affects human health. Due to the fact that traditional animal models cannot fully mimic hyperlipidemia in humans, new animal models are urgently needed for basic drug research on hyperlipidemia. Previous studies have demonstrated that the genomic diversity of the wild mice chromosome 1 substitution lines was significantly different from that of laboratory mice, suggesting that it might be accompanied by phenotypic diversity. We first screened the blood lipid-related phenotype of chromosome 1 substitution lines. We found that the male HFD-fed B6-Chr1BLD mice showed more severe hyperlipidemia-related phenotypes in body weight, lipid metabolism and liver lesions. By RNA sequencing and whole-genome sequencing results of B6-Chr1BLD, we found that several differentially expressed single nucleotide polymorphism enriched genes were associated with lipid metabolism-related pathways. Lipid metabolism-related genes, mainly including Aida, Soat1, Scly and Ildr2, might play an initial and upstream role in the abnormal metabolic phenotype of male B6-Chr1BLD mice. Taken together, male B6-Chr1BLD mice could serve as a novel, polygenic interaction-based hyperlipidemia model. This study could provide a novel animal model for accurate clinical diagnosis and precise medicine of hyperlipidemia.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Minli Sun
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Hao Qi
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
- Correspondence: (H.Q.); (Z.L.)
| | - Cunxiang Ju
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Zhong Chen
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (H.Q.); (Z.L.)
| |
Collapse
|
44
|
Chen R, Cao C, Liu H, Jiang W, Pan R, He H, Ding K, Meng Q. Macrophage Sprouty4 deficiency diminishes sepsis-induced acute lung injury in mice. Redox Biol 2022; 58:102513. [PMID: 36334381 PMCID: PMC9637958 DOI: 10.1016/j.redox.2022.102513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Inflammation and oxidative stress play critical roles in sepsis-induced acute lung injury (ALI). Sprout4 (Spry4) is involved in regulating inflammation and tissue injury; however, its role and mechanism in sepsis-induced ALI remain elusive. METHODS Macrophage-specific Spry4 knockout (Spry4MKO), transgenic (Spry4MTG) mice and matched control littermates were generated and exposed to cecum ligation and puncture (CLP) surgery to establish bacterial sepsis-induced ALI. Bone marrow-derived macrophages (BMDMs) from Spry4MKO or Spry4MTG mice were isolated and subjected to lipopolysaccharide (LPS) stimulation to further validate the role of Spry4 in vitro. To verify the necessity of AMP-activated protein kinase (AMPK), Spry4 and AMPK double knockout mice and compound C were used in vivo and in vitro. BMDMs were treated with STO-609 to inhibit calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2). RESULTS We found that macrophage Spry4 was increased in CLP mice and positively correlated with sepsis-induced ALI. Macrophage Spry4 deficiency prevented, while macrophage Spry4 overexpression exacerbated sepsis-induced inflammation, oxidative stress and ALI in mice and BMDMs. Mechanistic studies revealed that macrophage Spry4 deficiency alleviated sepsis-induced ALI through activating CaMKK2/AMPK pathway. CONCLUSION Our study identify macrophage Spry4 as a promising predictive and therapeutic target of sepsis-induced ALI.
Collapse
Affiliation(s)
- Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Cao
- Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huimin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Pan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - He He
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
45
|
Rao H, Song X, Lei J, Lu P, Zhao G, Kang X, Zhang D, Zhang T, Ren Y, Peng C, Li Y, Pei J, Cao Z. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. Int J Mol Sci 2022; 23:13478. [PMID: 36362264 PMCID: PMC9657648 DOI: 10.3390/ijms232113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI.
Collapse
Affiliation(s)
- Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
46
|
Liu X, Li Z, Zheng Y, Wang W, He P, Guan K, Wu T, Wang X, Zhang X. Extracellular vesicles isolated from hyperuricemia patients might aggravate airway inflammation of COPD via senescence-associated pathway. J Inflamm (Lond) 2022; 19:18. [PMID: 36324164 PMCID: PMC9628085 DOI: 10.1186/s12950-022-00315-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUNDS Chronic obstructive pulmonary disease (COPD) is a major health issue resulting in significant mortality worldwide. Due to the high heterogeneity and unclear pathogenesis, the management and therapy of COPD are still challenging until now. Elevated serum uric acid(SUA) levels seem to be associated with the inflammatory level in patients with COPD. However, the underlying mechanism is not yet clearly established. In the current research, we aim to elucidate the effect of high SUA levels on airway inflammation among COPD patients. METHODS Through bioinformatic analysis, the common potential key genes were determined in both COPD and hyperuricemia (HUA) patients. A total of 68 COPD patients aged 50-75-year were included in the study, and their clinical parameters, including baseline characteristics, lung function test, as well as blood chemistry test were recorded. These parameters were then compared between the COPD patients with and without HUA. Hematoxylin & Eosin (HE), immunofluorescence (IF), and Masson trichrome staining were performed to demonstrate the pathological changes in the lung tissues. Furthermore, we isolated extracellular vesicles (EVs) from plasma, sputum, and bronchoalveolar lavage fluid (BALF) samples and detected the expression of inflammatory factor (Interleukin-6 (IL-6), IL-8 and COPD related proteases (antitrypsin and elastase) between two groups. Additionally, we treated the human bronchial epithelial (HBE) cells with cigarette smoke extract (CSE), and EVs were derived from the plasma in vitro experiments. The critical pathway involving the relationship between COPD and HUA was eventually validated based on the results of RNA sequencing (RNA-seq) and western blot (WB). RESULTS In the study, the COPD patients co-existing with HUA were found to have more loss of pulmonary function compared with those COPD patients without HUA. The lung tissue samples of patients who had co-existing COPD and HUA indicated greater inflammatory cell infiltration, more severe airway destruction and even fibrosis. Furthermore, the high SUA level could exacerbate the progress of airway inflammation in COPD through the transfer of EVs. In vitro experiments, we determined that EVs isolated from plasma, sputum, and BALF played pivotal roles in the CSE-induced inflammation of HBE. The EVs in HUA patients might exacerbate both systemic inflammation and airway inflammatory response via the senescence-related pathway. CONCLUSION The pulmonary function and clinical indicators of COPD patients with HUA were worse than those without HUA, which may be caused by the increased airway inflammatory response through the EVs in the patient's peripheral blood. Moreover, it might mediate the EVs via senescence-related pathways in COPD patients with HUA.
Collapse
Affiliation(s)
- Xuanqi Liu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413087.90000 0004 1755 3939Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Yang Zheng
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Wenhao Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Peiqing He
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Kangwei Guan
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Tao Wu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xiaojun Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xuelin Zhang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| |
Collapse
|
47
|
Hu Q, Zhang S, Yang Y, Yao JQ, Tang WF, Lyon CJ, Hu TY, Wan MH. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res 2022; 9:61. [PMID: 36316787 PMCID: PMC9623953 DOI: 10.1186/s40779-022-00417-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common life-threatening lung diseases associated with acute and severe inflammation. Both have high mortality rates, and despite decades of research on clinical ALI/ARDS, there are no effective therapeutic strategies. Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury. Recently, studies on the role of extracellular vesicles (EVs) in regulating normal and pathophysiologic cell activities, including inflammation and injury responses, have attracted attention. Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes, which can be used to diagnose and predict the development of ALI/ARDS. EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function, and thereby promote cell proliferation and tissue regeneration. This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation, particularly ALI/ARDS.
Collapse
Affiliation(s)
- Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jia-Qi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wen-Fu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Christopher J Lyon
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA. .,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Mei-Hua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China. .,West China Hospital (Airport) of Sichuan University, Chengdu, 610299, China.
| |
Collapse
|
48
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
49
|
Jiang W, Ma C, Bai J, Du X. Macrophage SAMSN1 protects against sepsis-induced acute lung injury in mice. Redox Biol 2022; 56:102432. [PMID: 35981417 PMCID: PMC9418554 DOI: 10.1016/j.redox.2022.102432] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Inflammation and oxidative stress contribute to the progression of sepsis-induced acute lung injury (ALI). SAM domain, SH3 domain and nuclear localization signals 1 (SAMSN1) is a signaling adaptor protein, and mainly regulates inflammatory response of various immune cells. The present study generates macrophage-specific SAMSN1-knockout (Samsn1MKO) and SAMSN1-transgenic (Samsn1MTG) mice to investigate its role and mechanism in sepsis-induced ALI. METHODS Samsn1MKO and Samsn1MTG mice were exposed to lipopolysaccharide (LPS) instillation or cecal ligation and puncture (CLP) surgery to induce sepsis-induced ALI. Bone marrow transplantation, cellular depletion and non-invasive adoptive transfer of bone marrow-derived macrophages (BMDMs) were performed to validate the role of macrophage SAMSN1 in sepsis-induced ALI in vivo. Meanwhile, BMDMs were isolated from Samsn1MKO or Samsn1MTG mice to further clarify the role of SAMSN1 in vitro. RESULTS Macrophage SAMSN1 expression was increased in response to LPS stimulation, and negatively correlated with LPS-induced ALI in mice. Macrophage SAMSN1 deficiency exacerbated, while macrophage SAMSN1 overexpression ameliorated LPS-induced inflammation, oxidative stress and ALI in mice and in BMDMs. Mechanistically, we found that macrophage SAMSN1 overexpression prevented LPS-induced ALI though activating AMP-activated protein kinase α2 (AMPKα2) in vivo and in vitro. Further studies revealed that SAMSN1 directly bound to growth factor receptor bound protein 2-associated protein 1 (GAB1) to prevent its protein degradation, and subsequently enhanced protein kinase A (PKA)/AMPKα2 activation in a protein tyrosine phosphatase, non-receptor type 11 (PTPN11, also known as SHP2)-dependent manner. Moreover, we observed that macrophage SAMSN1 overexpression diminished CLP-induced ALI in mice. CONCLUSION Our study documents the protective role of macrophage SAMSN1 against sepsis-induced inflammation, oxidative stress and ALI through activating AMPKα2 in a GAB1/SHP2/PKA pathway, and defines it as a promising biomarker and therapeutic target to treat sepsis-induced ALI.
Collapse
Affiliation(s)
- Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chengtai Ma
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawei Bai
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xianjin Du
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
50
|
Wang Z, Li F, Liu J, Luo Y, Guo H, Yang Q, Xu C, Ma S, Chen H. Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Front Immunol 2022; 13:913178. [PMID: 35774796 PMCID: PMC9237221 DOI: 10.3389/fimmu.2022.913178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Severe acute pancreatitis (SAP), one of the most serious abdominal emergencies in general surgery, is characterized by acute and rapid onset as well as high mortality, which often leads to multiple organ failure (MOF). Acute lung injury (ALI), the earliest accompanied organ dysfunction, is the most common cause of death in patients following the SAP onset. The exact pathogenesis of ALI during SAP, however, remains unclear. In recent years, advances in the microbiota-gut-lung axis have led to a better understanding of SAP-associated lung injury (PALI). In addition, the bidirectional communications between intestinal microbes and the lung are becoming more apparent. This paper aims to review the mechanisms of an imbalanced intestinal microbiota contributing to the development of PALI, which is mediated by the disruption of physical, chemical, and immune barriers in the intestine, promotes bacterial translocation, and results in the activation of abnormal immune responses in severe pancreatitis. The pathogen-associated molecular patterns (PAMPs) mediated immunol mechanisms in the occurrence of PALI via binding with pattern recognition receptors (PRRs) through the microbiota-gut-lung axis are focused in this study. Moreover, the potential therapeutic strategies for alleviating PALI by regulating the composition or the function of the intestinal microbiota are discussed in this review. The aim of this study is to provide new ideas and therapeutic tools for PALI patients.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| |
Collapse
|