1
|
Xie P, Qu T, Tang K, Huang Y, Zeng G, Yuan H, Xin Q, Zhao Y, Yang J, Zeng C, Wu X, Yang ST, Tang X. Carbon nanoparticles-Fe(II) complex combined with sorafenib for ferroptosis-induced antitumor effects in triple-negative breast cancer. Colloids Surf B Biointerfaces 2025; 250:114562. [PMID: 39965484 DOI: 10.1016/j.colsurfb.2025.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer that lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, whose systemic treatment options are currently limited to chemotherapy. Carbon nanoparticles-Fe(II) complex (CNSI-Fe) is a promising antitumor drug that induces ferroptosis to kill tumor cells efficiently. In this study, we combined CNSI-Fe and a ferroptosis inducer sorafenib (SRF) to achieve the efficient chemotherapy of TNBC. CNSI-Fe could adsorb SRF by hydrophobic interaction and π-π stacking with a maximum adsorption capacity of 31 mg/g. During the in vitro assays, CNSI-Fe+SRF combination inhibited the cell viability of 4T1 cells much more efficiently than CNSI-Fe or SRF alone. The high Fe uptake, hydroxyl radical generation and oxidative damages verified the ferroptosis of 4T1 cells upon the CNSI-Fe+SRF treatment. During the in vivo evaluations, SRF enhanced the therapeutic effect of CNSI-Fe as indicated by the higher tumor growth inhibition rate of 67.8 % and the higher survival rate. CNSI captured SRF in tumor to give a 6 mg/kg uptake, which lowered the glutathione peroxidase 4 (GPX4) level and enhanced the hydroxyl radical production of 4T1 tumor. In addition, CNSI-Fe treatment up-regulated the genes associated with antioxidative responses, but the up-regulation was offset by SRF. CNSI-Fe+SRF group showed similar toxicity to mice as SRF alone in the biosafety evaluations. Our results collectively indicated that the combination of CNSI-Fe and SRF could efficiently treat TNBC through ferroptosis.
Collapse
Affiliation(s)
- Ping Xie
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Ting Qu
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Kexin Tang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuanfang Huang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Guangfu Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Huahui Yuan
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Qian Xin
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Yufeng Zhao
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Jinmei Yang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Cheng Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Xian Wu
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Sheng-Tao Yang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaohai Tang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China.
| |
Collapse
|
2
|
Wang JL, Ji WW, Huang AL, Liu Z, Chen DF. CEBPA Restrains the Malignant Progression of Breast Cancer by Prompting the Transcription of SOCS2. Mol Biotechnol 2025; 67:2127-2137. [PMID: 38775935 DOI: 10.1007/s12033-024-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/23/2024] [Indexed: 04/10/2025]
Abstract
The suppressor of cytokine signaling 2 (SOCS2) has been identified to act as a tumor suppressor in breast cancer (BC) progression. However, the action of SOCS2 in macrophage polarization in BC cells has not been reported yet. The qRT-PCR and western blotting were adopted for detecting the levels of mRNAs and proteins. The macrophage M2 polarization was analyzed by flow cytometry. Analyses of cell oncogenic phenotypes and tumor growth were conducted using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, scratch, Transwell, tube formation assays in vitro, and tumor xenograft assay in vivo, respectively. The interaction between CEBPA (CCAAT Enhancer Binding Protein Alpha) and SOCS2 was confirmed using bioinformatics analysis and dual-luciferase reporter assay. SOCS2 was lowly expressed in BC tissues and cells. Functionally, overexpression of SOCS2 inhibited macrophage M2 polarization, and impaired BC cell proliferation, angiogenesis, and metastasis. Mechanistically, CEBPA bound to the promoter region of SOCS2, and promoted its transcription. A low CEBPA expression was observed in BC tissues and cells. Forced expression of CEBPA also suppressed macrophage M2 polarization, BC cell proliferation, angiogenesis, and metastasis. Moreover, the anticancer effects mediated by CEBPA were abolished by SOCS2 knockdown. In addition, CEBPA overexpression impeded BC growth in nude mice by regulating SOCS2. CEBPA suppressed macrophage M2 polarization, BC cell proliferation, angiogenesis, and metastasis by promoting SOCS2 transcription in a targeted manner.
Collapse
Affiliation(s)
- Jin-Li Wang
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China
| | - Wei-Wei Ji
- Department of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Ao-Li Huang
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China
| | - Zhen Liu
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China
| | - Deng-Feng Chen
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
3
|
Lan X, Zhang H, Chen ZY, Wang J, Zhang SC, Li Q, Ke JY, Wei W, Huang R, Tang X, Chen SP, Huang TT, Zhou YW. Suppressor of cytokine signaling 2 modulates regulatory T cell activity to suppress liver hepatocellular carcinoma growth and metastasis. World J Gastroenterol 2025; 31:100566. [DOI: 10.3748/wjg.v31.i13.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a highly aggressive cancer with poor prognosis due to its complex tumor microenvironment (TME) and immune evasion. Regulatory T cells (Tregs) play a critical role in tumor progression. Suppressor of cytokine signaling 2 (SOCS2), a key immune regulator, may modulate Treg activity and impact LIHC growth and metastasis.
AIM To explore how the SOCS2 affects Treg activity in LIHC and its impact on tumor growth and metastasis.
METHODS LIHC transcriptome data from The Cancer Genome Atlas database were analyzed using Gene Set Enrichment Analysis, Estimation of Stromal and Immune Cells in Malignant Tumors Using Expression Data, and Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts to evaluate immune pathways and Treg infiltration. Key prognostic genes were identified using Weighted Gene Co-expression Network Analysis and machine learning. In vitro, co-culture experiments, migration assays, apoptosis detection, and enzyme-linked immunosorbent assay were conducted. In vivo, tumor growth, metastasis, and apoptosis were assessed using subcutaneous and lung metastasis mouse models with hematoxylin and eosin staining, Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling, and immunohistochemistry analyses.
RESULTS SOCS2 overexpression inhibited Treg cell activity, reducing LIHC cell migration and invasion while increasing apoptosis. In vivo, SOCS2 suppressed tumor growth and metastasis, confirming its therapeutic potential.
CONCLUSION SOCS2 modulates CD4+ T function in the TME, contributing to LIHC progression. Targeting SOCS2 presents a potential therapeutic strategy for treating LIHC.
Collapse
Affiliation(s)
- Xi Lan
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Heng Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ze-Yan Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jing Wang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Shi-Chang Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Qing Li
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Juan-Yu Ke
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Wei Wei
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Rong Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Xi Tang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Si-Ping Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ting-Ting Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Yi-Wen Zhou
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| |
Collapse
|
4
|
Garcia-Baez J, Chaves-Negrón I, Javadov S, Bazil JN, Chapa-Dubocq XR. Developing a physiologically relevant cell model of ferroptosis in cardiomyocytes. Free Radic Biol Med 2025; 233:330-339. [PMID: 40185165 DOI: 10.1016/j.freeradbiomed.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Excessive intracellular labile iron levels exacerbate reactive oxygen species (ROS) production through the Fenton reaction, leading to lipid peroxidation and ferroptotic cell death. Ferroptosis is commonly induced experimentally using chemical inhibitors such as RSL3 (a GPX4 inhibitor) or erastin (an inhibitor of the cystine-glutamate exchanger, Xc-) or by cysteine deprivation. However, these methods often fail to replicate the physiological complexity of ferroptosis and are associated with off-target effects. This study establishes a physiologically relevant model of ferroptosis in cardiomyocytes using ferric acetate (FAC) and tert-butyl hydroperoxide (TBH) to simulate iron overload and ROS generation. The combined application of FAC and TBH induced ferroptotic cell death, characterized by increased cytoplasmic Fe2+ levels, elevated lipid peroxidation, and a 2.5-fold rise in cell death, while FAC or TBH alone had minimal effects. Ferroptosis was confirmed by the complete prevention of cell death using ferrostatin-1 (a lipid peroxidation inhibitor) and ML351 (a 15-lipoxygenase inhibitor). Notably, this model bypasses the limitations of traditional synthetic inducers, such as off-target effects and inefficient mimicry of physiological conditions. Additionally, lipid peroxidation levels induced by the FAC-TBH combination were significantly higher than those induced by RSL3, further validating the relevance of this approach. These findings underscore the critical interplay between iron and ROS in ferroptotic cell death and highlight the utility of this model in advancing our understanding of ferroptosis mechanisms. This physiologically relevant system provides a robust platform for investigating therapeutic interventions targeting iron-induced oxidative stress and ferroptosis, particularly in conditions characterized by pathological iron accumulation, such as cardiomyopathies and ischemia-reperfusion injury. By focusing on the intrinsic drivers of ferroptosis, this work lays the groundwork for developing targeted treatments to mitigate ferroptosis-associated cellular damage.
Collapse
Affiliation(s)
- Jorge Garcia-Baez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Ivana Chaves-Negrón
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Jason N Bazil
- Department of Physiology, Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824-1046, USA.
| | - Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA.
| |
Collapse
|
5
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
6
|
Li M, Jin S, Ma H, Yang X, Zhang Z. Reciprocal regulation between ferroptosis and STING-type I interferon pathway suppresses head and neck squamous cell carcinoma growth through dendritic cell maturation. Oncogene 2025:10.1038/s41388-025-03368-2. [PMID: 40164871 DOI: 10.1038/s41388-025-03368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/23/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a serious clinical challenge mainly due to its resistance to conventional therapies and its complex, immunosuppressive tumor microenvironment. While recent studies have identified ferroptosis as a new therapeutic option, its impact on the immune microenvironment in HNSCC remains controversial, which may hinder its translational application. Although the role of the stimulator of interferon genes (STING)-type I interferon (IFN-I) pathway in antitumor immune responses has been widely investigated, its relationship with ferroptosis in HNSCC has not been fully explored. In this study, we discovered that ferroptosis in HNSCC inhibited tumor growth, activated STING-IFN-I pathway and subsequently improved recruitment and maturation of dendritic cells. We further demonstrated that IFN-I could enhance ferroptosis by inhibiting xCT-glutathione peroxidase 4 (GPX4) antioxidant system. To harness this positive feedback loop, we treated HNSCC tumors with both ferroptosis inducer and STING agonist, resulting in significant tumor suppression, elevated ferroptosis levels and enhanced dendritic cell infiltration. Overall, our findings reveal a mutually regulatory relationship between ferroptosis and the intrinsic STING-IFN-I pathway, providing novel insights into immune-mediated tumor suppression and suggesting its potential as therapeutic approach in HNSCC.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology. No. 639, Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China
| | - Shufang Jin
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology. No. 639, Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology. No. 639, Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology. No. 639, Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology. No. 639, Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
7
|
Huang C, Tang B, Chen W, Chen J, Zhang H, Bai M. Multiomic traits reveal that critical irinotecan-related core regulator FSTL3 promotes CRC progression and affects ferroptosis. Cancer Cell Int 2025; 25:115. [PMID: 40140870 PMCID: PMC11938592 DOI: 10.1186/s12935-025-03753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Irinotecan is a widely used chemotherapy drug in colorectal cancer (CRC). The evolution and prognosis of CRC involve complex mechanisms and depend on the drug administered, especially for irinotecan. However, the specific mechanism and prognostic role of irinotecan-related regulators remain to be elucidated. METHODS Data from public databases were used to explore the multiomic traits of irinotecan-related regulators through bioinformatics analysis. RT‒qPCR, western blotting, transmission electron microscopy and flow cytometry were used as experimental validations. RESULTS Iriscore (irinotecan-related score) was constructed based on irinotecan-related regulators, and a high iriscore predicted a poor prognosis, poor therapeutic response and the MSS/MSI-L status. Single-cell analysis revealed that FSTL3 and TMEM98 were mainly expressed in CRC stem cells. Potential transcription factors (E2F1, STAT1, and TTF2) and therapeutic drugs (telatinib) that target irinotecan-related regulators were identified. FSTL3 was the core risk irinotecan-related regulator. Some ferroptosis regulators (GPX4, HSPB1 and RGS4) and related metabolic pathways (lipid oxidation and ROS metabolism) were correlated significantly with FSTL3. In vitro, irinotecan inhibited the expression of FSTL3 and ferroptotic defence proteins (GPX4 and SLC7A11), and induced lipid peroxidation and intracellular Fe (2+) ions concentration increased. CONCLUSIONS We confirmed that irinotecan-related regulators, especially FSTL3, have effective prognostic value in CRC and speculated that FSTL3 may promote CRC progression and affect ferroptosis, which is beneficial for identifying candidate targeted irinotecan-related regulators and accurate individualized treatment strategies for CRC.
Collapse
Affiliation(s)
- Chengyi Huang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjuan Chen
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, China
| | - Jinggang Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
8
|
Yao S, Quan Y. Research progress of ferroptosis pathway and its related molecular ubiquitination modification in liver cancer. Front Oncol 2025; 15:1502673. [PMID: 40190567 PMCID: PMC11968660 DOI: 10.3389/fonc.2025.1502673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
As a new type of programmed cell death, ferroptosis is characterized by iron metabolism disorder and reactive oxygen species (ROS) accumulation, and is involved in regulating the occurrence and development of cancer cells. Especially in the field of liver cancer treatment, ferroptosis shows great potential because it can induce tumor cell death. Ubiquitination is a process of protein post-translational modification, which can affect the stability of proteins and regulate the progress of ferroptosis. This article reviews the research progress of ubiquitination modification of molecules related to ferroptosis pathway in the regulation of liver cancer, providing a new strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Silin Yao
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Quan
- The First People’s Hospital of Zhaoqing, Guangdong Medical University, Zhaoqing, Guangdong, China
| |
Collapse
|
9
|
Chen L, Ning J, Linghu L, Tang J, Liu N, Long Y, Sun J, Lv C, Shi Y, Tao T, Xiao D, Cao Y, Wang X, Liu S, Li G, Zhang B, Tao Y. USP13 facilitates a ferroptosis-to-autophagy switch by activation of the NFE2L2/NRF2-SQSTM1/p62-KEAP1 axis dependent on the KRAS signaling pathway. Autophagy 2025; 21:565-582. [PMID: 39360581 PMCID: PMC11849926 DOI: 10.1080/15548627.2024.2410619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Macroautophagy/autophagyis a lysosomal-regulated degradation process that participates incellular stress and then promotes cell survival or triggers celldeath. Ferroptosis was initially described as anautophagy-independent, iron-regulated, nonapoptotic cell death.However, recent studies have revealed that autophagy is positivelyassociated with sensitivity to ferroptosis. Nonetheless, themolecular mechanisms by which these two types of regulated cell death(RCD) modulate each other remain largely unclear. Here, we screened85 deubiquitinating enzymes (DUBs) and found that overexpression ofUSP13 (ubiquitin specific peptidase 13) could significantlyupregulate NFE2L2/NRF2 (NFE2 like bZIP transcription factor 2)protein levels. In addition, in 39 cases of KRAS-mutated lungadenocarcinoma (LUAD), we found that approximately 76% of USP13overexpression is positively correlated with NFE2L2 overexpression.USP13 interacts with and catalyzes the deubiquitination of thetranscription factor NFE2L2. Additionally, USP13 depletion promotesan autophagy-to-ferroptosis switch invitro andin xenograft tumor mouse models, through the activation of theNFE2L2-SQSTM1/p62 (sequestosome 1)-KEAP1 axis in KRAS mutant cellsand tumor tissues. Hence, targeting USP13 effectively switchedautophagy-to-ferroptosis, thereby inhibiting KRAS (KRASproto-oncogene, GTPase) mutant LUAD, suggesting the therapeuticpromise of combining autophagy and ferroptosis in the KRAS-mutantLUAD.Abbreviation: ACSL4: acyl-CoA synthetase long-chain family member 4; ACTB: actin beta; AL: autolysosomes; AP: autophagosomes; BCL2L1/BCL-xL: BCL2 like 1; CCK8: Cell Counting Kit-8; CQ: chloroquine; CUL3: cullin 3; DMSO: dimethyl sulfoxide; DOX: doxorubicin; DUB: deubiquitinating enzyme; Ferr-1: ferrostatin-1; GPX4: glutathione peroxidase 4; GSEA: gene set enrichment analysis; 4HNE: 4-hydroxynonenal; IKE: imidazole ketone erastin; KEAP1: kelch like ECH associated protein 1; KRAS: KRAS proto-oncogene, GTPase; LCSC: lung squamous cell carcinoma; IF: immunofluorescence; LUAD: lung adenocarcinoma; Lys05: Lys01 trihydrochloride; MAPK1/ERK2/p42: mitogen-activated protein kinase 1; MAPK3/ERK1/p44; MTOR: mechanistic target of rapamycin kinase; NFE2L2/NRF2: NFE2 like bZIP transcription factor, 2; NQO1: NAD(P)H quinone dehydrogenase 1; PG: phagophore; RCD: regulated cell death; RAPA: rapamycin; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBB/beta-tubulin: tubulin, beta; UPS: ubiquitin-proteasome system; USP13: ubiquitin specific peptidase 13.
Collapse
Affiliation(s)
- Ling Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jieling Ning
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, China
| | - Li Linghu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jun Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Neurosurgery, Postdoctoral Research Workstation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Long
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jingyue Sun
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Cairui Lv
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Tania Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangjian Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Kunming, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Wang H, Liang L, Xie Y, Gong H, Fan F, Wen C, Jiang Y, Lei S, Qiu X, Peng H, Ye M, Xiao X, Liu J. Pseudokinase TRIB3 stabilizes SSRP1 via USP10-mediated deubiquitination to promote multiple myeloma progression. Oncogene 2025; 44:694-708. [PMID: 39653795 DOI: 10.1038/s41388-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 03/05/2025]
Abstract
Multiple myeloma (MM), the world's second most common hematologic malignancy, poses considerable clinical challenges due to its aggressive progression and resistance to therapy. Addressing these challenges requires a detailed understanding of the mechanisms driving MM initiation, progression, and therapeutic resistance. This study identifies the pseudokinase tribble homolog 3 (TRIB3) as a high-risk factor that promotes MM malignancy in vitro and in vivo. Mechanistically, TRIB3 directly interacts with structure-specific recognition protein 1 (SSRP1) and ubiquitin-specific peptidase 10 (USP10), facilitating the formation of a TRIB3/USP10/SSRP1 ternary complex. This complex stabilizes SSRP1 via USP10-mediated deubiquitination, thereby driving MM cell proliferation. Furthermore, a stapled peptide, SP-A, was developed, which effectively disrupts the TRIB3/USP10/SSRP1 complex, leading to a decrease in SSRP1 levels by inhibiting its stabilization through USP10. Notably, SP-A exhibits strong synergistic effects when combined with the proteasome inhibitor bortezomib. Given the critical role of the TRIB3/USP10/SSRP1 complex in MM pathophysiology, it represents a promising therapeutic target for MM treatment. In MM cells, TRIB3, USP10 and SSRP1 form a ternary complex and TRIB3 enhances the deubiquitinating effect of USP10 on SSRP1, leading to malignant progression of MM. In the case of drug intervention, SP-A attenuates the binding of SSRP1 and USP10 by inhibiting protein interactions between TRIB3 and SSRP1 and promoted SSRP1 protein degradation, leading to significant inhibition of MM development. Visual abstract created with Biorender.
Collapse
Affiliation(s)
- Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Feifan Fan
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yu Jiang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Shiying Lei
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Xili Qiu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
11
|
Du F, Wang G, Dai Q, Huang J, Li J, Liu C, Du K, Tian H, Deng Q, Xie L, Zhao X, Zhang Q, Yang L, Li Y, Wu Z, Zhang Z. Targeting novel regulated cell death: disulfidptosis in cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2025; 13:35. [PMID: 40012016 DOI: 10.1186/s40364-025-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The battle against cancer has evolved over centuries, from the early stages of surgical resection to contemporary treatments including chemotherapy, radiation, targeted therapies, and immunotherapies. Despite significant advances in cancer treatment over recent decades, these therapies remain limited by various challenges. Immune checkpoint inhibitors (ICIs), a cornerstone of tumor immunotherapy, have emerged as one of the most promising advancements in cancer treatment. Although ICIs, such as CTLA-4 and PD-1/PD-L1 inhibitors, have demonstrated clinical efficacy, their therapeutic impact remains suboptimal due to patient-specific variability and tumor immune resistance. Cell death is a fundamental process for maintaining tissue homeostasis and function. Recent research highlights that the combination of induced regulatory cell death (RCD) and ICIs can substantially enhance anti-tumor responses across multiple cancer types. In cells exhibiting high levels of recombinant solute carrier family 7 member 11 (SLC7A11) protein, glucose deprivation triggers a programmed cell death (PCD) pathway characterized by disulfide bond formation and REDOX (reduction-oxidation) reactions, termed "disulfidptosis." Studies suggest that disulfidptosis plays a critical role in the therapeutic efficacy of SLC7A11high cancers. Therefore, to investigate the potential synergy between disulfidptosis and ICIs, this study will explore the mechanisms of both processes in tumor progression, with the goal of enhancing the anti-tumor immune response of ICIs by targeting the intracellular disulfidptosis pathway.
Collapse
Affiliation(s)
- Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Guojun Wang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qian Dai
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Jiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junxin Li
- Department of pharmacy, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Congxing Liu
- Department of Pharmacy, Chengfei Hospital, Chengdu, 610000, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People's Hospital, Luzhou, 646000, Sichuan, China
| | - Hua Tian
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qiwei Deng
- Heruida Pharmaceutical Co.,ltd, Haikou, Hainan, 570100, China
| | - Longxiang Xie
- The TCM Hospital of Longquanyi District, Chengdu, 610100, Sichuan, China
| | - Xin Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qimin Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Lan Yang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Wu J, Zhao X, Ren B, Duan X, Sun J. Radioresistance in Hepatocellular Carcinoma: Biological Bases and Therapeutic Implications. Int J Mol Sci 2025; 26:1839. [PMID: 40076465 PMCID: PMC11899467 DOI: 10.3390/ijms26051839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality. Radiotherapy technology is a common treatment modality that can be used in all stages of HCC. However, in some cases, radiotherapy fails in clinical practice mainly because of the patient's resistance to radiotherapy, creating a bottleneck for future breakthroughs. HCC radiosensitivity is primarily related to DNA double-strand break repair, cellular autophagy, cell cycle, cellular metabolism, and hypoxic environmental regulators. Therefore, a comprehensive understanding of its molecular mechanisms will be of immense importance in reversing HCC radioresistance. In this review, we provide a comprehensive overview of the mechanism of action of radiotherapy on HCC, the cellular and molecular basis of radiation resistance in HCC, related treatment modalities, and future prospects.
Collapse
Affiliation(s)
- Jianhui Wu
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| | - Xiaofang Zhao
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bowen Ren
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| | - Xuezhang Duan
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
| | - Jing Sun
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| |
Collapse
|
13
|
Jiang Q, Chen Q, Sun Q, Liu D, Zhu J, Mao W. NADPH oxidase activator 1 (NOXA1) suppresses ferroptosis and radiosensitization in colorectal cancer. Int J Med Sci 2025; 22:1301-1312. [PMID: 40084254 PMCID: PMC11898851 DOI: 10.7150/ijms.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Radiotherapy is one of the main treatments for colorectal cancer (CRC), but due to the intrinsic resistance of cells or resistance caused by long-term radiotherapy, the effectiveness of this treatment is limited for some CRC patients. Consequently, identifying novel sensitization strategies is essential. This study identifies Noxa1 as a marker linked to radiotherapy resistance in CRC, suggesting its potential as a prognostic biomarker for patients with CRC. The study found that Noxa1 was significantly overexpressed in radiotherapy-resistant colorectal cancer patients, correlating with a poor prognosis. Additionally, we discovered that the high expression of Noxa1 was negatively correlated with ferroptosis and primarily played a role through the glutathione metabolic pathway, as indicated by GSVA analysis. Experimental data indicated that the expression levels of NOXA1, SLC7A11, and GPX4 were significantly elevated in CRC cell lines resistant to radiotherapy. The expression of SLC7A11 and GPX4 decreased after the knockdown of Noxa1, leading to an increase in cellular ROS levels, which induced ferroptosis and sensitized the cells to radiotherapy. Therefore, Noxa1 might influence the radiotherapy sensitivity of CRC via regulating ferroptosis. Targeting Noxa1 could enhance radiotherapy sensitization and improve the prognosis of CRC patients.
Collapse
Affiliation(s)
- Qingyu Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Dong Liu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| |
Collapse
|
14
|
Chen Y, Zhang D, Yang H, Wu J, He W. Advances in the study of disulfidptosis in digestive tract tumors. Discov Oncol 2025; 16:186. [PMID: 39954025 PMCID: PMC11829889 DOI: 10.1007/s12672-025-01875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Disulfidptosis, a recently identified cell death mechanism, plays a pivotal role in the development, progression, and treatment of digestive tract tumors, including gastric cancer, hepatocellular cancer, esophageal cancer, colorectal cancer, pancreatic cancer, cholangiocarcinoma, and neuroendocrine tumors, which have high global incidence and mortality rates. Analyzing the expression of disulfidptosis-related gene expression within the tumor microenvironment enhances our understanding of tumor biology and facilitates novel diagnostic and therapeutic strategies. Research on immune infiltration and checkpoints can identify therapeutic targets linked to disulfidptosis, thereby improving immunotherapy efficacy. Targeting genes such as SLC7A11, which are essential for maintaining glutathione levels and regulating oxidative stress, may overcome chemoresistance and enhance existing treatments. Disulfidptosis could complement current therapies as it induces cytoskeletal collapse and selective tumor cell death, especially in chemoresistant cancers. Additionally, genes like SLC7A11, RPN1, and NCKAP1 in gastric cancer correlate with poor prognosis, highlighting their potential as prognostic biomarkers. Personalized medicine approaches utilizing disulfidptosis-related biomarkers could identify patients who would benefit from therapies targeting oxidative stress regulation, leading to more precise treatments and improved outcomes. This review summarizes disulfidptosis mechanisms, advancements in digestive cancers, and the potential of related genes for prognosis, immune response evaluation, and targeted therapies, providing novel perspectives for diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Yue Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu Province, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu Province, China
| | - Haonan Yang
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu Province, China
| | - Wenting He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
15
|
Viana-Mattioli S, Fonseca-Alaniz MH, Pinheiro-de-Sousa I, Junior RR, Mastella MH, de Carvalho Cavalli R, Sandrim VC. Plasma from hypertensive pregnancy patients induce endothelial dysfunction even under atheroprotective shear stress. Sci Rep 2025; 15:4675. [PMID: 39920219 PMCID: PMC11805971 DOI: 10.1038/s41598-025-88902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Preeclampsia (PE) is a challenge in maternal healthcare due to its complex nature, characterized by high blood pressure, protein in the urine, and damage to various organs. There is evidence linking PE to endothelial dysfunction (ED), triggered by substances released from an oxygen-deprived placenta. Previous in vitro studies have not considered the impact of in vivo elements, such as the different patterns of blood flow, and laminar (LSS) vs. oscillatory (OSS) shear stress, on the development of ED. We investigated the impact of plasma from healthy pregnant women (HP), subjects with gestational hypertension (GH), and PE patients on global gene expression of human coronary endothelial cells (HCAECs) under LSS and OSS. Our findings revealed a unique transcriptional profile of endothelial cells induced by plasma incubation in LSS. Notably, OSS resulted in similar transcriptomes irrespective of plasma treatment. Under LSS, GH plasma resulted in a proliferative profile, whereas PE plasma was linked to pro-inflammatory and antioxidant profiles compared to HP plasma. Our findings demonstrate that shear stress levels influence the endothelial cell transcriptome in response to plasma from hypertensive pregnancy patients. Both PE and GH can induce endothelial dysfunction under atheroprotective LSS, with a more significant effect observed with PE-derived plasma.
Collapse
Affiliation(s)
- Sarah Viana-Mattioli
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Miriam Helena Fonseca-Alaniz
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Iguaracy Pinheiro-de-Sousa
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ricardo Rosa Junior
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Moises Henrique Mastella
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, Hospital das Clínicas, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Saverio V, Ferrario E, Monzani R, Gagliardi M, Favero F, Corà D, Santoro C, Corazzari M. AKRs confer oligodendrocytes resistance to differentiation-stimulated ferroptosis. Redox Biol 2025; 79:103463. [PMID: 39671850 PMCID: PMC11699626 DOI: 10.1016/j.redox.2024.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024] Open
Abstract
Ferroptosis is a recently characterized form of cell death that has gained attention for its roles in both pathological and physiological contexts. The existence of multiple anti-ferroptotic pathways in both neoplastic and healthy cells, along with the critical regulation of iron metabolism involved in lipid peroxides (lipid-ROS) production-the primary mediators of this cell death process-underscores the necessity of precisely controlling or preventing accidental/unwanted ferroptosis. Conversely, dysregulated iron metabolism and alterations in the expression or activity of key anti-ferroptotic components are linked to the development and progression of various human diseases, including multiple sclerosis (MS). In MS, the improper activation of ferroptosis has been associated with the progressive loss of myelinating oligodendrocytes (myOLs). Our study demonstrates that the physiological and maturation-dependent increase in iron accumulation within oligodendrocytes acts as a pro-ferroptotic signal, countered by the concurrent expression of AKR1C1. Importantly, MS-related neuroinflammation contributes to the down-regulation of AKR1C1 through miRNA-mediated mechanisms, rendering mature oligodendrocytes more vulnerable to ferroptosis. Together, these findings highlight the role of ferroptosis in MS-associated oligodendrocyte loss and position AKR1C1 as a potential therapeutic target for preserving oligodendrocyte integrity and supporting neuronal function in MS patients.
Collapse
Affiliation(s)
- Valentina Saverio
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Emanuele Ferrario
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Romina Monzani
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Mara Gagliardi
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy; Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Francesco Favero
- Department of Translational Medicine, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Davide Corà
- Department of Translational Medicine, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy; Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Marco Corazzari
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy; Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
17
|
Zhu J, Wu X, Mu M, Zhang Q, Zhao X. TEC-mediated tRF-31R9J regulates histone lactylation and acetylation by HDAC1 to suppress hepatocyte ferroptosis and improve non-alcoholic steatohepatitis. Clin Epigenetics 2025; 17:9. [PMID: 39838504 PMCID: PMC11748747 DOI: 10.1186/s13148-025-01813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Tectorigenin (TEC) is a monomer of anthocyanin, which we found exhibits hepatoprotective effects. tRNA-derived fragments (tRFs) and ferroptosis play important roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Recent discoveries have revealed that histone lactylation and acetylation play a crucial role in connecting cellular metabolism and epigenetic regulation through post-translational modification of histones. However, it is unclear whether TEC improves NASH by regulating histone lactylation, acetylation and hepatocyte ferroptosis through tRFs. RESULTS In this study, we demonstrated that TEC significantly inhibits free fatty acids-induced hepatocyte ferroptosis both in vitro and in vivo. We identified tRF-31R9J (tRF-31-R9JP9P9NH5HYD) involved in TEC regulation of ferroptosis in steatosis hepatocytes. Overexpression of tRF-31R9J suppressed hepatocyte ferroptosis and enhanced cell viability in steatosis HepG2 cells. Knockdown of tRF-31R9J partially counteracted the inhibitory effect of TEC on ferroptosis in hepatocytes. Mechanistically, tRF-31R9J recruited HDAC1 to reduce the levels of histone lactylation and acetylation modifications of the pro-ferroptosis genes ATF3, ATF4, and CHAC1, thereby inhibiting their gene expression. CONCLUSIONS This study demonstrates that TEC-mediated tRF-31R9J inhibits hepatocyte ferroptosis through HDAC1-regulated histone delactylation and deacetylation, thereby improving NASH. These discoveries offer a theoretical foundation and new strategies for the medical management of NASH.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Xian Wu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Mao Mu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Quan Zhang
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Xueke Zhao
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
18
|
Zhang C, Yang T, Chen H, Ding X, Chen H, Liang Z, Zhao Y, Ma S, Liu X. METTL3 inhibition promotes radiosensitivity in hepatocellular carcinoma through regulation of SLC7A11 expression. Cell Death Dis 2025; 16:9. [PMID: 39799112 PMCID: PMC11724875 DOI: 10.1038/s41419-024-07317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025]
Abstract
Radiotherapy is one of the main treatment modalities for advanced hepatocellular carcinoma (HCC). Ferroptosis has been shown to promote the radiosensitivity of HCC cells, but it remains unclear whether epigenetic regulations function in this process. In this study, we found that the overexpression of METTL3 was associated with poor prognosis. Knockdown of METTL3 promoted radiosensitivity of HCC by inducing ferroptosis. Mechanistically, METTL3 targeted adenine (+1795) on the SLC7A11 mRNA, and the m6A reader IGF2BP2 promoted SLC7A11 mRNA stability by recognizing and binding to the m6A site. Additionally, METTL3 decreased the ubiquitination of SLC7A11 protein through the m6A/YTHDF2/SOCS2 axis. Furthermore, in vivo studies showed that HCC models with low METTL3/IGF2BP2 expression have higher radiosensitivity. In conclusion, our study suggests that METTL3 regulates the stability of SLC7A11 mRNA in an m6A/IGF2BP2-dependent manner and the ubiquitination of SLC7A11 protein through the m6A/YTHDF2/SOCS2 pathway, both of which require the m6A methyltransferase activity of METTL3. METTL3 or IGF2BP2 may be promising targets for radiotherapy of HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/radiotherapy
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/radiotherapy
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Radiation Tolerance/genetics
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport System y+/genetics
- Animals
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Mice
- Mice, Nude
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Ubiquitination
- Male
- Ferroptosis/genetics
- Mice, Inbred BALB C
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Suppressor of Cytokine Signaling Proteins/genetics
- Female
Collapse
Affiliation(s)
- Chen Zhang
- School of Public Health, Wenzhou Medical University, the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianpeng Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanbin Chen
- the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaofeng Ding
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huajian Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhenzhen Liang
- School of Public Health, Wenzhou Medical University, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yinlong Zhao
- Department of Nuclear Medicine, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, 325035, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University; Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
19
|
Sun Z, Qin Y, Zhang X. Identification and validation of five ferroptosis-related molecular signatures in keloids based on multiple transcriptome data analysis. Front Mol Biosci 2025; 11:1490745. [PMID: 39834787 PMCID: PMC11743277 DOI: 10.3389/fmolb.2024.1490745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Keloids are a common skin disorder characterized by excessive fibrous tissue proliferation, which can significantly impact patients' health. Ferroptosis, a form of regulated cell death, plays a crucial role in the development of fibrosis; however, its role in the mechanisms of keloid formation remains poorly understood. Methods This study aimed to identify key genes associated with ferroptosis in keloid formation. Data from the NCBI GEO database, including GSE145725, GSE7890, and GSE44270, were analyzed, comprising a total of 24 keloid and 17 normal skin samples. Additionally, single-cell data from GSE181316, which included 8 samples with complete expression profiles, were also evaluated. Differentially expressed genes were identified, and ferroptosis-related genes were extracted from the GeneCards database. LASSO regression was used to select key genes associated with keloids. Validation was performed using qRT-PCR and Western blot (WB) analysis on tissue samples from five keloid and five normal skin biopsies. Results A total of 471 differentially expressed genes were identified in the GSE145725 dataset, including 225 upregulated and 246 downregulated genes. Five ferroptosis-related genes were selected through gene intersection and LASSO regression. Two of these genes were upregulated, while three were downregulated in keloid tissue. Further analysis through GSEA pathway enrichment, GSVA gene set variation, immune cell infiltration analysis, and single-cell sequencing revealed that these genes were primarily involved in the fibrotic process. The qRT-PCR and WB results confirmed the expression patterns of these genes. Discussion This study provides novel insights into the molecular mechanisms of ferroptosis in keloid formation. The identified ferroptosis-related genes could serve as potential biomarkers or therapeutic targets for treating keloids.
Collapse
Affiliation(s)
| | - Yonghong Qin
- Department of Plastic Surgery, Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xuanfen Zhang
- Department of Plastic Surgery, Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Yang XC, Jin YJ, Ning R, Mao QY, Zhang PY, Zhou L, Zhang CC, Peng YC, Chen N. Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke. Chin Med 2025; 20:4. [PMID: 39755657 DOI: 10.1186/s13020-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation. METHODS The ischemic stroke model was established by middle cerebral artery occlusion/reperfusion (MCAO/R) in adult rats. These rats have been randomly divided into the EA + MCAO/R group, the MCAO/R group, the EA + MCAO/R + Brusatol group (the inhibitor of Nrf2), and the EA + MCAO/R + DMSO group, and the Sham group. The EA + MCAO/R group, EA + MCAO/R + Brusatol group, and the EA + MCAO/R + DMSO group received EA intervention 24 h after modeling for 7 consecutive days. The behavioral function was evaluated by Neurologic severity score (NSS), Garcia score, Foot-fault Test, and Rotarod Test. The infarct volume was detected by TTC staining, and the neuronal damage was observed by Nissl staining. The levels of Fe2+, reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured by ELISA. The immunofluorescence and Western blotting were used to detect the expression of Total Nrf2, p-Nrf2, Nuclear Nrf2, and Cytoplasmic Nrf2, and the essential ferroptosis proteins, including glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1). The mitochondria were observed by transmission electron microscopy (TEM). RESULTS Electroacupuncture improved neurological deficits in rats model of MCAO/R, decreased the brain infarct volume, alleviated neuronal damage, inhibited the Fe2+, ROS, and MDA accumulation, increased SOD levels, increased the expression of GPX4, SLC7A11 and FTH1, and rescued injured mitochondria. Especially, we found that the electroacupuncture up-regulated the expression of Nrf2, and promoted phosphorylation of Nrf2 and nuclear translocation, However, Nrf2 inhibitor Brusatol reversed the neuroprotective effect of electroacupuncture. CONCLUSION Electroacupuncture can alleviate cerebral I/R injury-induced ferroptosis by promoting Nrf2 nuclear translocation. It is expected that these data will provide novel insights into the mechanisms of electroacupuncture protecting against cerebral I/R injury and potential targets underlying ferroptosis in the stroke.
Collapse
Affiliation(s)
- Xi-Chen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Ya-Ju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiu-Yue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng-Yue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Cheng-Cai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yi-Chen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
21
|
Lei MML, Lee TKW. UBE2S: A novel driver of HIF-1alpha-induced metabolic reprogramming in hepatocellular carcinoma: Editorial on "UBE2S promotes glycolysis in hepatocellular carcinoma by enhancing E3 enzyme-independent polyubiquitination of VHL". Clin Mol Hepatol 2025; 31:281-285. [PMID: 39038959 PMCID: PMC11791545 DOI: 10.3350/cmh.2024.0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
22
|
Li H, Qi X, He L, Yang H, Ju H. PRMT1 promotes radiotherapy resistance in glioma stem cells by inhibiting ferroptosis. Jpn J Radiol 2025; 43:129-137. [PMID: 39254902 DOI: 10.1007/s11604-024-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE The existence of glioma stem cells (GSCs) in cancer is related to glioma radiotherapy resistance. In this research, the effect of protein arginine methyltransferase 1 (PRMT1) on the radiosensitivity of glioma stem cell (GSC)-like cells, as well as its underlying mechanism, was investigated. METHODS GSCs-like cells were analyzed and identified by flow cytometry. The self-renewal capability was evaluated by sphere-forming assay. The PRMT1 expression level in glioblastoma were analyzed using the Gene Expression Profiling Interactive Analysis database. The mRNA and protein were scrutinized by RT-qPCR and western blot, respectively. The radiosensitivity was evaluated by clonogenic survival assay. Ferroptosis was evaluated by detecting the levels of reactive oxygen species, malondialdehyde, Fe2+, glutathione, and 4-hydroxynonenal. RESULTS U87 and SHG44 cells with GSC-like phenotype (GSC-U87 and GSC-SHG44) displayed strong expression of CD133 and nestin versus the glioma cells. GSC-U87 and GSC-SHG44 possess the self-renewal capability. The level of PRMT1 was higher in glioblastoma tumor tissues than in the normal paracancer tissues. Knockdown of PRMT1 enhanced the radiotherapy sensitivity of GSCs-like cells, which was evidenced by reduced survival fraction in GSC-U87 and GSC-SHG44 underwent sh-PRMT1 transfection. But, this effect was attenuated by Fer-1 (a ferroptosis inhibitor) treatment, accompanied by the abatement of ferroptosis. CONCLUSION PRMT1 promoted radiotherapy resistance in GSCs-like cells by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Xiaoyan Qi
- Department of Medical Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Lijun He
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Huimin District, Hohhot, 010020, Inner Mongolia, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Haitao Ju
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Huimin District, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
23
|
Peng Y, Nie H, Kang K, Li X, Tao Y, Zhou Y. The deubiquitinating enzyme ATXN3 promotes hepatocellular carcinoma progression by stabilizing TAZ. Cancer Gene Ther 2025; 32:136-145. [PMID: 39672915 DOI: 10.1038/s41417-024-00869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Hepatocellular carcinoma (HCC) was a primary cause of cancer-related morbidity and mortality in China. ATXN3 was a deubiquitinase (DUB) associated with spinocerebellar ataxia, widely expressed in the cytoplasm and nucleus of cells in the central nervous system and other tissues. The crucial role of the Hippo pathway in tumorigenesis has been established, among which TAZ served as one of the key molecules. However, the mechanisms underlying the deubiquitinase and TAZ in HCC remained largely unknown. In the present study, we explored that ATXN3 was overexpressed in HCC. ATXN3 promoted the proliferation, migration, invasion, and tumorigenic ability of HCC in vitro and in vivo. Besides, we explored that ATXN3 was positively associated with TAZ in HCC. ATXN3 could interact with, stabilize, and deubiquitylate TAZ in a deubiquitylase-dependent manner. Specifically, this interaction was primarily mediated by the C-terminal domain of TAZ and Josephin domain of ATXN3, thereby inhibiting the K48-linked ubiquitin chain on TAZ. Furthermore, we demonstrated that ATXN3 promoted the occurrence and development of HCC by regulating TAZ. Therefore, our study revealed the oncogenic function of ATXN3 and an interesting deubiquitination mechanism of ATXN3 and TAZ in HCC, providing new insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yuanhao Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Hui Nie
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kuo Kang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Chen S, He Z, Cai K, Zhang Y, Zhu H, Pang C, Zhang J, Wang D, Xu X. TRIM59/RBPJ positive feedback circuit confers gemcitabine resistance in pancreatic cancer by activating the Notch signaling pathway. Cell Death Dis 2024; 15:932. [PMID: 39725730 DOI: 10.1038/s41419-024-07324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignant tumors that lacks effective treatment, and gemcitabine-based chemoresistance occurs frequently. Therefore, new therapeutic strategies for PC are urgently needed. Tripartite motif containing 59 (TRIM59) plays an important role in breast and lung cancer chemoresistance. However, the association between TRIM59 and gemcitabine resistance in PC remains unclear. We identified TRIM59 as an innovative E3 ubiquitin ligase that activated Notch signaling in PC. TRIM59 levels were increased in PC and positively correlated with poor prognosis and gemcitabine resistance in PC patients. TRIM59 facilitated gemcitabine resistance in PC cells in vitro and in vivo. TRIM59 interacted with recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and stabilized it by promoting K63-linked ubiquitination. RBPJ transcriptionally upregulated TRIM59 expression, forming a positive feedback loop with TRIM59. We identified a novel TRIM59 inhibitor, catechin, and confirmed that it sensitized PC cells to gemcitabine. TRIM59 conferred gemcitabine resistance in PC by promoting RBPJ K63-linked ubiquitination, followed by activating Notch signaling. Therefore, our study provides a promising target for gemcitabine sensitization in PC treatment.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518000, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Kun Cai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Department of Gastrointestinal Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Yan Zhang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Hongyan Zhu
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Chong Pang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Jiaqi Zhang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Dong Wang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Xundi Xu
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China.
| |
Collapse
|
25
|
Shang N, Zhu L, Li Y, Song C, Liu X. Targeting CDK1 and copper homeostasis in breast cancer via a nanopolymer drug delivery system. Cell Biol Toxicol 2024; 41:16. [PMID: 39724454 PMCID: PMC11671568 DOI: 10.1007/s10565-024-09958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of breast cancer (BRCA) is notable in the female population, being a commonly diagnosed malignancy, where the management of copper levels is crucial for treatment success. This research aims to explore the influence of copper homeostasis on BRCA therapy, with a specific focus on the role of Cyclin-Dependent Kinase 1 (CDK1) and its relationship to copper regulation. A novel thermosensitive hydrogel incorporating nanoparticles (NPs) was engineered to synergize with the chemotherapy drug vincristine (VCR) in inhibiting tumor growth and metastasis. Through a comprehensive approach involving bioinformatics analyses, in vitro experiments, and in vivo models, the study identified CDK1 as a significant factor in BRCA progression under copper homeostasis. MBVP-Gel, a novel thermosensitive hydrogel incorporating NPs, was developed to enhance the delivery of chemotherapy drugs and regulate copper homeostasis in breast cancer treatment. The MBVP-Gel, formulated with copper chelation and VCR NPs, effectively suppressed CDK1 expression, thereby restraining BRCA cell growth and metastasis while enhancing the therapeutic impact of VCR. This investigation offers fresh insights and experimental validation on the interaction between copper homeostasis and BRCA, providing a valuable foundation for refining future treatment strategies. These findings underscore the potential advantages of targeting copper homeostasis and CDK1 in enhancing BRCA therapy, setting the stage for individualized interventions and improved patient consequences.
Collapse
Affiliation(s)
- Nan Shang
- Department of Urinary Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Lisi Zhu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Yan Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Chengyang Song
- Department of Thoracic and Cardiac Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| | - Xiaodan Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| |
Collapse
|
26
|
Ma Y, Fei S, Chen X, Gui Y, Zhou B, Xiang T, Liu J, Yue K, Li Q, Jiang W, Sun C, Huang X. Chemerin attenuates acute kidney injury by inhibiting ferroptosis via the AMPK/NRF2/SLC7A11 axis. Commun Biol 2024; 7:1679. [PMID: 39702678 DOI: 10.1038/s42003-024-07377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Acute kidney injury (AKI) is a common and life-threatening condition associated with cell death, where ferroptosis plays a critical role. Chemerin, primarily produced in white adipose tissue, has multiple biological functions in renal pathophysiology. However, to date, whether and how chemerin regulates the progression of AKI remain unclear. Here, we found that chemerin expression was reduced in both AKI model mice and cells. Similarly, serum chemerin levels were also decreased in AKI patients. The administration of recombinant chemerin improves renal function in ischemia-reperfusion (I/R) model mice. Chemerin significantly attenuates ferroptosis in kidneys. In TCMK-1 cells, chemerin knockdown further aggravates ferroptosis. Mechanistically, chemerin activates AMP-activated protein kinase (AMPK), which induces the phosphorylation of nuclear factor erythroid 2-related factor 2 (NRF2) in renal tubular cells. Subsequently, NRF2 translocates into the nucleus, where it stimulates the expression of cystine/glutamate antiporter solute carrier (SLC7A11). As a result, cystine uptake and glutathione (GSH) biosynthesis in renal tubular cells were increased, which confers cells with higher capacity against ferroptosis. Overall, our findings indicate that chemerin plays a protective role in AKI by repressing ferroptosis in renal tubular cells, which is likely due to the activation in the AMPK/NRF2/SLC7A11 axis.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yuanyuan Gui
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianhang Liu
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
27
|
Zhu K, Cai Y, Lan L, Luo N. Tumor Metabolic Reprogramming and Ferroptosis: The Impact of Glucose, Protein, and Lipid Metabolism. Int J Mol Sci 2024; 25:13413. [PMID: 39769177 PMCID: PMC11676715 DOI: 10.3390/ijms252413413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025] Open
Abstract
Ferroptosis, a novel form of cell death discovered in recent years, is typically accompanied by significant iron accumulation and lipid peroxidation during the process. This article systematically elucidates how tumor metabolic reprogramming affects the ferroptosis process in tumor cells. The paper outlines the basic concepts and physiological significance of tumor metabolic reprogramming and ferroptosis, and delves into the specific regulatory mechanisms of glucose metabolism, protein metabolism, and lipid metabolism on ferroptosis. We also explore how complex metabolic changes in the tumor microenvironment further influence the response of tumor cells to ferroptosis. Glucose metabolism modulates ferroptosis sensitivity by influencing intracellular energetic status and redox balance; protein metabolism, involving amino acid metabolism and protein synthesis, plays a crucial role in the initiation and progression of ferroptosis; and the relationship between lipid metabolism and ferroptosis primarily manifests in the generation and elimination of lipid peroxides. This review aims to provide a new perspective on how tumor cells regulate ferroptosis through metabolic reprogramming, with the ultimate goal of offering a theoretical basis for developing novel therapeutic strategies targeting tumor metabolism and ferroptosis.
Collapse
Affiliation(s)
- Keyu Zhu
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| | - Yuang Cai
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| | - Lan Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China;
| | - Na Luo
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| |
Collapse
|
28
|
Liu J, Luo Y, Chen S, Wang G, Jin W, Jiang W, Li M, Wang Y, Yu J, Wei H, Zhang R, Zhou F, Ju L, Zhang Y, Xiao Y, Qian K, Wang X. Deubiquitylase USP52 Promotes Bladder Cancer Progression by Modulating Ferroptosis through Stabilizing SLC7A11/xCT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403995. [PMID: 39392373 PMCID: PMC11615784 DOI: 10.1002/advs.202403995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Bladder cancer (BLCA) is a prevalent cancer with high case-fatality rates and a substantial economic burden worldwide. Understanding its molecular underpinnings to guide clinical management is crucial. Ferroptosis, a recently described non-apoptotic form of cell death, is initiated by the lethal accumulation of iron-dependent lipid peroxidation products. Despite growing interest, the roles and vulnerabilities determining ferroptosis sensitivity in BLCA remain unclear. Re-analysis of single-cell RNA data reveals a decrease in high-ferroptosis cancer cells as BLCA advances. USP52/PAN2 is identified as a key regulator of ferroptosis in BLCA through an unbiased siRNA screen targeting 96 deubiquitylases (DUBs). Functionally, USP52 depletion impedes glutathione (GSH) synthesis by promoting xCT protein degradation, increasing lipid peroxidation and ferroptosis susceptibility, thus suppressing BLCA progression. Mechanistically, USP52 interacts with xCT and enzymatically cleaves the K48-conjugated ubiquitin chains at K4 and K12, enhancing its protein stability. Clinical BLCA samples demonstrate a positive correlation between USP52 and xCT expression, with high USP52 levels associated with aggressive disease progression and poor prognosis. In vivo, USP52 depletion combined with ferroptosis triggers imidazole ketone Erastin (IKE) synergistically restrains BLCA progression by inducing ferroptosis. These findings elucidate the role of the USP52-xCT axis in BLCA and highlight the therapeutic potential of targeting USP52 and ferroptosis inducers in BLCA.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yongwen Luo
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Siming Chen
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Gang Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Biological RepositoriesHuman Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wan Jin
- Department of Biological RepositoriesHuman Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyZGC Life Sciences ParkBeijing102206China
| | - Wenyu Jiang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Mingxing Li
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yejinpeng Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jingtian Yu
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Houyi Wei
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Renjie Zhang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Fenfang Zhou
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of RadiologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lingao Ju
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Biological RepositoriesHuman Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yi Zhang
- Department of Biological RepositoriesHuman Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyZGC Life Sciences ParkBeijing102206China
| | - Yu Xiao
- Department of Biological RepositoriesHuman Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kaiyu Qian
- Department of Biological RepositoriesHuman Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xinghuan Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
- Medical Research InstituteFrontier Science Center for Immunology and MetabolismTaikang Center for Life and Medical SciencesWuhan UniversityWuhan430071China
| |
Collapse
|
29
|
Liu Z, Yuan J, Zeng Q, Wu Z, Han J. UBAP2 contributes to radioresistance by enhancing homologous recombination through SLC27A5 ubiquitination in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167481. [PMID: 39186963 DOI: 10.1016/j.bbadis.2024.167481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Radiotherapy stands as an effective method in the clinical treatment of hepatocellular carcinoma (HCC) patients. However, both primary and acquired radioresistance limit its clinical application in HCC. Therefore, investigating the mechanism of radioresistance may provide other options for treating HCC. Based on single-cell RNA sequencing (scRNA-seq) and HCC transcriptome datasets, 227 feature genes with prognostic value were selected to establish the tSNE score. The tSNE score emerged as an independent prognostic factor for HCC and correlated with cell proliferation and radioresistance-related biological functions. UBAP2 was identified as the most relevant gene with the tSNE score, consistently elevated in human HCC samples, and positively associated with patient prognosis. Functionally, UBAP2 knockdown impeded HCC development and reduced radiation resistance in vitro and in vivo. The ectopic expression of SLC27A5 reversed the effects of UBAP2. Mechanically, we uncovered that UBAP2, through the ubiquitin-proteasome system, decreased the homologous recombination-related gene RAD51, not the non-homologous end-joining (NHEJ)-related gene CTIP, by degrading the antioncogene SLC27A5, thereby generating radioresistance in HCC. The findings recapitulated that UBAP2 promoted HCC progression and radioresistance via SLC27A5 stability mediated by the ubiquitin-proteasome pathway. It was also suggested that targeting the UBAP2/SLC27A5 axis could be a valuable radiosensitization strategy in HCC.
Collapse
Affiliation(s)
- Zijian Liu
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jingsheng Yuan
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiwen Zeng
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Han
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
30
|
Fang K, Jiang S, Xu Z, Luo M, Yan C. Pan-cancer landscape of disulfidptosis across human tumors. Heliyon 2024; 10:e40122. [PMID: 39605832 PMCID: PMC11600026 DOI: 10.1016/j.heliyon.2024.e40122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/20/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Disulfidptosis is a newly discovered disulfide stress-induced cell death form. Clinical significance and biological mechanisms of disulfidptosis in human cancers need to be further elucidated. Thus, this study was designed to characterize pan-cancer landscape of disulfidptosis across human tumors. Methods Multi-omics features (transcriptomics, genomics, and DNA methylation) of disulfidptosis genes were investigated in TCGA pan-cancer cohorts. A disulfidptosis score system was defined across human tumors via ssGSEA. The activity of classical oncogenic pathways and hallmarks of cancer as well as the infiltration of immunocyte subpopulations were estimated, respectively. Drug sensitivity was inferred, and immune checkpoint blockade (ICB) response was evaluated in an independent cohort IMvigor210. ACHN, CAL-27, and NCI-H23 cells were transiently transfected with GYS1 siRNAs, and cell apoptosis and proliferation were measured through TUNEL and EdU assays, respectively. Results Aberrant mRNA expression and DNA methylation of disulfidptosis genes as well as their genomic alterations were found in human tumors. The disulfidptosis score was utilized for quantifying the activity of disulfidptosis, which enabled to estimate patient prognosis. The disulfidptosis score presented positive correlations to angiogenesis and EMT, indicating the role of disulfidptosis in mediating tumor malignant features. Moreover, the score was negatively linked with infiltrating immune and stromal cells in the immune microenvironment. In the ICB cohort, shorter survival time was observed in patients with high disulfidptosis score, indicating the potential of disulfidptosis score in influencing clinical benefits from ICB. Additionally, tumors with low disulfidptosis score exhibited higher sensitivity to a few small molecular compounds, e.g., Sabutoclax, PRIMA-1MET, BIBR-1532, and Elephantin. Knockdown of disulfidptosis gene GYS1 effectively hindered tumor progression. Conclusion Collectively, our findings depict a pan-cancer map of disulfidptosis to inform functional and therapeutic research.
Collapse
Affiliation(s)
- Kun Fang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, 750001, China
| | - Suxiao Jiang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, 750001, China
| | - Zhengjie Xu
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, 750001, China
| | - Meng Luo
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, 750001, China
| | - Changsheng Yan
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
31
|
Ou Y, Wu N, Shu L, Zhao Y, Bao Y, Wu Q. The High Expression of SLC7A11 and GPX4 are Significantly Correlated with β-Catenin in Colorectal Cancer. Cancer Manag Res 2024; 16:1639-1648. [PMID: 39588156 PMCID: PMC11586452 DOI: 10.2147/cmar.s483526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Background Existing research shows inducing ferroptosis can improve the effectiveness of tumor treatment. Glutathione peroxidase 4 (GPX4) is a ferroptosis inhibitor. Solute carrier family 7, membrane 11 (SLC7A11) plays a key role in glutathione homeostasis, which is important for protecting cells from oxidative stress. β-catenin is the key protein the Wnt/β-catenin signaling pathway. The purpose of this study was to investigate the expression of SLC7A11 and GPX4 in colorectal cancer (CRC) and their relationship with β-catenin and to analyze the association of these two factors with several clinicopathological features and patient survival. Methods This study retrospectively collected paraffin-embedded tissue samples from 120 CRC patients, who received surgical resection between 2017 and 2018. We examined the patterns of expression of SLC7A11, GPX4 and β-catenin by using immunohistochemistry. Analyzing the relationships between SLC7A11, GPX4, β-catenin and clinical pathological parameters and their relationships with overall survival (OS). Results Expression of SLC7A11 and GPX4 were high expression in 60.83% and 64.17% among the patients, respectively, and were higher than those in normal tissue. SLC7A11, GPX4 and β-catenin were positively correlated with each other (P<0.05). Expression of SLC7A11 and GPX4 significantly correlates with tumor stage and lymph node metastasis (P < 0.05). The β-catenin was related to lymph node metastasis, TNM stage and tumor grade. Kaplan-Meier analysis showed that patient's OS in the SLC7A11 and GPX4 were reduced (P<0.05). Univariate and multivariate analyses showed that SLC7A11 and GPX4 were independent risk factors for CRC prognosis. Conclusion SLC7A11 and GPX4 overexpression is associated with β-catenin and poor prognosis and may be important for predicting CRC invasion, metastasis, and prognosis.
Collapse
Affiliation(s)
- Yurong Ou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Ningqi Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Lishan Shu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yang Zhao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yunfang Bao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Qiong Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| |
Collapse
|
32
|
Tang L, Jin Y, Wang J, Lu X, Xu M, Xiang M. TMSB4X is a regulator of inflammation-associated ferroptosis, and promotes the proliferation, migration and invasion of hepatocellular carcinoma cells. Discov Oncol 2024; 15:671. [PMID: 39556271 PMCID: PMC11573954 DOI: 10.1007/s12672-024-01558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Ferroptosis and inflammation are involved in cancer progression. The aim of this study was to identify inflammation-associated ferroptosis regulators in hepatocellular carcinoma (HCC). METHODS FerrDb database was searched for ferroptosis-related genes. RNA sequencing data and clinicopathologic information of HCC patients were downloaded from the Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network analysis was applied to obtain the genes probably involved in inflammation-associated ferroptosis. Univariate Cox regression analysis was conducted to screen prognostic genes, and 10 machine learning algorithms were combined to find the optimal strategy to evaluate the prognosis of the patients based on the prognosis-related genes. The patients were divided into high risk group and low risk group, and the differentially expressed genes were obtained. Thymosin beta 4 X-linked (TMSB4X) was overexpressed or knocked down in HCC cell lines, and then qPCR, CCK-8, Transwell, flow cytometery assays were performed to detect the change of HCC cells' phenotypes, and Western blot was used to detect the change of ferroptosis markers. RESULTS 157 genes related to inflammation and ferroptosis in HCC were obtained by WGCNA. rLasso algorithm, with the highest C-index, screened out 29 hub genes, and this model showed good efficacy to predict the prognosis of HCC patients. The patients in high risk group and low risk groups showed distinct molecular characteristics. TMSB4X was the most important gene which dominated the classification, and it was highly expressed in HCC samples. TMSB4X promoted the viability, migration and invasion, and repressed ferroptosis of HCC cells. CONCLUSION The risk model constructed based on the inflammation-associated ferroptosis regulators is effective to predict the clinical outcome of HCC patients. TMSB4X, involved in inflammation-associated ferroptosis, is a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Linlin Tang
- Department of Gastroenterology, Zhuji People's Hospital, Shaoxing, China
| | - Yangli Jin
- Department of Ultrasound, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Jinxu Wang
- Intensive Care Unit, Shouguang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xiuyan Lu
- Department of Gastroenterology, Zhuji People's Hospital, Shaoxing, China
| | - Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingwei Xiang
- General Surgery Ward 4, Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| |
Collapse
|
33
|
Chen Z, Wang W, Hou J, Gao C, Song M, Zhao Z, Guan R, Chen J, Wu H, Abdul Razak SR, Han T, Zhang J, Wang L, Ahmad NH, Li X. NEDD4L contributes to ferroptosis and cell growth inhibition in esophageal squamous cell carcinoma by facilitating xCT ubiquitination. Cell Death Discov 2024; 10:473. [PMID: 39557844 PMCID: PMC11574128 DOI: 10.1038/s41420-024-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The oncogene xCT plays an indispensable role in tumor growth by protecting cancer cells from oxidative stress and ferroptosis. Emerging evidence indicated xCT function is tightly controlled by posttranslational modifications, especially ubiquitination. However, it still remains unclear what specific regulatory mechanism of xCT by ubiquitin ligases in human cancers. Here, we reported that NEDD4L, an E3 ubiquitin ligases, inhibited esophageal squamous cell carcinoma (ESCC) tumor growth and facilitated ferroptosis by ubiquitination of xCT. NEDD4L expression was declined in ESCC and was associated with tumor invasion, lymph node metastasis and distant metastasis. Silencing NEDD4L triggered ESCC tumor growth. Meanwhile, knock down of NEDD4L prevented the accumulation of ROS, elevated the level of GSH, reduced the content of MDA in ESCC cells, thereby inhibiting ferroptosis. Mechanistically, NEDD4L directly bound to the ∆CT domain of xCT through its WW and HECT domain. More importantly, NEDD4L promoted xCT degradation by facilitating its polyubiquitination in ESCC cells. Collectively, these findings suggest that NEDD4L is crucial in governing the stability of xCT and mediating ferroptosis in ESCC.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Meili Song
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zijun Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Ruirui Guan
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jingsheng Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Huicheng Wu
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Siti Razila Abdul Razak
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
| | - Tao Han
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Junbo Zhang
- Department of Surgery, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia.
| | - Xiumin Li
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China.
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
34
|
Liao C, He Y, Luo X, Deng G. Ferroptosis: insight into the treatment of hepatocellular carcinoma. Cancer Cell Int 2024; 24:376. [PMID: 39538215 PMCID: PMC11562710 DOI: 10.1186/s12935-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignances in the world, with high morbidity and mortality. Due to the hidden onset of symptoms, there are huge obstacles in early diagnosis, recurrence, metastasis and drug resistance. Although great strides have been made in the treatment of HCC, effective treatment options are still limited and achieving longer survival for patients remains urgent. Ferroptosis is a novel type of programmed cell death that is mainly caused by iron-dependent oxidative damage. With further investigations, ferroptosis has been proved to be associated with the occurrence and development of various tumors. This article reviews the regulatory mechanism and signal transduction pathways of ferroptosis, investigates the complex relationship between autophagy, sorafenib resistance and immunotherapy with ferroptosis involved in HCC, providing new ideas and directions for the treatment of HCC.
Collapse
Affiliation(s)
- Chuanjie Liao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China
| | - Youwu He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China
| | - Xinning Luo
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China.
| |
Collapse
|
35
|
Hou T, Zhu L, Zhang Y, Tang Y, Gao Y, Hua S, Ci X, Peng L. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD. Redox Biol 2024; 77:103388. [PMID: 39374556 PMCID: PMC11491731 DOI: 10.1016/j.redox.2024.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Pyroptosis is an inflammatory form of regulated necrosis that has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the role of lipid peroxidation in pyroptosis and its underlying mechanisms in COPD remain unclear. METHODS In vitro, human bronchial epithelial cells (Beas-2b cells) were exposed to cigarette smoke extract (CSE) for 24 h. In vivo, mice were exposed to cigarette smoke (CS) for 4 weeks. To investigate the role of xCT, we used siRNA and AAV6 to conditionally knock down xCT in vitro and in vivo, respectively. RESULTS The administration of ferrostatin-1 (Fer-1), a ferroptosis inhibitor that inhibits lipid peroxidation, significantly reduced the cytotoxicity of CSE to Beas-2b cells and mitigated inflammatory exudation, lung injury and mucus hypersecretion in mice with CS-induced COPD. Fer-1 suppressed gasdermin D (GSDMD)-mediated pyroptosis caused by CS in vitro and in vivo. However, in Beas-2b cells and the lung epithelial cells of mice, conditional knockdown of xCT (a negative regulatory factor of lipid peroxidation) inhibited the xCT/GPx4 axis, leading to more severe lipid peroxidation and GSDMD-mediated pyroptosis during cigarette smoke exposure. Moreover, we found that CS promoted the degradation of xCT through the ubiquitin proteasome system (UPS) and that treatment with MG132 significantly inhibited the degradation of xCT and downregulated the expression of pyroptosis-related proteins. CONCLUSION The results of this study suggested that the ubiquitination-mediated degradation of xCT drives GSDMD-mediated pyroptosis in COPD and is a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Tang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yun Gao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
36
|
Wang N, Shi B, Ding L, Zhang X, Ma X, Guo S, Qiao X, Wang L, Ma D, Cao J. FMRP protects breast cancer cells from ferroptosis by promoting SLC7A11 alternative splicing through interacting with hnRNPM. Redox Biol 2024; 77:103382. [PMID: 39388855 PMCID: PMC11497378 DOI: 10.1016/j.redox.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Ferroptosis is a unique modality of regulated cell death that is driven by iron-dependent phospholipid peroxidation. N6-methyladenosine (m6A) RNA modification participates in varieties of cellular processes. However, it remains elusive whether m6A reader Fragile X Mental Retardation Protein (FMRP) are involved in the modulation of ferroptosis in breast cancer (BC). In this study, we found that FMRP expression was elevated and associated with poor prognosis and pathological stage in BC patients. Overexpression of FMRP induced ferroptosis resistance and exerted oncogenic roles by positively regulating a critical ferroptosis defense gene SLC7A11. Mechanistically, upregulated FMRP catalyzes m6A modification of SLC7A11 mRNA and further influences the SLC7A11 translation through METTL3-dependent manner. Further studies revealed that FMRP interacts with splicing factor hnRNPM to recognize the splice site and then modulated the exon skip splicing event of SLC7A11 transcript. Interestingly, SLC7A11-S splicing variant can effectively promote FMRP overexpression-induced ferroptosis resistance in BC cells. Moreover, our clinical data suggested that FMRP/hnRNPM/SLC7A11 expression were significantly increased in the tumor tissues, and this signal axis was important evaluation factors closely related to the worse survival and prognosis of BC patients. Overall, our results uncovered a novel regulatory mechanism by which high FMRP expression protects BC cells from undergoing ferroptosis. Targeting the FMRP-SLC7A11 axis has a dual effect of inhibiting ferroptosis resistance and tumor growth, which could be a promising therapeutic target for treating BC.
Collapse
Affiliation(s)
- Nan Wang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China; Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lu Ding
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Zhang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaolan Ma
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China; Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Songlin Guo
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xia Qiao
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Libin Wang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, China.
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jia Cao
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
37
|
Huang K, Yi X, Xie H, Luo J, Zeng Q, He F, Wang L. Iron-Based Nanoplatforms Achieve Hepatocellular Carcinoma Regression Through a Cascade of Effects. Int J Nanomedicine 2024; 19:11105-11128. [PMID: 39502633 PMCID: PMC11537158 DOI: 10.2147/ijn.s479425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Ferroptosis is a regulated form of cell death characterized by iron-dependent accumulation of associated lipid peroxides (LPO), which can induce cell death when a certain level is reached. However, the extremely complex tumor microenvironment (TME) has the characteristics of antioxidant, even if it induces ferroptosis of tumor cells, its killing effect on tumor cells is still very limited. To solve this problem, we constructed a novel nanomaterials (GOx/EC@Fe3O4@CCM). We evaluated the anticancer effect of this nanomaterial in inhibiting tumor growth through comprehensive in vitro and in vivo experiments. Methods We successfully synthesized GOx/EC@Fe3O4 by one-pan synthesis method, then coated the Hepatocellular carcinoma cell membrane on its surface by co-extrusion technology, and finally synthesized the GOx/EC@Fe3O4@CCM nanoplatforms. We characterized the compounds in terms of morphology, particle size, and Zeta potential. In addition, we also studied the anti-tumor effect of GOx/EC@Fe3O4@CCM nanoplatforms from the following aspects, including the performance test of the nanoplatform, the intracellular effect of the nanoplatform, the anti-tumor effect in vitro, the intracellular ROS analysis, the intracellular effect of EC, and the anti-tumor effect in vivo. Results The iron-based carriers in GOx/EC@Fe3O4@CCM nanoplatforms are released and produce ferrous ions (Fe2+) in an acidic environment. Due to the limitation of the endogenous level of hydrogen peroxide (H2O2), we introduced GOx into the TME or tumor cells. Under the catalysis of GOx, glucose reacted rapidly to produce a large amount of H2O2, which then combined with Fe2+ to produce a large number of Hydroxyl radical (·OH). Its toxicity leads to dysfunction of cell membrane and organelles, and then causes cell damage. EC inhibits Nuclear factor erythroid 2-related factor 2 (Nrf2) in cancer cells, which effectively down-regulates downstream gene products, including NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HMOX1). A series of chain reactions reduce the escape effect of oxidative stress (OS) and effectively maintain a high level of intracellular oxidation. Furthermore, it induces sustained and intense ferroptosis in tumor cells. Finally, the use of cancer cell membrane modified nanoplatforms due to the homology of membrane protein components improves the tumor cell targeting of the nanoplatforms, showing significant tumor cell inhibition and killing effect in vivo. Conclusion The results showed that the GOx/EC@Fe3O4@CCM nanoplatforms successfully induced significant ferroptosis of Hepatocellular carcinoma cells through a cascade effect, and finally effectively promoted cancer cell regression.
Collapse
Affiliation(s)
- Kunzhao Huang
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Xiaoyuan Yi
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Huaying Xie
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Jianzhang Luo
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Qingyu Zeng
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Feifei He
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Liyan Wang
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| |
Collapse
|
38
|
Zhang C, Wu Q, Yang H, Zhang H, Liu C, Yang B, Hu Q. Ferroptosis-related gene signature for predicting prognosis and identifying potential therapeutic drug in EGFR wild-type lung adenocarcinoma. Commun Biol 2024; 7:1416. [PMID: 39478024 PMCID: PMC11525656 DOI: 10.1038/s42003-024-07117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Epidermal growth factor receptor wild type lung adenocarcinoma (EGFRWT LUAD) still has limited treatment options and unsatisfactory clinical outcomes. Ferroptosis, as a form of cell death, has been reported to play a dual role in regulating tumor cell survival. In this study, we constructed a 3-ferroptosis-gene signature, FeSig, and verified its accuracy and efficacy in predicting EGFRWT LUAD prognosis at both the RNA and protein levels. Patients with higher FeSig scores were found to have worse clinical outcomes. Additionally, we explored the relationship between FeSig and tumor microenvironment, revealing that enhanced interactions between fibroblasts and tumor cells in FeSighigh patients causing tumor resistance to ferroptosis. To address this challenge, we screened potential drugs from NCI-60 (The US National Cancer Institute 60 human tumour cell line anticancer drug screen) and Connectivity map database, ultimately identifying 6-mercatopurine (6-MP) as a promising candidate. Both in vitro and in vivo experiments demonstrated its efficacy in treating FeSighigh EGFRWT LUAD tumor models. In summary, we develop a novel FeSig for predicting prognosis and guiding drug application.
Collapse
Affiliation(s)
- Chuankai Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qi Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Hongwei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Hui Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Changqing Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Yang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qingsong Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| |
Collapse
|
39
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
40
|
Chen W, Zhu T, Pu X, Zhao L, Zhou S, Zhong X, Wang S, Lin T. Machine Learning Diagnostic Model for Hepatocellular Carcinoma Based on Liquid-Liquid Phase Separation and Ferroptosis-Related Genes. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 36:89-99. [PMID: 39635757 PMCID: PMC11843271 DOI: 10.5152/tjg.2024.24101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/17/2024] [Indexed: 12/07/2024]
Abstract
Background/Aims Hepatocellular carcinoma (HCC) represents a primary liver malignancy with a multifaceted molecular landscape. The interplay between liquid-liquid phase separation (LLPS) and ferroptosis-a regulated form of cell death-has garnered interest in tumorigenesis. However, the precise role of LLPS and ferroptosis-related genes in HCC progression and prognosis remains obscure. Unraveling this connection could pave the way for innovative diagnosis and therapeutic strategies. Materials and Methods The differentially expressed genes (DEGs) were identified based on 3 GEO datasets, followed by overlapping with LLPS-related and ferroptosis-related genes. Based on central hub genes, a diagnostic model was developed through LASSO regression and validated using KM survival analysis and real-time quantitative polymerase chain reaction (RT-qPCR). Then the effects of NRAS on the development of HCC and ferroptosis were also detected. Results We identified 24 DEGs overlapping among HCC-specific, LLPS, and ferroptosis-related genes. A diagnostic model, centered on 5 hub genes, was developed and validated. Lower expression of these genes corresponded with enhanced patient survival rates, and they were distinctly overexpressed in HCC cells. NRAS downregulation significantly inhibited HepG2 cell proliferation and migration (P < .01). Fe2+ content and ROS levels were both significantly increased in the si-NRAS group when compared to those in the si-NC group (P < .01), while opposite results were observed for the protein level of GPX4 and GSH content. Conclusion The diagnostic model with 5 hub genes (EZH2, HSPB1, NRAS, RPL8, and SUV39H1) emerges as a potential innovative tool for the diagnosis of HCC. NRAS promotes the carcinogenesis of HCC cells and inhibits ferroptosis.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Xiaofan Pu
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Linlin Zhao
- Department of Cardiology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Senhao Zhou
- Department of Otolaryngology Head and Neck Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xin Zhong
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Suihan Wang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
41
|
Zhang R, Li C, Zhang S, Kong L, Liu Z, Guo Y, Sun Y, Zhang C, Yong Y, Lv J, Lu M, Liu M, Wu D, Zhang T, Yang H, Wei D, Chen Z, Bian H. UBE2S promotes glycolysis in hepatocellular carcinoma by enhancing E3 enzyme-independent polyubiquitination of VHL. Clin Mol Hepatol 2024; 30:771-792. [PMID: 38915206 PMCID: PMC11540382 DOI: 10.3350/cmh.2024.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND/AIMS Ubiquitination is widely involved in the progression of hepatocellular carcinoma (HCC) by regulating various cellular processes. However, systematic strategies for screening core ubiquitin-related genes, clarifying their functions and mechanisms, and ultimately developing potential therapeutics for patients with HCC are still lacking. METHODS Cox and LASSO regression analyses were performed to construct a ubiquitin-related gene prediction model for HCC. Loss- and gain-of-function studies, transcriptomic and metabolomics analysis were used to explore the function and mechanism of UBE2S on HCC cell glycolysis and growth. RESULTS Based on 1,423 ubiquitin-related genes, a four-gene signature was successfully constructed to evaluate the prognosis of patients with HCC. UBE2S was identified in this signature with the potential to predict the survival of patients with HCC. E2F2 transcriptionally upregulated UBE2S expression by directly binding to its promoter. UBE2S positively regulated glycolysis in a HIF-1α-dependent manner, thus promoting the proliferation of HCC cells. Mechanistically, UBE2S enhanced K11-linkage polyubiquitination at lysine residues 171 and 196 of VHL independent of E3 ligase, thereby indirectly stabilizing HIF-1α protein levels by mediating the degradation of VHL by the proteasome. In particular, the combination of cephalomannine, a small molecule compound that inhibits the expression of UBE2S, and PX-478, an inhibitor of HIF-1α, significantly improved the anti-tumor efficacy. CONCLUSION UBE2S is identified as a key biomarker in HCC among the thousands of ubiquitin-related genes and promotes glycolysis by E3 enzyme-independent ubiquitination, thus serving as a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Renyu Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Can Li
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Shuai Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Lingmin Kong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zekun Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yixiao Guo
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ying Sun
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yule Yong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Jianjun Lv
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Meng Lu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Man Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Dong Wu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ding Wei
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| |
Collapse
|
42
|
Xu Q, Ren L, Ren N, Yang Y, Pan J, Zheng Y, Wang G. Ferroptosis: a new promising target for hepatocellular carcinoma therapy. Mol Cell Biochem 2024; 479:2615-2636. [PMID: 38051404 DOI: 10.1007/s11010-023-04893-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer. The in-depth researches for iron metabolism, lipid peroxidation and dysregulation of antioxidant defense have brought about tangible progress in the firmament of ferroptosis with more and more results showing close connections between ferroptosis and HCC. The potential role of ferroptosis has been widely used in chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of various new drugs significantly improving the prognosis of patients. Based on the characteristics and mechanisms of ferroptosis, this article further focuses on the main signaling pathways and promising treatments of HCC, envisioning that existing problems in regard with ferroptosis and HCC could be grappled with in the foreseeable future.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yu Zheng
- Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China.
| |
Collapse
|
43
|
Xiao F, Li HL, Yang B, Che H, Xu F, Li G, Zhou CH, Wang S. Disulfidptosis: A new type of cell death. Apoptosis 2024; 29:1309-1329. [PMID: 38886311 PMCID: PMC11416406 DOI: 10.1007/s10495-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Li Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Emergency, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Che
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Xu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Cheng-Hui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
44
|
Liu Z, Hu Q, Luo Q, Zhang G, Yang W, Cao K, Fang R, Wang R, Shi H, Zhang B. NUP37 accumulation mediated by TRIM28 enhances lipid synthesis to accelerate HCC progression. Oncogene 2024; 43:3255-3267. [PMID: 39294431 DOI: 10.1038/s41388-024-03167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Elevated intracellular lipid synthesis is important for hepatocellular carcinoma (HCC) progression. Our study aimed to identify the role of nucleoporin 37 (NUP37) in lipid synthesis and HCC progression. The expression of NUP37 was significantly upregulated in HCC and associated with a poor prognosis. NUP37 silencing suppressed lipid synthesis, proliferation, migration, and invasion of HCC cells in vitro, and restrained tumor growth in xenograft mouse models in vivo. Next, we found the high expression of NUP37 in HCC was related to post-translational modifications. Tripartite motif-containing 28 (TRIM28) was identified as an interacting protein of NUP37 and upregulated its protein level. The subsequent analysis revealed that TRIM28-mediated SUMOylation of NUP37 at Lys114/118/246 inhibited K27-linked polyubiquitination of NUP37, which is one reason for its high expression level in HCC. In conclusion, TRIM28 SUMOylates NUP37 to prevent its ubiquitination and proteasomal degradation, increasing the stability of the NUP37 protein, thereby promoting lipid synthesis and the progression of HCC.
Collapse
Affiliation(s)
- Zhiyi Liu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghe Hu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Luo
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guowei Zhang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weichao Yang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruqiao Fang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hengliang Shi
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bin Zhang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
45
|
Xia H, Chen J, Zhang W, Xu Y, Nai Y, Wei X. CRYAB Promotes Colorectal Cancer Progression by Inhibiting Ferroptosis Through Blocking TRIM55-Mediated β-Catenin Ubiquitination and Degradation. Dig Dis Sci 2024; 69:3799-3809. [PMID: 39126452 PMCID: PMC11489300 DOI: 10.1007/s10620-024-08584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND α-Crystallin B (CRYAB) is a chaperone member of the HSPs family that protects proteins with which it interacts from degradation. This study aims to investigate the effect of CRYAB on the progression of colorectal cancer (CRC) and its underlying mechanism. METHODS CRYAB expression was evaluated in CRC tissues. Cell growth was tested by CCK-8 kit. Lipid reactive oxygen species (ROS) assays, lipid peroxidation assays, glutathione assays were used to assess the degree of cellular lipid peroxidation of CRC cells. The potential signal pathways of CRYAB were analyzed and verified by Western blot (WB) and immunoprecipitation (Co-IP). RESULTS CRYAB expression was elevated in CRC tissues and exhibited sensitivity and specificity in predicting CRC. Functionally, knockdown of CRYAB induced ferroptosis in CRC cells. Mechanistically, CRYAB binding prevented from β-catenin interacting with TRIM55, leading to an increase in β-catenin protein stability, which desensitized CRC cells to ferroptosis and ultimately accelerated cancer progression. CONCLUSIONS Targeting CRYAB might be a promising strategy to enhance ferroptosis and improve the efficacy of CRC therapy.
Collapse
Affiliation(s)
- Haiyan Xia
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingwen Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, China
| | - Yongjun Nai
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Zhou X, Lin L. Mechanisms and therapeutic target of anti-tumour treatment-related Ferroptosis: How to improve cancer therapy? Biomed Pharmacother 2024; 179:117323. [PMID: 39208665 DOI: 10.1016/j.biopha.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, increased attention has been focused on the regulatory mechanism and potential clinical application of ferroptosis in cancer cells, especially therapy-related ferroptosis. However, the mechanism of treatment-related ferroptosis and the application prospects and strategies for future treatment still require further clarification. This review highlights the molecular relationships between different clinical antitumour drugs, including commonly used chemotherapy drugs, radiation therapy and vitamins, and ferroptosis. This review also proposes strategies for future treatments that involve ferroptosis, with an aim to develop a new strategy for the transformative potential of the emerging field of ferroptosis to improve cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
47
|
Zhang Y, Qian J, Fu Y, Wang Z, Hu W, Zhang J, Wang Y, Guo Y, Chen W, Zhang Y, Wang X, Xie Z, Ye H, Ye F, Zuo Z. Inhibition of DDR1 promotes ferroptosis and overcomes gefitinib resistance in non-small cell lung cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167447. [PMID: 39089636 DOI: 10.1016/j.bbadis.2024.167447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Gefitinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), which serves the critical pillar for the treatment of non-small cell lung cancer (NSCLC). However, the acquired resistance remains a challenge for its clinical application, for which, practical strategies to reverse gefitinib resistance in NSCLC are necessary. Ferroptosis, a programmed cell death driven by ferritin-dependent lipid peroxidation, involves in NSCLC progression and related chemoresistance. In our previous work, the self-synthesised EGFR inhibitor Yfq07 (N4, N6-disubstituted pyrimidine-4,6-diamine derivatives) displayed a considerable inhibitory effect on NSCLC both in vitro and in vivo. Herein, we observed that Yfq07 suppressed the proliferation of PC-9GR and HCC827GR cells, two gefitinib resistance NSCLC cell lines. Mechanically, Yfq07 inhibited the phosphorylation of the Discoidin Domain Receptor 1 (DDR1), a receptor tyrosine kinase (RTK) highly expressed in multiple cancers, accompanied by downregulated miR-3648 and upregulated SOCS2. Inhibition or knockdown of DDR1 suppressed the proliferation, migration, and invasion of gefitinib-resistant NSCLC cells, and on the other hand, also downregulated miR-3648 and promoted SOCS2 expression. More specifically, miR-3648 targeted the 3'UTR segment of SOCS2 mRNA and thus affecting the P-ERK signalling pathway to regulate the malignant behaviors of gefitinib-resistant NSCLC cells. Furthermore, Yfq07 also indirectly induced the ferroptosis of gefitinib-resistant NSCLC cells via SOCS2 triggered inhibition of xCT-GPX4 pathway. In conclusion, our study indicates that DDR1 inhibitor Yfq07 promotes ferroptosis and reverses gefitinib-resistance of NSCLC through DDR1-miR-3648-SOCS2 signalling pathway, which provides insights for targeted therapy of gefitinib-resistant NSCLC and drug developments targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinheng Qian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanneng Fu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanping Hu
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinxia Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuexuan Wang
- Laocheng District, Luoyang Maternal and child health family planning service center, Laocheng, Luoyang, Henan 471000, China
| | - Yangyang Guo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weikang Chen
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yejun Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuebao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Faqing Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhigui Zuo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
48
|
Zhang Y, Zhang J, Chen S, Li M, Yang J, Tan J, He B, Zhu L. Unveiling the Network regulatory mechanism of ncRNAs on the Ferroptosis Pathway: Implications for Preeclampsia. Int J Womens Health 2024; 16:1633-1651. [PMID: 39372667 PMCID: PMC11451465 DOI: 10.2147/ijwh.s485653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are transcripts originating from the genome that do not serve as templates for protein synthesis. They function as epigenetic and translational regulators in various pathophysiological mechanisms, including cell proliferation and apoptosis. The ferroptosis signaling pathway, a novel mode of cell death, participates in numerous pathophysiological processes. Its signaling transmission is both complex and precise, featuring interconnected and interdependent pathways. Recent studies suggest that ncRNAs can finely regulate key genes in the ferroptosis pathway, thus modulating cellular functions, reducing oxidative stress, and maintaining maternal-fetal interface homeostasis. Future strategies targeting the ncRNA/ferroptosis axis may provide new perspectives and potential intervention points for treating preeclampsia. This article clarifies how the ncRNA/ferroptosis axis impacts preeclampsia, revealing how ncRNAs interact with ferroptosis, and pinpointing new molecular targets for the treatment of preeclampsia, thereby providing theoretical support for clinical strategies.
Collapse
Affiliation(s)
- Yuan Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingjing Zhang
- Department of Gynaecology and Obstetrics, Hunan Provincial Maternal and Child Health Hospital, Changsha410219, People’s Republic of China
| | - Sirui Chen
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Mianxin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jin Yang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Binsheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| |
Collapse
|
49
|
Lai T, Li F, Xiang L, Liu Z, Li Q, Cao M, Sun J, Hu Y, Liu T, Liang J. Construction and validation of senescence risk score signature as a novel biomarker in liver hepatocellular carcinoma: a bioinformatic analysis. Transl Cancer Res 2024; 13:4786-4799. [PMID: 39430830 PMCID: PMC11483424 DOI: 10.21037/tcr-23-2373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background Globally, liver cancer as one of the most frequent fatal malignancies, hits hard and fast. And the lack of effective treatments for liver hepatocellular carcinoma (LIHC), activates the researchers to promote promising precision medicine. Interestingly, emerging evidence proves that cellular senescence is involved in the progression of cancers and is recognized for its hallmark-promoting capabilities. Hence, efforts have been made to construct and validate the senescence risk score signature (SRSS) model as a novel prognostic biomarker for LIHC. Methods The existing databases were mined for the following bioinformatics analyses. GSE22405, GSE57957, and senescence-related genes (SRGs) from public databases were utilized as a training set and the validation set was constituted by LIHC and pancreatic adenocarcinoma (PAAD) from The Cancer Genome Atlas (TCGA). After overlapping differentially expressed genes (DEGs) with SRGs, differentially expressed SRGs were identified with the progression of liver cancer through univariate and multivariate Cox regression and enrichment analyses. The model that utilized three SRGs was constructed using the least absolute shrinkage and selection operator (LASSO) regression algorithm. Next, to evaluate the predictive performance of the SRSS model, the overall survival (OS) and survival rates were assessed through Kaplan-Meier (KM) and the receiver operating characteristic (ROC) curves. The predictive value for LIHC prognosis was further evaluated by capitalizing on risk score, nomograms, decision curve analysis (DCA) curves, and clinical information including tumor stages, gender, age, and race. Results DEGs were revealed as enriching in multiple tumor-related biological processes (BPs) and pathways. IGFBP3, SOCS2, and RACGAP1 were identified as the three considerable SRGs for the model. The high-risk group had a worse prognosis [both hazard ratio (HR) >1, P<0.001] and ROC curves showed a reliable predictive model with area under the curve (AUC) predictive values ranging from 0.673-0.816 for different-year survival rates respectively. The univariate and multivariate Cox regression analyses exhibited that risk score was the only credible prognostic predictor (HR >1, P<0.001) among clinical features such as tumor stage, age, etc., in LIHC. The nomograms, and DCA curves, combined with multiple clinical information, proved that the predictive ability of SRSS was strongest, followed by nomogram and traditional tumor node metastasis (TNM) stage was the weakest. Conclusions In summary, comprehensive analyses supported that the SRSS model can better predict survival and risk in LIHC patients. Promisingly, it may point out a brand-new direction for LIHC therapy.
Collapse
Affiliation(s)
- Tianqi Lai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Clinical Medicine, Medical College, Jinan University, Guangzhou, China
| | - Feilong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhilong Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Youzhu Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, The Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Junjie Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Wen Y, Zhang W, Wang D, Lu M. Propofol ameliorates cognitive deficits following splenectomy in aged rats by inhibiting ferroptosis via the SIRT1/Nrf2/GPX4 pathway. Neuroreport 2024; 35:846-856. [PMID: 38968575 DOI: 10.1097/wnr.0000000000002074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The aim of this study was to investigate the mechanism by which propofol reduces postoperative cognitive dysfunction after splenectomy in aged rats. The rats in the model group and propofol group were subjected to splenectomy, and anesthetized with isoflurane and propofol, respectively. Utilizing the western blotting to assess the expression of sirtuin-1 (SIRT1) in the hippocampus. Molecular docking technology was used to predict the binding ability of propofol and SIRT1. Behavioral tests were performed using the Morris water maze, and the hippocampus was isolated for mechanistic investigations. Molecular docking showed that propofol and SIRT1 had a strong binding affinity. The expression of SIRT1 and its related proteins Nrf2, HO-1, NQO1, and GPX4 in the model rats was decreased compared with the sham group. Moreover, the model group exhibited cognitive decline, such as extended escape latency and decreased number of platform crossings. Pathological analysis showed that the number of apoptotic neurons, the levels of oxidative stress and neuroinflammation, the iron deposition, and the expressions of ACSL4 and TFR1 were increased, while the expressions of SLC7A11 and FTH1 were decreased in the hippocampal CA1 region within the model group. These pathological changes in the propofol group were, however, less than those in the model group. Nevertheless, the SIRT1 inhibitor increased these pathological changes compared with the propofol group. Compared with isoflurane, propofol inhibits ferroptosis in the hippocampus of splenectomized rats by causing less downregulation of the SIRT1/Nrf2/GPX4 pathway, thereby reducing the negative impact on cognitive function.
Collapse
Affiliation(s)
| | - Weihua Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Dingran Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Meijing Lu
- Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| |
Collapse
|