1
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Wang X, Sun L. The Potential Role of Cardiokines in Heart and Kidney Diseases. Curr Med Chem 2025; 32:720-728. [PMID: 37855343 DOI: 10.2174/0109298673261760231011114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
As the engine that maintains blood circulation, the heart is also an endocrine organ that regulates the function of distant target organs by secreting a series of cardiokines. As endocrine factors, cardiokines play an indispensable role in maintaining the homeostasis of the heart and other organs. Here, we summarize some of the cardiokines that have been defined thus far and explore their roles in heart and kidney diseases. Finally, we propose that cardiokines may be a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Ming Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinfei Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liyu He
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Mu Y, Luo LB, Huang R, Shen ZY, Huang D, Zhao SH, Yang J, Ma ZG. Cardiac-derived CTRP9 mediates the protection of empagliflozin against diabetes-induced male subfertility in mice. Clin Sci (Lond) 2024; 138:1421-1440. [PMID: 39392219 DOI: 10.1042/cs20241477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have shown beneficial effects of empagliflozin (Empa), a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2), on diabetes and cardiovascular outcomes in patients with diabetes. However, whether Empa could ameliorate diabetes mellitus (DM)-induced male spermatogenesis dysfunction remains unclear. Our study aimed to investigate the effect of Empa in the development of DM-induced male spermatogenesis dysfunction and to reveal the molecular mechanisms. DM mice were orally treated with Empa to investigate the effects of Empa on DM-induced male mice spermatogenesis dysfunction. We employed a cardiac-specific C1q/tumor necrosis factor-related protein 9 (CTRP9)-deficient mouse model and a cardiac-specific CTRP9 overexpression mouse model to investigate its role in the protection of Empa against diabetes-induced male subfertility. We found that Empa treatment could improve DM-induced male mice subfertility. Interestingly, we discovered that cardiac-derived CTRP9 was decreased in DM mice and this decrease was prevented by Empa treatment. A CTRP9 blocking antibody or cardiac-specific depletion of CTRP9 abolished the protection of Empa on DM-induced male subfertility. Cardiac-specific CTRP9 overexpression ameliorated DM-induced male subfertility. Mechanistically, we identified that cardiac-derived CTRP9 increased steroidogenesis in mice with diabetes in a PKA-dependent manner. We also provided direct evidence that activation of AMP activated protein kinase α (AMPKα)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signalling pathway by CTRP9 was responsible for the attenuation of ferroptosis in Leydig cells. In conclusions, we supposed that Empa was a potential therapeutic agent against DM-induced male mice spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhuo-Yu Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shu-Hong Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
3
|
Ruan S, Li J, Lei S, Zhang S, Xu D, Zuo A, Li L, Guo Y. Knockout of C1q/tumor necrosis factor-related protein-9 aggravates cardiac fibrosis in diabetic mice by regulating YAP-mediated autophagy. Front Pharmacol 2024; 15:1407883. [PMID: 39040468 PMCID: PMC11260687 DOI: 10.3389/fphar.2024.1407883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Diabetic cardiomyopathy (DCM) is predominantly distinguished by impairment in ventricular function and myocardial fibrosis. Previous studies revealed the cardioprotective properties of C1q/tumor necrosis factor-related protein 9 (CTRP9). However, whether CTRP9 affects diabetic myocardial fibrosis and its underlying mechanisms remains unclear. Methods We developed a type 1 diabetes (T1DM) model in CTRP9-KO mice via streptozotocin (STZ) induction to examine cardiac function, histopathology, fibrosis extent, Yes-associated protein (YAP) expression, and the expression of markers for autophagy such LC3-II and p62. Additionally, we analyzed the direct impact of CTRP9 on high glucose (HG)-induced transdifferentiation, autophagic activity, and YAP protein levels in cardiac fibroblasts. Results In diabetic mice, CTRP9 expression was decreased in the heart. The absence of CTRP9 aggravated cardiac dysfunction and fibrosis in mice with diabetes, alongside increased YAP expression and impaired autophagy. In vitro, HG induced the activation of myocardial fibroblasts, which demonstrated elevated cell proliferation, collagen production, and α-smooth muscle actin (α-SMA) expression. CTRP9 countered these adverse effects by restoring autophagy and reducing YAP protein levels in cardiac fibroblasts. Notably, the protective effects of CTRP9 were negated by the inhibition of autophagy with chloroquine (CQ) or by YAP overexpression through plasmid intervention. Notably, the protective effect of CTRP9 was negated by inhibition of autophagy caused by chloroquine (CQ) or plasmid intervention with YAP overexpression. Discussion Our findings suggest that CTRP9 can enhance cardiac function and mitigate cardiac remodeling in DCM through the regulation of YAP-mediated autophagy. CTRP9 holds promise as a potential candidate for pharmacotherapy in managing diabetic cardiac fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Guo
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Zidan A, Elnady M, Khalifa BN. Donepezil protects against cyclophosphamide-induced premature ovarian failure in mice: A focus on proinflammatory cytokines and NLRP3/TLR-4/NF-κB interplay. Toxicol Appl Pharmacol 2024; 488:116989. [PMID: 38825044 DOI: 10.1016/j.taap.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND AND AIM Cyclophosphamide (CP) chemotherapy is a significant iatrogenic component of premature ovarian failure (POF). The aim of this work was to evaluate the potential protective effects of donepezil, a centrally acting acetylcholinesterase (AChE) inhibitor, on CP-induced POF in mice. METHODS 40 female Swiss albino mice were split into 5 equal groups: group 1 (control), group 2 (CP-POF); induced by intraperitoneal injection of CP on 8th day of the experiment, and group (3-5); mice received oral donepezil daily (1, 2, or 4 mg/kg, respectively) 8 days before CP injection. Mice were euthanized after 24 h of CP injection, and blood samples were collected to assay serum anti-Mullerian hormone (AMH) levels. Ovarian tissues were dissected, and the right ovary was processed for further assays of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), nucleotide-binding domain-like receptor family, the Pyrin domain-containing 3 (NLRP3) inflammasome, and Toll-like receptor 4 (TLR-4), while the left one was processed for histopathological and immunohistochemical examination of nuclear factor-Kappa beta (NF-κB) and caspase-3. RESULTS Donepezil, in a dose-dependent manner particularly (4 mg/kg), has an inhibitory action on NO (40 ± 2.85 vs. 28.20 ± 2.23, P < 0.001), proinflammatory cytokines (P < 0.001), the TLR-4/ NF-κB / NLRP3 inflammasome pathway (P < 0.001), and apoptosis (P < 0.001), with a significant elevation in the AMH levels (4.57 ± 1.08 vs. 8.57 ± 0.97, P < 0.001) versus CP-POF group. CONCLUSION Donepezil may be a potential protective agent against CP-induced POF in mice, but further research is needed to fully understand its therapeutic function experimentally and clinically.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt.
| | - Manar Elnady
- Department of Pathology, Faculty of medicine, Tanta University, Egypt
| | - Basma N Khalifa
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt
| |
Collapse
|
5
|
Li M, Zhou S, Feng Z, Zhang C. Role of C1q/TNF-Related Protein 6 for the Evaluation of Coronary Heart Disease Associated with Type 2 Diabetes. Ther Clin Risk Manag 2024; 20:289-296. [PMID: 38799512 PMCID: PMC11127693 DOI: 10.2147/tcrm.s464007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Coronary artery disease (CAD) and type 2 diabetes (T2DM) are closely associated with increased rate of death. C1q/TNF-related protein 6 (CTRP6) is a novel adipocytokine which plays an important role in glucose and lipid metabolism. Little is known about the function of CTRP6 in CAD and T2DM patients. Herein, we aimed to study the association of CTRP6 level with CAD and T2DM. Methods This study included 51 CAD, 44 CAD+T2DM and 65 non-CAD+T2DM patients from Affiliated Aoyang Hospital of Jiangsu University. Serum CTRP6 concentrations were detected by ELISA. Multiple logistic regression was used to analyze the association of serum CTRP6 with CAD and T2DM. Results Serum CTRP6 concentrations were significantly lower in CAD patients than controls. However, there is no significant statistical difference between CAD+T2DM patients and non-CAD+T2DM patients. Serum CTRP6 was negatively correlated with low-density lipoprotein cholesterol (LDL-C) (ρ=-0.2769, p=0.028) in controls. Serum CTRP6 was positively correlated with age (ρ=0.4121, p=0.0027), systolic blood pressure (SBP) (ρ=0.4012, p=0.0035), Creatinine (ρ=0.3295, p=0.0194), uric acid (UA) (ρ=0.3386, p=0.0162), and left ventricular end diastolic diameter (LVD) (ρ=0.4277, p=0.0042) and negatively correlated with ejection fraction (EF) (ρ=-0.3237, p=0.0342) in CAD patients. Serum CTRP6 was negatively correlated with high-density lipoprotein cholesterol (HDL-C) (ρ=-0.3164, p=0.0387) in CAD+T2DM patients. Multiple logistic regression showed that the decrease of CTRP6 was significantly related to the increased prevalence of CAD. What is more, CTRP6 increased prevalence of T2DM in CAD patients. Conclusion Lower serum CTRP6 could be a risk factor of CAD. However, higher circulating CTRP6 associated with the increased prevalence of T2DM in CAD patients.
Collapse
Affiliation(s)
- Mianxian Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Shuru Zhou
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu, People’s Republic of China
| | - Zexiong Feng
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Ma H, Lu Y, Zhu D, Jiang Z, Zhang F, Peng J, Wang L. Gypenoside A Protects Human Myocardial Cells from Ischemia/Reperfusion Injury via the circ_0010729/miR-370-3p/RUNX1 Axis. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:973-986. [PMID: 38880656 DOI: 10.1134/s000629792405016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/23/2023] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.
Collapse
Affiliation(s)
- Hailiang Ma
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - Yuanben Lu
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - Dewen Zhu
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - Zhenhua Jiang
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - FanZhi Zhang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jun Peng
- Department of Cardiovascular Medicine, First People's Hospital of Xiaoshan District, Hangzhou, 311200, China.
| | - Li Wang
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China.
| |
Collapse
|
7
|
Tan Y, Feng P, Feng L, Shi L, Song Y, Yang J, Duan W, Gao E, Liu J, Yi D, Zhang B, Sun Y, Yi W. Low-dose exercise protects the heart against established myocardial infarction via IGF-1-upregulated CTRP9 in male mice. MedComm (Beijing) 2023; 4:e411. [PMID: 38020715 PMCID: PMC10674078 DOI: 10.1002/mco2.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Regular exercise is recommended as an important component of therapy for cardiovascular diseases in clinical practice. However, there are still major challenges in prescribing an optimized exercise regimen to individual patients with established cardiac disease. Here, we tested the effects of different exercise doses on cardiac function in mice with established myocardial infarction (MI). Exercise was introduced to mice with MI after 4 weeks of surgery. Low-dose exercise (15 min/day for 8 weeks) improved mortality and cardiac function by increasing 44.39% of ejection fractions while inhibiting fibrosis by decreasing 37.74% of distant region. Unlike higher doses of exercise, low-dose exercise consecutively upregulated cardiac expression of C1q complement/tumor necrosis factor-associated protein 9 (CTRP9) during exercise (>1.5-fold). Cardiac-specific knockdown of CTRP9 abolished the protective effects of low-dose exercise against established MI, while cardiac-specific overexpression of CTRP9 protected the heart against established MI. Mechanistically, low-dose exercise upregulated the transcription factor nuclear receptor subfamily 2 group F member 2 by increasing circulating insulin-like growth factor 1 (IGF-1), therefore, upregulating cardiac CTRP9 expression. These results suggest that low-dose exercise protects the heart against established MI via IGF-1-upregulated CTRP9 and may contribute to the development of optimized exercise prescriptions for patients with MI.
Collapse
Affiliation(s)
- Yanzhen Tan
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Pan Feng
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lele Feng
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lei Shi
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yujie Song
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Jian Yang
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Erhe Gao
- Center for Translational MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jincheng Liu
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Dinghua Yi
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Bing Zhang
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yang Sun
- Department of General MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Wei Yi
- Department of Cardiovascular SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
8
|
Wang X, Ma X, Zeng Y, Xu L, Zhang M. Hypermethylation of the CTRP9 promoter region promotes Hcy induced VSMC lipid deposition and foam cell formation via negatively regulating ER stress. Sci Rep 2023; 13:19438. [PMID: 37945738 PMCID: PMC10636064 DOI: 10.1038/s41598-023-46981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
To provide a theoretical basis for the prevention and treatment of atherosclerosis (As), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on inducing the lipid deposition and foam cell formation of the vascular smooth muscle cell (VSMC) via C1q/Tumor necrosis factor-related protein9 (CTRP9) promoter region Hypermethylation negative regulating endoplasmic reticulum stress (ERs). Therefore, apolipoprotein E deficient (ApoE-/-) mice were randomly divided into the control [ApoE-/- + normal diet (NC)] and high methionine [ApoE-/- + (normal diet supplemented with 1.7% methionine (HMD)] groups (n = 6 mice/group). Following feeding for 15 weeks, the serum levels of Homocysteine (Hcy), total cholesterol (TC), and triglyceride (TG) were measured using an automatic biochemical analyzer. HE and oil red O staining were performed on the aorta roots to observe the pathological changes. Additionally, immunofluorescence staining was performed to detect the protein expression levels of CTRP9, glucose-regulated protein 78 kD (GRP78), phosphorylated protein kinase RNA-like ER kinase (p-PERK), activating transcription factor 6a (ATF6a), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), sterol regulatory element binding proteins-1c (SREBP1c) and sterol regulatory element binding proteins-2 (SREBP2) in VSMC derived from murine aortic roots. In vitro, VSMC was stimulated with 100 μmol/l Hcy. After transfection of plasmids with overexpression and interference of CTRP9, ERs agonist (TM) and inhibitor (4-PBA) were given to stimulate VSMC cells. HE staining and oil red O staining were used to observe the effect of Hcy stimulation on lipid deposition in VSMC. Additionally, The mRNA and protein expression levels of CTRP9, GRP78, PERK, ATF6a, IRE1α, SREBP1c, and SREBP2 in VSMC were detected by RT-qPCR and western blot analysis, respectively. Finally, The methylation modification of the CTRP9 promoter region has been studied. The NCBI database was used to search the promoter region of the CTRP9 gene, and CpG Island was used to predict the methylation site. After Hcy stimulation of VSMC, overexpression of DNMT1, and intervention with 5-Azc, assess the methylation level of the CTRP9 promoter through bisulfite sequencing PCR (BSP). The results showed that the serum levels of Hcy, TC, and TG in the ApoE-/- + HMD group were significantly increased compared with the ApoE-/- + NC group. In addition, HE staining and oil red O staining showed obvious AS plaque formation in the vessel wall, and a large amount of fat deposition in VSMC, thus indicating that the hyperhomocysteinemia As an animal model was successfully established. Furthermore, CTRP9 were downregulated, while GRP78, p-PERK, ATF6a, p-IRE1α, SREBP1c, SREBP2 was upregulated in aortic VSMC in the ApoE-/- + HMD group. Consistent with the in vivo results, Hcy can inhibit the expression of CTRP9 in VSMC and induce ERs and lipid deposition in VSMC. Meanwhile, the increased expression of CTRP9 can reduce ERs and protect the lipid deposition in Hcy induced VSMC. Furthermore, ERs can promote Hcy induced VSMC lipid deposition, inhibition of ERs can reduce Hcy induced VSMC lipid deposition, and CTRP9 may play a protective role in Hcy induced VSMC lipid deposition and foam cell transformation through negative regulation of ERs. In addition, The CTRP9 promoter in the Hcy group showed hypermethylation. At the same time as Hcy intervention, overexpression of DNMT1 increases the methylation level of the CTRP9 promoter, while 5-Azc can reduce the methylation level of the CTRP9 promoter. Finally, Hcy can up-regulate the expression of DNMT1 and down-regulate the expression of CTRP9. After overexpression of DNMT1, the expression of CTRP9 is further decreased. After 5-Azc inhibition of DNMT1, the expression of DNMT1 decreases, while the expression of CTRP9 increases. It is suggested that the molecular mechanism of Hcy inhibiting the expression of CTRP9 is related to the hypermethylation of the CTRP9 promoter induced by Hcy and regulated by DNMT1. 5-Azc can inhibit the expression of DNMT1 and reverse the regulatory effect of DNMT1 on CTRP9. Overall, the results of the present study suggested that Hcy induces DNA hypermethylation in the CTRP9 promoter region by up-regulating DNMT1 expression, and negatively regulates ERs mediated VSMC lipid deposition and foam cell formation. CTRP9 may potentially be a therapeutic target in the treatment of hyperhomocysteinemia and As.
Collapse
Affiliation(s)
- Xiuyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Xing Ma
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Yue Zeng
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Lingbo Xu
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Minghao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China.
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China.
| |
Collapse
|
9
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Wang J, Ren B, Yang Y, Li Y. C1q/tumor necrosis factor-related protein-9 exerts antioxidant and anti-inflammatory effects on oxygen-glucose deprivation/reoxygenation-stimulated neurons by modulating the Akt-GSK-3β-Nrf2 cascade via AdipoR1. Int Immunopharmacol 2023; 118:110045. [PMID: 36996742 DOI: 10.1016/j.intimp.2023.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
C1q/tumor necrosis factor-related protein-9 (CTRP9) is linked to diverse pathological conditions via the effects on cell apoptosis, inflammatory response, and oxidative stress. However, its functional relevance in ischemic brain injury is not well determined. The present work aimed to evaluate the role of CTRP9 in ischemia/reperfusion-associated neuronal injury using an in vitro model. The cultured cortical neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate ischemia/reperfusion in vitro. CTRP9 level was lowered in cultured neurons exposed to OGD/R. Neurons with overexpressed CTRP9 were resistant to OGD/R-elicited injuries, including neuronal apoptosis, oxidative stress, and pro-inflammatory response. Mechanism research revealed that CTRP9 could boost the activation of the nuclear factor erythroid 2-related factor (Nrf2) pathway associated with modulation of the Akt-glycogen synthase kinase-3β (GSK-3β) axis. CTRP9 regulated the transduction of the Akt-GSK-3β-Nrf2 cascade via adiponectin receptor 1 (AdipoR1). Restraining Nrf2 could diminish CTRP9-mediated neuroprotective effects in OGD/R-injured neurons. Altogether, these results confirmed that CTRP9 exerts a protective effect on OGD/R-injured neurons by modulating Akt-GSK-3β-Nrf2 cascade via AdipoR1. This work suggests a possible link between CTRP9 and ischemic brain injury.
Collapse
|
11
|
Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling. Biomedicines 2023; 11:biomedicines11020559. [PMID: 36831095 PMCID: PMC9952994 DOI: 10.3390/biomedicines11020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.
Collapse
|
12
|
Fadaei R, Azadi SM, Laher I, Khazaie H. Increased Levels of ANGPTL3 and CTRP9 in Patients With Obstructive Sleep Apnea and Their Relation to Insulin Resistance and Lipid Metabolism and Markers of Endothelial Dysfunction. Lab Med 2023; 54:83-89. [PMID: 35976955 DOI: 10.1093/labmed/lmac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) has a close relation with obesity and perturbation in adipokines and hepatokines, which are linked to OSA consequences such as insulin resistance, dyslipidemia, and endothelial dysfunction. This study aimed to assess the relation of C1q/TNF-related protein 9 (CTRP9) and angiopoietin-like protein 3 (ANGPTL3) with OSA and biochemical measurements. METHODS Serum levels of ANGPTL3, CTRP9, adiponectin, leptin, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion protein 1 (VCAM-1) were determined in 74 OSA patients and 27 controls using enzyme-linked immunosorbent assay kits. RESULTS Levels of ANGPTL3, CTRP9, leptin, ICAM-1, and VCAM-1 were increased in the patients compared to the controls, whereas adiponectin levels decreased. ANGPTL3 had a positive correlation with total cholesterol, triglyceride, low-density lipoprotein cholesterol, ICAM-1, and VCAM-1 and was inversely correlated with leptin. CTRP9 showed a positive correlation with body mass index, insulin resistance, ICAM-1, and VCAM-1. CONCLUSION The results indicated the relation of ANGLTP3 and CTRP9 with OSA and its complications, which suggested a possible role for these factors in the consequences of OSA.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, Faculty of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Li Y, Xiong Z, Jiang Y, Zhou H, Yi L, Hu Y, Zhai X, Liu J, Tian F, Chen Y. Klf4 deficiency exacerbates myocardial ischemia/reperfusion injury in mice via enhancing ROCK1/DRP1 pathway-dependent mitochondrial fission. J Mol Cell Cardiol 2023; 174:115-132. [PMID: 36509022 DOI: 10.1016/j.yjmcc.2022.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
RATIONAL Excessive mitochondrial fission is considered key process involved in myocardial ischemia/reperfusion (I/R) injury. However, the upstream mechanism remains largely unclear. Decreased level of Kruppel Like Factor 4 (KLF4) has been implicated in the pathogenesis of mitochondrial dysfunction and heart's adaption to stress. However, the role of Klf4 in I/R process is not fully elucidated. This study aims to investigate how Klf4 regulates mitochondrial dynamics and further clarify its underlying mechanism during cardiac I/R injury. METHODS Loss-of-function and gain-of-function strategies were applied to investigate the role of Klf4 in cardiac I/R injury via genetic ablation or intra-myocardial adenovirus injection. Mitochondrial dynamics was analyzed by confocal microscopy in vitro and transmission electron microscopy in vivo. Chromatin immunoprecipitation and luciferase reporter assay were performed to explore the underlying mechanisms. RESULTS KLF4 was downregulated in I/R heart. Cardiac-specific Klf4 knockout significantly exacerbated cardiac dysfunction in I/R mice. Mechanistically, Klf4 deficiency aggravated mitochondrial apoptosis, reduced ATP generation and boosted ROS overproduction via enhancing DRP1-dependent mitochondrial fission. ROCK1 was identified as a kinase regulating DRP1 activity at Ser616. Klf4 deficiency upregulated the expression of ROCK1 at transcriptional level, thus increasing S616-DRP1-mediated mitochondrial fission during I/R. Finally, reconstitution of Klf4 inhibited mitochondrial fission, restored mitochondrial function and alleviated I/R injury. CONCLUSION Our study provides the first evidence that Klf4 deficiency exacerbates myocardial I/R injury through regulating ROCK1 expression at transcriptional level to induce DRP1-mediated mitochondrial fission. Targeting mitochondrial dynamics by restoring Klf4 might be potentially cardio-protective strategies attenuating I/R injury.
Collapse
Affiliation(s)
- Yueyang Li
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenyu Xiong
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yufan Jiang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Zhou
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Yi
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingyun Hu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaofeng Zhai
- The Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jie Liu
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Tian
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yundai Chen
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
14
|
Lee SM, Lee JW, Kim I, Woo DC, Pack CG, Sung YH, Baek IJ, Jung CH, Kim YH, Ha CH. Angiogenic adipokine C1q-TNF-related protein 9 ameliorates myocardial infarction via histone deacetylase 7-mediated MEF2 activation. SCIENCE ADVANCES 2022; 8:eabq0898. [PMID: 36459558 PMCID: PMC10936044 DOI: 10.1126/sciadv.abq0898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
C1q/tumor necrosis factor-related protein 9 (CTRP9) is an adipokine and has high potential as a therapeutic target. However, the role of CTRP9 in cardiovascular disease pathogenesis remains unclear. We found CTRP9 to induce HDAC7 and p38 MAPK phosphorylation via tight regulation of AMPK in vascular endothelial cells, leading to angiogenesis through increased MEF2 activity. The expression of CTRP9 and atheroprotective MEF2 was decreased in plaque tissue of atherosclerotic patients and the ventricle of post-infarction mice. CTRP9 treatment inhibited the formation of atherosclerotic plaques in ApoE KO and CTRP9 KO mice. In addition, CTRP9 induced significant ischemic injury prevention in the post-MI mice. Clinically, serum CTRP9 levels were reduced in patients with MI compared with healthy controls. In summary, CTRP9 induces a vasoprotective response via the AMPK/HDAC7/p38 MAPK pathway in vascular endothelial cells, whereas its absence can contribute to atherosclerosis and MI. Hence, CTRP9 may represent a valuable therapeutic target and biomarker in cardiovascular diseases.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Hoon Sung
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Hak Kim
- Cardiology Division, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hoon Ha
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Hydrolyzed chicken meat extract boosts the immunoregulatory effect by regulating M1/M2 Macrophage polarization. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
Inhibition of GSDMD Activates Poly(ADP-ribosyl)ation and Promotes Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1115749. [PMID: 35783187 PMCID: PMC9249530 DOI: 10.1155/2022/1115749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022]
Abstract
The precise control of cardiomyocyte viability is imperative to combat myocardial ischemia-reperfusion injury (I/R), in which apoptosis and pyroptosis putatively contribute to the process. Recent researches indicated that GSDMD is involved in I/R as an executive protein of pyroptosis. However, its effect on other forms of cell death is unclear. We identified that GSDMD and GSDMD-N levels were significantly upregulated in the I/R myocardium of mice. Knockout of GSDMD conferred the resistance of the hearts to reperfusion injury in the acute phase of I/R but aggravated reperfusion injury in the chronic phase of I/R. Mechanistically, GSDMD deficiency induced the activation of PARylation and the consumption of NAD+ and ATP, leading to cardiomyocyte apoptosis. Moreover, PJ34, a putative PARP-1 inhibitor, reduced the myocardial injury caused by GSDMD deficiency. Our results reveal a novel action modality of GSDMD in the regulation of cardiomyocyte death; inhibition of GSDMD activates PARylation, suggesting the multidirectional role of GSDMD in I/R and providing a new theory for clinical treatment.
Collapse
|
17
|
Sadat-Ebrahimi SR, Amini H, Rahbarghazi R, Habibollahi P, Ghaderi S, Rajabi H, Rezabakhsh A. Putative therapeutic impacts of cardiac CTRP9 in ischaemia/reperfusion injury. J Cell Mol Med 2022; 26:3120-3132. [PMID: 35535510 PMCID: PMC9170823 DOI: 10.1111/jcmm.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Recently, cytokines belonging to C1q/tumour necrosis factor‐related proteins (CTRPs) superfamily have attracted increasing attention due to multiple metabolic functions and desirable anti‐inflammatory effects. These various molecular effectors exhibit key roles upon the onset of cardiovascular diseases, making them novel adipo/cardiokines. This review article aimed to highlight recent findings correlated with therapeutic effects and additional mechanisms specific to the CTRP9, particularly in cardiac ischaemia/reperfusion injury (IRI). Besides, the network of the CTPR9 signalling pathway and its possible relationship with IRI were discussed. Together, the discovery of all involved underlying mechanisms could shed light to alleviate the pathological sequelae after the occurrence of IRI.
Collapse
Affiliation(s)
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Habibollahi
- Department of Pharmacology and Toxicology, Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrouz Ghaderi
- Institute of Molecular Medicine III, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, School of Medicine, Istanbul, Turkey
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Emergency Medicine & Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Inooka D, Omori Y, Ouchi N, Ohashi K, Kawakami Y, Koyanagi Y, Koike C, Terasaki H, Nishiguchi KM, Ueno S. Ablation of Ctrp9, Ligand of AdipoR1, and Lower Number of Cone Photoreceptors in Mouse Retina. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35575905 PMCID: PMC9123514 DOI: 10.1167/iovs.63.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose C1q/TNF-related protein (CTRP) 9 is one of the adiponectin paralogs, and a genetic ablation of its receptor, AdipoR1, is known to cause retinal degeneration. The purpose of this study was to determine the role played by CTRP9 in the retina. Methods The retinas of Ctrp9 gene knockout (KO) and wild type (WT) mice were examined by electroretinography (ERG), histology, RNA sequencing, and quantitative real-time PCR. Results The amplitude of the photopic ERG elicited by the maximum stimulus intensity was smaller by 40% in the Ctrp9 KO mice than in WT mice at 8 weeks of age. However, the photopic ERGs was not reduced from 8 weeks to 6 months of age. The amplitudes of the scotopic ERGs were not reduced in the Ctrp9 KO mice at 8 weeks and 6 months of age. No distinct histological abnormalities were found in the retinal sections but the density of peanut agglutinin-stained cells in the retinal flat mount of KO mice was reduced to about 70% of that of WT mice. Genomewide RNA sequencing of the retina revealed the absence of the expression of CTRP9 in both KO and WT mice. RNA sequencing and quantitative real-time PCR analysis showed that the expressions of the transcripts of genes expressed in cones, Opn1sw, Opn1mw, Gnat2, and Cnga3, were reduced in the KO mice retina, however, the degree of expression of the transcripts in rods was not significantly reduced. Conclusions CTRP9 is released ectopically from other tissues, and it regulates the number of cones in the mouse retinas.
Collapse
Affiliation(s)
- Daiki Inooka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Shiga, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuto Kawakami
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Shiga, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chieko Koike
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji M. Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Wang B, Li Y, Hu S, Peng K. C1q/tumor necrosis factor-related protein 9 protects cultured chondrocytes from IL-1β-induced inflammatory injury by inhibiting NLRP3 inflammasome activation via the AdipoR1/AMPK axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:889-898. [PMID: 34990072 DOI: 10.1002/tox.23452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
C1q/tumor necrosis factor-related protein 9 (CTRP9) has been identified as a novel anti-inflammatory factor that participates in numerous pathological conditions. However, whether CTRP9 participates in the regulation of osteoarthritis has not been studied. This work sought to determine the possible role of CTRP9 in osteoarthritis using an in vitro model, namely interleukin-1β (IL-1β)-stimulated chondrocytes. There was a decreased level of CTRP9 in chondrocytes after IL-1β stimulation. CTRP9 upregulation dramatically repressed IL-1β-evoked apoptosis and inflammatory response in cultured chondrocytes. The mechanistic investigation revealed that CTRP9 overexpression restrained the activation of the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome in IL-1β-stimulated chondrocytes via the adiponectin receptor 1 (AdipoR1)/adenosine monophosphate-activated protein kinase (AMPK) axis. Notably, inhibition of AdipoR1 or AMPK abolished the regulatory effects of CTRP9 overexpression on IL-1β-evoked apoptosis and inflammasome activation. Overall, the results of this work delineate that CTRP9 protects cultured chondrocytes from IL-1β-induced inflammatory injury by inhibiting NLRP3 inflammasome activation via the AdipoR1/AMPK axis. This work underscores a potential role of CTRP9 in the progression of osteoarthritis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yanqi Li
- Department of Respiratory, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Shouye Hu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Kan Peng
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Zhang L, Ding H, Shi Y, Zhang D, Yang X. CTRP9 decreases high glucose‑induced trophoblast cell damage by reducing endoplasmic reticulum stress. Mol Med Rep 2022; 25:185. [PMID: 35348185 PMCID: PMC8985207 DOI: 10.3892/mmr.2022.12701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
C1q/TNF-α-related protein 9 (CTRP9) is downregulated in gestational diabetes mellitus (GDM) and may exert a protective effect against GDM, although its mechanism of action is yet to be elucidated. To investigate the specific role of CTRP9 in GDM, the human placental trophoblast cell line HTR8/SVneo was treated with high glucose (HG) to simulate the environment of GDM in vitro. The effects of CTRP9 on the HTR8/SVneo cells and endoplasmic reticulum (ER) stress were analyzed before and after CTRP9 overexpression using reverse transcription-quantitative PCR and western blotting. The results obtained demonstrated that CTRP9 alleviated ER stress in the trophoblast cell line. After treating with the ER-stress inducer tunicamycin, cell viability was investigated by performing Cell Counting Kit-8, TUNEL and western blotting assays, which revealed that CTRP9 increased the activity of HTR8/SVneo cells induced by HG through the alleviation of ER stress. Subsequently, ELISA and western blotting assay results demonstrated that CTRP9 inhibited HG-induced inflammation of the HTR8/SVneo cells by the reduction in ER stress. Finally, the detection of reactive oxygen species, nitric oxide (NO) synthase and NO levels confirmed that CTRP9 inhibited the oxidative stress of HTR8/SVneo cells induced by HG through the reduction of ER stress. Collectively, the results of the present study suggested that CTRP9 may decrease trophoblast cell damage caused by HG through the suppression of ER stress, and therefore, CTRP9 may potentially be a therapeutic target in the treatment of GDM.
Collapse
Affiliation(s)
- Lianxiao Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yubo Shi
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Duoyi Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue Yang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
21
|
Guan H, Wang Y, Li X, Xiang A, Guo F, Fan J, Yu Q. C1q/Tumor Necrosis Factor-Related Protein 9: Basics and Therapeutic Potentials. Front Physiol 2022; 13:816218. [PMID: 35370782 PMCID: PMC8971810 DOI: 10.3389/fphys.2022.816218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 01/19/2023] Open
Abstract
C1q/tumor necrosis factor-related protein 9 (CTRP9) is a newly discovered adipokine that is the closest paralog of adiponectin. Proteolytic cleavage of CTRP9 leads to the release of the globular domain (gCTRP9), which serves as the major circulating subtype. After binding with adiponectin receptor 1 (AdipoR1) and N-cadherin, CTRP9 activates various signaling pathways to regulate glucose and lipid metabolism, vasodilation and cell differentiation. Throughout human development and adult life, CTRP9 controls many biological phenomena. simultaneously, abnormal gene or protein expression of CTRP9 is accompanied by a wide range of human pathological phenomena. In this review, we briefly introduce CTRP9 and its associated signaling pathways and physiological functions, which may be helpful in the understanding of the occurrence of diseases. Moreover, we summarize the broader research prospects of CTRP9 and advances in therapeutic intervention. In recent years, CTRP9 has attracted extensive attention due to its role in the pathogenesis of various diseases, providing further avenues for its exploitation as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yanli Wang
- Department of Pathology, Xi’an Medical University, Xi’an, China
| | - Xiangyu Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Fengwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianglin Fan
- Department of Pathology, Xi’an Medical University, Xi’an, China
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan
- *Correspondence: Jianglin Fan,
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Qi Yu,
| |
Collapse
|
22
|
Guo F, Wang X, Guo Y, Wan W, Cui Y, Wang J, Liu W. Shenfu Administration Improves Cardiac Fibrosis in Rats With Myocardial Ischemia-Reperfusion Through Adenosine A 2a Receptor Activation. Hum Exp Toxicol 2022; 41:9603271221077684. [PMID: 35196174 DOI: 10.1177/09603271221077684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Shenfu injection (SFI) is commonly used for cardiac dysfunction in China. Adenosine receptors have been reported to exert anti-fibrosis effects. The intent of this study was to evaluate that SFI attenuates cardiac fibrosis through activating of adenosine A2a receptor (A2aR) in rats with myocardial ischemia-reperfusion (MI/R). METHODS Sprague Dawley male rats were randomly divided into five groups, nine rats in each group. Injections in all rat groups were carried out prior to reperfusion, and in the sham and MI/R groups, only vehicle was injected. Injections in the remaining group were as follows: 5 mL/kg in the SFI group; 15 mg/kg nicorandil in the A2R agonist group; and 5 mL/kg SFI plus 5 mg/kg MSX-3 in the SFI + A2aR antagonist group. Changes in cyclic adenosine monophosphate (cAMP) and the development of myocardial infarction and cardiac fibrosis were documented among the groups. Additionally, the levels of A2aR, collagen Ⅰ, collagen Ⅲ, fibronectin, and matrix metalloproteinase-9 (MMP-9) were measured. RESULTS Following injection with SFI or nicorandil, the cAMP concentration, infarct area, and cardiac fibrosis induced by MI/R injury were significantly decreased (p < 0.05). Additionally, the levels of collagen Ⅰ, collagen Ⅲ, fibronectin, and MMP-9 were clearly suppressed by SFI or nicorandil when compared with the MI/R group (p<0.01). However, the protective effects of SFI were counteracted by MSX-3. A negative correlation between A2aR and collagen I and collagen III was found (p = 0.00). CONCLUSION SFI activated the A2aR to reduce myocardial fibrosis caused by MI/R injury, which provided an underlying mechanism of action of SFI.
Collapse
Affiliation(s)
- Fangming Guo
- Department of Cardiology, 519688Yantaishan Hospital, Affiliated to Binzhou Medical University, Yantai City, China
| | - Xiaohuan Wang
- Department of Cardiology, 91589Gansu Provincial Hospital, Lanzhou, China
| | - Yuanying Guo
- School of Public Health, LKS Faculty of Medicine, the University of Hongkang, China
| | - Weiping Wan
- Department of Ultrasound, 519688Yantaishan Hospital, Affiliated to Binzhou Medical University, Yantai City, China
| | - Yanfang Cui
- Department of Ultrasound, 519688Yantaishan Hospital, Affiliated to Binzhou Medical University, Yantai City, China
| | - Jie Wang
- Cardiac Intensive Care Unit, 519688Yantaishan Hospital, Affiliated to Binzhou Medical University, Yantai City, China
| | - Wenbo Liu
- Department of Cardiology, 519688Yantaishan Hospital, Affiliated to Binzhou Medical University, Yantai City, China
| |
Collapse
|
23
|
Liu Z, Yang B. CTRP6(C1q/Tumor Necrosis Factor (TNF)-related protein-6) alleviated the sevoflurane induced injury of mice central nervous system by promoting the expression of p-Akt (phosphorylated Akt). Bioengineered 2021; 12:5716-5726. [PMID: 34516328 PMCID: PMC8806630 DOI: 10.1080/21655979.2021.1967838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive impairment and nervous system damage caused by anesthetics seriously affect patient’s postoperative recovery. Recent study has revealed that CTRP6 could alleviate apoptosis, inflammation and oxidative stress of nerve cells, thereby relieving nervous system damage induced by cerebral ischemia reperfusion. However, whether CTRP6 could relieve sevoflurane induced central nervous system injury is unclear. We stimulated C57BL/6 mice with sevoflurane and injected CTRP6 overexpression adenovirus vector. Next, H&E staining and TUNEL assays were performed to examine the effect of CTRP6 on sevoflurane induced injury of central nervous system. Finally, we isolated primary nerve cells of hippocampus. Flow cytometry and commercial kits were used for the detection of apoptosis and ROS levels of these cells. Western blotting was used for the detection of the expression level of p-Akt in central nervous tissues and primary cells. Results showed that sevoflurane induced injury and apoptosis of central nervous tissues. Overexpression of CTRP6 relieved apoptosis and injury of these tissues. CTRP6 inhibited the expression of cleaved caspase-3 and cleaved PARP in these tissues. Sevoflurane promoted apoptosis of primary cells and enhanced the expression of ROS and MDA in these cells. Overexpression of CTRP6 alleviated apoptosis and suppressed production of ROS and MDA in these cells. In addition, CTRP6 also enhanced the expression of p-Akt in primary cells. Taken together, our results suggested that CTRP6 relieved sevoflurane induced injury of central nervous tissues by promoting the expression of p-Akt. Therefore, the targeted drug of CTRP6 should be explored for the remission of these symptoms.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Anesthesiology, The Second Hospital, University to South China Hengyang Cty, Hengyang City, Hunan Province, China
| | - Bin Yang
- Department of Anesthesiology, The Second Hospital, University to South China Hengyang Cty, Hengyang City, Hunan Province, China
| |
Collapse
|
24
|
Huang Z, Zhao D, Wang Y, Li X, Li J, Han J, Jiang L, Ai F, Zhou Z. C1q/TNF-related protein 9 decreases cardiomyocyte hypoxia/reoxygenation-induced inflammation by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Exp Ther Med 2021; 22:1139. [PMID: 34504585 PMCID: PMC8393267 DOI: 10.3892/etm.2021.10573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
C1q/TNF-related protein 9 (CTRP9) acts as an adipokine and has been reported to exert numerous biological functions, such as anti-inflammatory and anti-oxidative stress effects, in ischemic heart disease. In the present study, the role of CTRP9 in neonatal rat cardiomyocytes (NRCMs) following hypoxia/reoxygenation (H/R) and the underlying mechanism was investigated. Adenoviral vectors containing CTRP9 or green fluorescent protein were transfected into NRCMs. A H/R model was constructed 2 days after transfection by 2 h incubation under hypoxia followed by 4 h of reoxygenation. Lactate dehydrogenase (LDH), creatine kinase (CK) and CK-myocardial band (CK-MB) levels were detected by a biochemical analyzer using biochemical kits. In addition, cell viability was detected using trypan blue staining to determine the extent of cell injury. Inflammatory cytokines TNF-α, IL-6 and IL-10 were measured by ELISA. Western blotting and reverse transcription-quantitative PCR were used to evaluate the expression levels of CTRP9, toll-like receptor 4 (TLR4), myeloid differentiation primary response (MyD88) and NF-κB. The DNA binding activity of NF-κB was also detected using an electrophoretic mobility shift assay. The results indicated that transfection with adenoviral vectors containing CTRP9 could markedly enhance CTRP9 expression. CTRP9 overexpression increased cell viability and decreased the release of LDH, CK and CK-MB. In addition, CTRP9 overexpression reduced TNF-α and IL-6 levels whilst increasing IL-10 levels, but decreased the expression of TLR4, MyD88 and NF-κB. Furthermore, the DNA binding activity of NF-κB under H/R was also decreased by CTRP9 overexpression. In conclusion, the results of the present study suggested that CTRP9 could protect cardiomyocytes from H/R injury, which was at least partially due to the inhibition of the TLR4/MyD88/NF-κB signaling pathway to reduce the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Zhongyi Huang
- Department of Emergency, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Dan Zhao
- Department of Emergency, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Yongjian Wang
- Department of Emergency, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Xiaolei Li
- Department of Emergency, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianqiu Li
- Department of Emergency, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Jie Han
- Department of Emergency, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Lisi Jiang
- Department of Emergency, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Zhaoxiong Zhou
- Department of Critical Care Medicine, Shenzhen Hyzen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
25
|
Wang J, Wang X, Wan W, Guo Y, Cui Y, Liu W, Guo F. Effects of Shenfu injection on myocardial adenosine receptors in rats with myocardial ischemia-reperfusion postconditioning. Hum Exp Toxicol 2021; 40:S300-S309. [PMID: 34465228 DOI: 10.1177/09603271211041668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Shenfu injection (SFI) has been reported to have a protection against myocardial ischemia-reperfusion (MI/R) injury. However, the changes of adenosine receptors in MI/R postconditioning when pretreated with SFI are unclear. METHODS Forty-five rats were randomly divided into sham group (sham), MI/R postconditioning group (MI/R-post), low-dose SFI group (1 mL/kg), middle-dose SFI group (2.5 mL/kg), and high-dose SFI group (5 mL/kg). In SFI groups, SFI was intravenously injected before reperfusion, and rats were treated with ischemic postconditioning after ischemia for 30 min. After 24 h of reperfusion, the levels of Ca2+ and cAMP in blood platelets were analyzed. Myocardial infarct volume and myocardial pathology were observed. The levels of adenosine receptor subtypes A1, A2b, and A3 in myocardium were analyzed using immunohistochemistry and Western blot. The oxidative stress-related indicators were also observed. RESULTS Compared with the MI/R-post group, SFI ameliorated the MI/R injury by decreasing the myocardial infarct area, oxidative stress, and concentration of Ca2+ and cAMP (p < 0.01). Pretreatment with SFI enhanced the expression of adenosine receptors A1 and A2b in a dose manner compared with the MI/R-post group. In contrast, the levels of adenosine receptor A3 were increased after MI/R postconditioning compared with the sham group, and its expression continued to increase with the increase of SFI. Furthermore, the oxidative stress reduced with the concentrations of SFI. CONCLUSION These results demonstrated that pretreatment with SFI might regulate the expression of adenosine receptors to improve the MI/R postconditioning.
Collapse
Affiliation(s)
- Jie Wang
- Cardiac Intensive Care Unit, 519688Yantaishan Hospital, Yantai, China
| | - Xiaohuan Wang
- Department of Cardiology, 91589Gansu Provincial Hospital, Lanzhou, China
| | - Weiping Wan
- Department of Ultrasound, 519688Yantaishan Hospital, Yantai, China
| | - Yuanying Guo
- School of Public Health, LKS Faculty of Medicine, The University of Hongkang, China
| | - Yanfang Cui
- Department of Ultrasound, 519688Yantaishan Hospital, Yantai, China
| | - Wenbo Liu
- Department of Cardiology, 519688Yantaishan Hospital, Yantai, China
| | - Fangming Guo
- Department of Cardiology, 519688Yantaishan Hospital, Yantai, China
| |
Collapse
|
26
|
Su RY, Geng XY, Yang Y, Yin HS. Nesfatin-1 inhibits myocardial ischaemia/reperfusion injury through activating Akt/ERK pathway-dependent attenuation of endoplasmic reticulum stress. J Cell Mol Med 2021; 25:5050-5059. [PMID: 33939297 PMCID: PMC8178279 DOI: 10.1111/jcmm.16481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Nesfatin‐1 (encoded by NUCB2) is a cardiac peptide possessing protective activities against myocardial ischaemia/reperfusion (MI/R) injury. However, the regulation of NUCB2/nesfatin‐1 and the molecular mechanisms underlying its roles in MI/R injury are not clear. Here, by investigating a mouse MI/R injury model developed with transient myocardial ischaemia followed by reperfusion, we found that the levels of NUCB2 transcript and nesfatin‐1 amount in the heart were both decreased, suggesting a transcriptional repression of NUCB2/nesfatin‐1 in response to MI/R injury. Moreover, cardiac nesfatin‐1 restoration reduced infarct size, troponin T (cTnT) level and myocardial apoptosis, supporting its cardioprotection against MI/R injury in vivo. Mechanistically, the Akt/ERK pathway was activated, and in contrast, endoplasmic reticulum (ER) stress was attenuated by nesfatin‐1 following MI/R injury. In an in vitro system, similar results were obtained in nesfatin‐1‐treated H9c2 cardiomyocytes with hypoxia/reoxygenation (H/R) injury. More importantly, the treatment of wortmannin, an inhibitor of Akt/ERK pathway, abrogated nesfatin‐1 effects on attenuating ER stress and H/R injury in H9c2 cells. Furthermore, nesfatin‐1‐mediated protection against H/R injury also vanished in the presence of tunicamycin (TM), an ER stress inducer. Lastly, Akt/ERK inhibition reversed nesfatin‐1 effects on mouse ER stress and MI/R injury in vivo. Taken together, these findings demonstrate that NUCB2/nesfatin‐1 inhibits MI/R injury through attenuating ER stress, which relies on Akt/ERK pathway activation. Hence, our study provides a molecular basis for understanding how NUCB2/nesfatin‐1 reduces MI/R injury.
Collapse
Affiliation(s)
- Rui-Ying Su
- Department of Cardiac Function Inspection, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Yong Geng
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Yang
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong-Shan Yin
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Wang X, Xu Y, Li L, Lu W. Thrombin Aggravates Hypoxia/Reoxygenation Injury of Cardiomyocytes by Activating an Autophagy Pathway-Mediated by SIRT1. Med Sci Monit 2021; 27:e928480. [PMID: 33931577 PMCID: PMC8098101 DOI: 10.12659/msm.928480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/18/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Acute myocardial infarction is the leading cause of mortality among adults worldwide. The present study aimed to investigate the role and mechanism of thrombin and SIRT1 in hypoxia/reoxygenation (H/R) injury. MATERIAL AND METHODS H9c2 cardiomyocytes were used to create an H/R model to simulate in vivo ischemia/reperfusion injury. The MTT assay was used to measure cell viability, qRT-PCR was used to detect the level of SIRT1, thrombin, and PAR-1, and western blot analysis was conducted for evaluation of thrombin, PAR-1, SIRT1, LC3I, LC3II, and Beclin1. ELISA was applied for determination of IL-1ß, IL-6, TNF-alpha, MMP-9, and ICAM-1. After the establishment of the H/R model, superoxide dismutase (SOD) activity was evaluated by the xanthine oxidase method, malondialdehyde content was detected by thiobarbituric acid assay, and reactive oxygen species generation was measured by CM-H2DCFDA. RESULTS The findings showed that thrombin enhanced inflammatory factor secretion and oxidative stress but inhibited cell viability in H/R-injured cardiomyocytes. We also observed that thrombin promoted autophagy in H/R-injured cardiomyocytes. In addition, thrombin enhanced the upregulation of SIRT1 expression by H/R. However, it was found that inhibition of SIRT1 could suppress the effect of thrombin on inflammatory factor secretion, oxidative stress, and cell viability. Moreover, downregulation of SIRT1 suppressed the inhibitory effect of thrombin on autophagy in H/R injury. CONCLUSIONS Thrombin aggravates H/R injury of cardiomyocytes by activating an autophagy pathway mediated by SIRT1. These findings might provide a potential target therapy for the treatment of ischemia/reperfusion injury in future clinical work.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yunhe Xu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lingbo Li
- Changchun Bioxun Biotechnology Limited Liability Company, Changchun, Jilin, P.R. China
| | - Weiwei Lu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
28
|
Lin JM, Hsu CH, Chen JC, Kao SH, Lin YC. BCL-6 promotes the methylation of miR-34a by recruiting EZH2 and upregulating CTRP9 to protect ischemic myocardial injury. Biofactors 2021; 47:386-402. [PMID: 33502806 DOI: 10.1002/biof.1704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022]
Abstract
Acute myocardial infarction (AMI) and the following heart failure are public health problems faced all over the globe. The current study set out to investigate the role of B-cell lymphoma 6 (BCL-6) in cardiac protection after AMI. Initially, AMI mouse models and H9c2 cell oxygen-glucose deprivation (OGD) models were established. The cell models were transfected with the vectors containing oe-BCL-6, oe-EZH2, sh-EZH2, miR-34a mimic, and miR-34a inhibitor. RT-qPCR and Western blot analysis were applied to detect the expression patterns of microRNA-34a (miR-34a), BCL-6, enhancer of zeste homolog 2 (EZH2), and C1q tumor necrosis factor-related protein 9 (CTRP9) in the treated cell models. ChIP-qPCR and co-immunoprecipitation assay were performed to detect EZH2 enrichment and H3K27me3 levels in the miR-34a promoter region and the interaction between BCL-2 and EZH2, respectively. EdU staining, TUNEL staining, and flow cytometry were performed to detect cell proliferation and apoptosis, while ELISA was conducted to detect the oxidative stress levels. It was found that miR-34a was highly expressed in heart tissues of AMI models, while BCL-6 and EZH2 were poorly expressed. BCL-2 overexpression increased the recruitment of EZH2, upregulated H3K27me3 level in the miR-34a promoter region, and inhibited the miR-34a expression. Ctrp9, the downstream negative-regulatory molecule of miR-34a, was upregulated. Besides, miR-34a/CTRP9 expression changes were found to affect cardiomyocyte apoptosis, oxidation stress, and proliferation, and prevent myocardial injury in AMI mice. Our findings indicate that BCL-6 increases the level of H3K27me3 in the promoter region of miR-34a via EZH2 recruitment and CTRP9 upregulation, which inhibits the apoptosis of myocardial cells.
Collapse
Affiliation(s)
- Jiunn-Miin Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| | - Chih-Hsiang Hsu
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| | - Jeen-Chen Chen
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taiwan, Republic of China
| | - You-Cian Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| |
Collapse
|
29
|
Nakkala JR, Yao Y, Zhai Z, Duan Y, Zhang D, Mao Z, Lu L, Gao C. Dimethyl Itaconate-Loaded Nanofibers Rewrite Macrophage Polarization, Reduce Inflammation, and Enhance Repair of Myocardic Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006992. [PMID: 33719217 DOI: 10.1002/smll.202006992] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Indexed: 05/22/2023]
Abstract
Cellular metabolism plays a major role in the regulation of inflammation. The inflammatory macrophages undergo a wide-range of metabolic rewriting due to the production of significant amount of itaconate metabolite from cis-aconitate in the tricarboxylic acid cycle. This itaconate molecule has been recently described as a promising immunoregulator. However, its function and mode of action on macrophages and tissue repair and regeneration are yet unclear. Herein, the itaconate-derivative dimethyl itaconate (DMI) suppresses the IL-23/IL-17 inflammatory axis-associated genes and promotes antioxidant nuclear factor erythroid 2-related factor 2 target genes. The poly-ε-caprolactone (PCL)/DMI nanofibers implanted in mice initially maintain inflammation by suppressing anti-inflammatory activity and particular inflammation, while at later stage promotes anti-inflammatory activity for an appropriate tissue repair. Furthermore, the PCL/DMI nanofiber patches show an excellent myocardial protection by reducing infarct area and improving ventricular function via time-dependent regulation of myocardium-associated genes. This study unveils potential DMI macrophage modulatory functions in tissue microenvironment and macrophages rewriting for proper tissue repair.
Collapse
Affiliation(s)
- Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Linrong Lu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
30
|
Rohrbach S, Li L, Novoyatleva T, Niemann B, Knapp F, Molenda N, Schulz R. Impact of PCSK9 on CTRP9-Induced Metabolic Effects in Adult Rat Cardiomyocytes. Front Physiol 2021; 12:593862. [PMID: 33643060 PMCID: PMC7904879 DOI: 10.3389/fphys.2021.593862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The adipocytokine adiponectin and its structural homologs, the C1q/TNF-related proteins (CTRPs), increase insulin sensitivity, fatty acid oxidation and mitochondrial biogenesis. Adiponectin- and CTRP-induced signal transduction has been described to involve the adiponectin receptors and a number of co-receptors including the Low density lipoprotein receptor-related protein 1 (LRP1). LRP1 is another target of the proprotein convertase subtilisin/kexin-9 (PCSK9) in addition to the LDL-receptor (LDL-R). Here, we investigated the influence of PCSK9 on the metabolic effects of CTRP9, the CTRP with the highest homology to adiponectin. Knockdown of LRP1 in H9C2 cardiomyoblasts blunts the effects of CTRP9 on signal transduction and mitochondrial biogenesis, suggesting its involvement in CTRP9-induced cellular effects. Treatment of adult rat cardiomyocytes with recombinant PCSK9 but not knockdown of endogenous PCSK9 by siRNA results in a strong reduction in LRP1 protein expression and subsequently reduces the mitochondrial biogenic effect of CTRP9. PCSK9 treatment (24 h) blunts the effects of CTRP9-induced signaling cascade activation (AMP-dependent protein kinase, protein kinase B). In addition, the stimulating effects of CTRP9 on cardiomyocyte mitochondrial biogenesis and glucose metabolism (GLUT-4 translocation, glucose uptake) are largely blunted. Basal fatty acid (FA) uptake is strongly reduced by exogenous PCSK9, although protein expression of the PCSK9 target CD36, the key regulator of FA transport in cardiomyocytes, is not altered. In addition, only minor effects of PCSK9 were observed on CTRP9-induced FA uptake or the expression of genes involved in FA metabolism or uptake. Finally, this CTRP9-induced increase in CD36 expression occurs independent from LRP1 and LDL-R. In conclusion, PCSK9 treatment influences LRP1-mediated signaling pathways in cardiomyocytes. Thus, therapeutic PCSK9 inhibition may provide an additional benefit through stimulation of glucose metabolism and mitochondrial biogenesis in addition to the known lipid-lowering effects. This could be an important beneficial side effect in situations with impaired mitochondrial function and reduced metabolic flexibility thereby influencing cardiac function.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Ling Li
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, Giessen, Germany
| | - Fabienne Knapp
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicole Molenda
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
31
|
Zhou Q, Cheng W, Wang Z, Liu J, Han J, Wen S, Liu J. C1q/TNF-related protein-9 is elevated in hypertension and associated with the occurrence of hypertension-related atherogenesis. Cell Biol Int 2021; 45:989-1000. [PMID: 33377578 DOI: 10.1002/cbin.11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 11/06/2022]
Abstract
C1q-tumor necrosis factor-related protein-9 (CTRP9) is an important adipocytokine that is closely associated with cardiovascular disease. This study aimed to detect CTRP9 expression in hypertensive patients and mice and to analyze its effects on hypertension-related atherogenesis. First, circulating CTRP9 levels were detected in both nonhypertensive subjects and hypertensive patients. The results showed that plasma CTRP9 levels were increased in hypertension patients compared with control subjects and gradually elevated in the Grade I, Grade II, and Grade III groups. While nondipper state did not affect CTRP9 expression in hypertension patients. Hypertension patients with carotid atherosclerotic plaque (CAP) exhibited higher CTRP9 levels and the high CTRP9 group exhibited significantly higher CAP morbidity, CTRP9 levels were positively correlated with the occurrence of CAP. Then, effects of CTRP9 on angiotensin II (Ang II)-induced endothelial dysfunction were analyzed in vitro, and the results exhibited that treatment with Ang II significantly increased CTRP9 mRNA expression in endothelial cells (ECs), and downregulation of CTRP9 expression aggravated Ang II-induced endothelial dysfunction in ECs. Mice were infused with Ang II, and CTRP9 was also increased in Ang II-infused mice and mainly secreted by ECs. In Ang II-infused ApoE-/- mice, treatment with recombinant CTRP9 significantly reduced atherosclerotic area and alleviated endothelial dysfunction. In conclusion, our results may found that CTRP9 delayed the progression of hypertension-related arteriosclerosis by alleviating endothelial dysfunction.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenli Cheng
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zuoguang Wang
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jielin Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jing Han
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Shaojun Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Zhang XH, Zhao HY, Wang Y, Di L, Liu XY, Qian F, Liu SR. Zenglv Fumai Granule protects cardiomyocytes against hypoxia/reoxygenation-induced apoptosis via inhibiting TRIM28 expression. Mol Med Rep 2021; 23:171. [PMID: 33398366 PMCID: PMC7821356 DOI: 10.3892/mmr.2020.11810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023] Open
Abstract
Myocardial ischemia/reperfusion (MIR) injury, which occurs following acute myocardial infarction, can cause secondary damage to the heart. Tripartite interaction motif (TRIM) proteins, a class of E3 ubiquitin ligases, have been recognized as critical regulators in MIR injury. Zenglv Fumai Granule (ZFG) is a clinical prescription for the treatment of sick sinus syndrome, a disease that is associated with MIR injury. The present study aimed to investigate the effect of ZFG on MIR injury and to determine whether ZFG exerts its effects via regulation of TRIM proteins. In order to establish an in vitro MIR model, human cardiomyocyte cell line AC16 was cultured under hypoxia for 5 h and then under normal conditions for 1 h. Following hypoxia/reoxygenation (H/R) treatment, these cells were cultured with different ZFG concentrations. ZFG notably inhibited H/R-induced cardiomyocyte apoptosis. The expression levels of four TRIM proteins, TRIM7, TRIM14, TRIM22 and TRIM28, were also detected. These four proteins were significantly upregulated in H/R-injured cardiomyocytes, whereas their expression was inhibited following ZFG treatment. Moreover, TRIM28 knockdown inhibited H/R-induced cardiomyocyte apoptosis, whereas TRIM28 overexpression promoted apoptosis and generation of reactive oxygen species (ROS) in cardiomyocytes. However, the effects of TRIM28 overexpression were limited by the action of ROS inhibitor N-acetyl-L-cysteine. In addition, the mRNA and protein levels of antioxidant enzyme glutathione peroxidase (GPX)1 were significantly downregulated in H/R-injured cardiomyocytes. TRIM28 knockdown restored GPX1 protein levels but had no effect on mRNA expression levels. Co-immunoprecipitation and ubiquitination assays demonstrated that TRIM28 negatively regulated GPX1 via ubiquitination. In sum, the present study revealed that ZFG attenuated H/R-induced cardiomyocyte apoptosis by regulating the TRIM28/GPX1/ROS pathway. ZFG and TRIM28 offer potential therapeutic options for the treatment of MIR injury.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Cardiovascular Diseases, The First Clinical Hospital of Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Hong-Yu Zhao
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Yu Wang
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Lin Di
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Xin-Yu Liu
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Feng Qian
- Department of Cardiovascular Diseases, The First Clinical Hospital of Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Shu-Rong Liu
- Department of Cardiovascular Diseases, The First Clinical Hospital of Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
33
|
Liu K, Wang J, Gao X, Ren W. C1q/TNF-Related Protein 9 Inhibits Coxsackievirus B3-Induced Injury in Cardiomyocytes through NF- κB and TGF- β1/Smad2/3 by Modulating THBS1. Mediators Inflamm 2020; 2020:2540687. [PMID: 33414684 PMCID: PMC7769632 DOI: 10.1155/2020/2540687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
C1q/TNF-related protein 9 (CTRP9) is implicated in diverse cardiovascular diseases, but its role in viral myocarditis (VMC) is not well explored. This study is aimed at investigating the role and potential mechanism of CTRP9 in VMC. Herein, we found that the peripheral blood collected from children with VMC had lower CTRP9 levels than that from children who had recovered from VMC. H9c2 cardiomyocytes treated with coxsackievirus B3 (CVB3) were applied to establish a VMC model in vitro, and the expression of CTRP9 was significantly decreased in CVB3-induced H9c2 cells. The overexpression of CTRP9 attenuated CVB3-induced apoptosis, inflammation, and fibrosis reactions in H9c2 cells by promoting cell proliferation, reducing the cell apoptosis rate, and inhibiting inflammatory cytokine levels and fibrosis-related gene expression. Moreover, we found that thrombospondin 1 (THBS1) levels were increased in children with VMC, and CTRP9 negatively regulated THBS1 expression by interacting with THBS1. The downregulation of THBS1 inhibited CVB3-induced apoptosis, inflammation, and fibrosis in H9c2 cells. In addition, our mechanistic investigation indicated that the overexpression of THBS1 impaired the inhibitory effect of CTRP9 on CVB3-induced H9c2 cells. The results further revealed that the CVB3-induced NF-κB and TGF-β1/Smad2/3 signaling pathways of H9c2 cells were blocked by CTRP9 yet activated by THBS1. In conclusion, CTRP9 protected H9c2 cells from CVB3-induced injury via the NF-κB and TGF-β1/Smad2/3 signaling pathways by modulating THBS1.
Collapse
Affiliation(s)
- Kebei Liu
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, China
| | - Juan Wang
- Department of Clinical Laboratory, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, China
| | - Xinru Gao
- Department of Medical Ultrasound Center, The Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710003, China
| | - Wei Ren
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, China
| |
Collapse
|
34
|
Famurewa AC, Edeogu CO, Offor FI, Besong EE, Akunna GG, Maduagwuna EK. Downregulation of redox imbalance and iNOS/NF-ĸB/caspase-3 signalling with zinc supplementation prevents urotoxicity of cyclophosphamide-induced hemorrhagic cystitis in rats. Life Sci 2020; 266:118913. [PMID: 33333050 DOI: 10.1016/j.lfs.2020.118913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
AIM Cyclophosphamide (CYP) chemotherapy induces bladder toxicity and hemorrhagic cystitis in cancer patients constituting a current clinical concern. Oxidative inflammatory cascades have been implicated as the mechanism contributing to CYP bladder urotoxicity. We thus assayed to explore whether zinc (Zn) supplementation could mitigate CYP-induced urotoxicity and evaluate the possible underlying mechanism in rats. MAIN METHOD Rats were orally administered Zn (100 mg/kg b.w./day) for 10 days against urotoxicity induced by single injection of CYP (150 mg/kg b.w., ip) on day 7. KEY FINDINGS CYP significantly depressed bladder activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) levels, whereas malondialdehyde level was increased prominently. In addition, CYP induced marked increases in the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and nitric oxide (NO) confirmed by histological alterations. CYP prominently increased bladder inducible nitric oxide synthase (iNOS) activity, nuclear factor-kappa B (NF-ĸB) and expression of caspase-3 protein. Zinc supplementation considerably abrogated the bladder urotoxicity by restoring redox balance, proinflammatory and apoptotic cascades and alleviated histopathological changes. SIGNIFICANCE This is the first to reveal zinc potential to prevent CYP-induced urotoxic hemorrhagic cystitis via restoring redox balance and enhancing anti-inflammatory and antiapoptotic mechanisms in rat bladder.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - C O Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Florence I Offor
- Department of Medical Laboratory Sciences, Faculty of Health Sciences and Technology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Elizabeth E Besong
- Department of Physiology, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Gabriel G Akunna
- Department of Anatomy, College of Medicine and Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | | |
Collapse
|
35
|
Zhao J, Pei L. Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. ACTA ACUST UNITED AC 2020; 5:949-960. [PMID: 33015416 PMCID: PMC7524786 DOI: 10.1016/j.jacbts.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
The heart plays a central role in the circulatory system and provides essential oxygen, nutrients, and growth factors to the whole organism. The heart can synthesize and secrete endocrine signals to communicate with distant target organs. Studies of long-known and recently discovered heart-derived hormones highlight a shared theme and reveal a unified mechanism of heart-derived hormones in coordinating cardiac function and target organ biology. This paper reviews the biochemistry, signaling, function, regulation, and clinical significance of representative heart-derived hormones, with a focus on the cardiovascular system. This review also discusses important and exciting questions that will advance the field of cardiac endocrinology.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ActR, activin receptor
- BNP, brain natriuretic peptide
- CNP, C-type natriuretic peptide
- FGF, fibroblast growth factor
- FSTL, follistatin-like
- GDF, growth differentiation factor
- GDF15
- GFRAL, GDNF family receptor α-like
- NPR, natriuretic peptide receptors
- PCSK, proprotein convertase subtilisin/kexin type
- ST2, suppression of tumorigenesis-2
- TGF, transforming growth factor
- cardiac endocrinology
- heart
- heart-derived hormones
Collapse
Affiliation(s)
- Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
ER Stress-Induced Secretion of Proteins and Their Extracellular Functions in the Heart. Cells 2020; 9:cells9092066. [PMID: 32927693 PMCID: PMC7563782 DOI: 10.3390/cells9092066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a result of conditions that imbalance protein homeostasis or proteostasis at the ER, for example ischemia, and is a common event in various human pathologies, including the diseased heart. Cardiac integrity and function depend on the active secretion of mature proteins from a variety of cell types in the heart, a process that requires an intact ER environment for efficient protein folding and trafficking to the secretory pathway. As a consequence of ER stress, most protein secretion by the ER secretory pathway is decreased. Strikingly, there is a select group of proteins that are secreted in greater quantities during ER stress. ER stress resulting from the dysregulation of ER Ca2+ levels, for instance, stimulates the secretion of Ca2+-binding ER chaperones, especially GRP78, GRP94, calreticulin, and mesencephalic astrocyte-derived neurotrophic factor (MANF), which play a multitude of roles outside the cell, strongly depending on the cell type and tissue. Here we review current insights in ER stress-induced secretion of proteins, particularly from the heart, and highlight the extracellular functions of these proteins, ranging from the augmentation of cardiac cell viability to the modulation of pro- and anti-apoptotic, oncogenic, and immune-stimulatory cell signaling, cell invasion, extracellular proteostasis, and more. Many of the roles of ER stress-induced protein secretion remain to be explored in the heart. This article is part of a special issue entitled “The Role of Proteostasis Derailment in Cardiac Diseases.”
Collapse
|
37
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 511] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
38
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
39
|
Guan BF, Dai XF, Huang QB, Zhao D, Shi JL, Chen C, Zhu Y, Ai F. Icariside II ameliorates myocardial ischemia and reperfusion injury by attenuating inflammation and apoptosis through the regulation of the PI3K/AKT signaling pathway. Mol Med Rep 2020; 22:3151-3160. [PMID: 32945440 PMCID: PMC7453495 DOI: 10.3892/mmr.2020.11396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Icariside II (ICAII) is a bioflavonoid compound which has demonstrated anti-oxidative, anti-inflammatory and anti-apoptotic biological activities. However, to the best of our knowledge, whether ICAII can alleviate myocardial ischemia and reperfusion injury (MIRI) remains unknown. The aim of the present study was to determine whether ICAII exerted a protective effect on MIRI and to investigate the potential underlying mechanism of action. A rat MIRI model was established by ligation of the left anterior descending coronary artery for 30 min, followed by a 24 h reperfusion. Pretreatment with ICAII with or without a PI3K/AKT inhibitor was administered at the beginning of reperfusion. Morphological and histological analyses were detected using hematoxylin and eosin staining; the infarct size was measured using Evans blue and 2,3,5-triphenyltetrazolium chloride staining; and plasma levels of lactate dehydrogenase (LDH) and creatine kinase-myocardial band (CK-MB) were analyzed using commercialized assay kits. In addition, the cardiac function was evaluated by echocardiography and the levels of cardiomyocyte apoptosis were determined using a TUNEL staining. The protein expression levels of Bax, Bcl-2, cleaved caspase-3, interleukin-6, tumor necrosis factor-α, PI3K, phosphorylated (p)-PI3K, AKT and p-AKT were analyzed using western blotting analysis. ICAII significantly reduced the infarct size, decreased the release of LDH and CK-MB and improved the cardiac function induced by IR injury. Moreover, ICAII pretreatment significantly inhibited myocardial apoptosis and the inflammatory response. ICAII also upregulated the expression levels of p-PI3K and p-AKT. However, the protective effects of ICAII were abolished by an inhibitor (LY294002) of the PI3K/AKT signaling pathway. In conclusion, the findings of the present study suggested that ICAII may mitigate MIRI by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bing-Feng Guan
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Feng Dai
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Qi-Bin Huang
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Di Zhao
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jin-Long Shi
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Cheng Chen
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yan Zhu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
40
|
Wang X, Liu X, Chen Y, Wang H, Zhang R, Zhang Q, Wei Y, Shi S, Li X. Calreticulin regulated intrinsic apoptosis through mitochondria-dependent and independent pathways mediated by ER stress in arsenite exposed HT-22 cells. CHEMOSPHERE 2020; 251:126466. [PMID: 32443253 DOI: 10.1016/j.chemosphere.2020.126466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a naturally occurring environmental toxicant. Chronic exposure to arsenic is linked with neurological damage. Although the mechanisms remain to be elucidated, it is currently believed that neural cell apoptosis is one of the underlying mechanisms of arsenic-induced neurotoxicity. Calreticulin (CRT) is a quality control chaperone located in the lumen of the endoplasmic reticulum (ER), which participates in many signaling pathways including apoptosis. However, the role of CRT in apoptosis is controversial. Whether CRT plays a role in arsenite-induced apoptosis and the relationship between CRT and ER stress-mediated apoptosis have not been mentioned before. In this study, we found that CRT expression as well as the cell apoptosis levels increased in a dose dependent manner upon arsenite exposure in HT-22 cells, a mouse hippocampal neural cell line. In addition, arsenite exposure resulted in the up-regulation of ER stress indicator GRP78 and ER stress-related proteins including p-PERK, ATF4, CHOP, calpain2 and cleaved caspases-12, accompanied by the down-regulation of Bcl-2 and up-regulation of Bax and cleaved caspase-3. Silence of CRT remarkably alleviated arsenite-induced apoptosis and reversed the expression of the proteins above. Our findings confirmed the role of CRT in the induction of apoptosis upon arsenite exposure and suggested that CRT mediated the intrinsic apoptotic cell death including both mitochondria-dependent (PERK/ATF4/CHOP/Bcl-2) and independent (calpain2/caspases-12) pathways initiated by ER stress, which we believed to be a previously undocumented property of arsenite-induced apoptosis.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Ruo Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Qianhui Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yuting Wei
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Sainan Shi
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
41
|
Shi H, Xue T, Yang Y, Jiang C, Huang S, Yang Q, Lei D, You Z, Jin T, Wu F, Zhao Q, Ye X. Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. SCIENCE ADVANCES 2020; 6:eaaz3621. [PMID: 32596444 PMCID: PMC7299628 DOI: 10.1126/sciadv.aaz3621] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/04/2020] [Indexed: 06/01/2023]
Abstract
Cardiovascular disorders are still the primary cause of mortality worldwide. Although intramyocardial injection can effectively deliver agents to the myocardium, this approach is limited because of its restriction to needle-mediated injection and the minor retention of agents in the myocardium. Here, we engineered phase-transition microneedles (MNs) coated with adeno-associated virus (AAV) and achieved homogeneous distribution of AAV delivery. Bioluminescence imaging revealed the successful delivery and transfection of AAV-luciferase. AAV-green fluorescent protein-transfected cardiomyocytes were homogeneously distributed on postoperative day 28. AAV-vascular endothelial growth factor (VEGF)-loaded MNs improved heart function by enhancing VEGF expression, promoting functional angiogenesis, and activating the Akt signaling pathway. The results indicated the superiority of MNs over direct muscle injection. Consequently, MNs might emerge as a promising tool with great versatility for delivering various agents to treat ischemic myocardial disease.
Collapse
Affiliation(s)
- Hongpeng Shi
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Tong Xue
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China
| | - Chenyu Jiang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Shixing Huang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Qi Yang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Dong Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering Donghua University, Shanghai 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering Donghua University, Shanghai 201620, P. R. China
| | - Tuo Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qiang Zhao
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xiaofeng Ye
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
42
|
Zeng J, Jin Q, Ruan Y, Sun C, Xu G, Chu M, Ji K, Wu L, Li L. Inhibition of TGFβ-activated protein kinase 1 ameliorates myocardial ischaemia/reperfusion injury via endoplasmic reticulum stress suppression. J Cell Mol Med 2020; 24:6846-6859. [PMID: 32378287 PMCID: PMC7299680 DOI: 10.1111/jcmm.15340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β-activated protein kinase 1 (TAK1) involves in various biological responses and is a key regulator of cell death. However, the role of TAK1 on acute myocardial ischaemia/reperfusion (MI/R) injury is unknown. We observed that TAK1 activation increased significantly after MI/R and hypoxia/reoxygenation (H/R), and we hypothesized that TAK1 has an important role in MI/R injury. Mice (TAK1 inhibiting by 5Z-7-oxozeaenol or silencing by AAV9 vector) were exposed to MI/R injury. Primary cardiomyocytes (TAK1 silencing by siRNA; and overexpressing TAK1 by adenovirus vector) were used to induce H/R injury model in vitro. Inhibition of TAK1 significantly decreased MI/R-induced myocardial infarction area, reduced cell death and improved cardiac function. Mechanistically, TAK1 silencing suppressed MI/R-induced myocardial oxidative stress and attenuated endoplasmic reticulum (ER) stress both in vitro and in vivo. In addition, the inhibition of ROS by NAC partially reversed the damage of TAK1 in vitro. Our study presents the first direct evidence that inhibition of TAK1 mitigated MI/R injury, and TAK1 mediated ROS/ER stress/apoptosis signal pathway is important for the pathogenesis of MI/R injury.
Collapse
Affiliation(s)
- Jingjing Zeng
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qike Jin
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yongxue Ruan
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Changzheng Sun
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guangyu Xu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lianpin Wu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lei Li
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
43
|
Niemann B, Li L, Siegler D, Siegler BH, Knapp F, Hanna J, Aslam M, Kracht M, Schulz R, Rohrbach S. CTRP9 Mediates Protective Effects in Cardiomyocytes via AMPK- and Adiponectin Receptor-Mediated Induction of Anti-Oxidant Response. Cells 2020; 9:cells9051229. [PMID: 32429302 PMCID: PMC7291146 DOI: 10.3390/cells9051229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The C1q/tumor necrosis factor-alpha-related protein 9 (CTRP9) has been reported to exert cardioprotective effects, but its role in the right ventricle (RV) remains unclear. To investigate the role of CTRP9 in RV hypertrophy and failure, we performed pulmonary artery banding in weanling rats to induce compensatory RV hypertrophy seven weeks after surgery and RV failure 22 weeks after surgery. CTRP9 expression, signal transduction and mechanisms involved in protective CTRP9 effects were analyzed in rat and human RV tissue and cardiac cells. We demonstrate that CTRP9 was induced during compensatory RV hypertrophy but almost lost at the stage of RV failure. RV but not left ventricular (LV) cardiomyocytes or RV endothelial cells demonstrated increased intracellular reactive oxygen species (ROS) and apoptosis activation at this stage. Exogenous CTRP9 induced AMP-activated protein kinase (AMPK)-dependent transcriptional activation of the anti-oxidant thioredoxin-1 (Trx1) and superoxide dismutase-2 (SOD2) and reduced phenylephrine-induced ROS. Combined knockdown of adiponectin receptor-1 (AdipoR1) and AdipoR2 or knockdown of calreticulin attenuated CTRP9-mediated anti-oxidant effects. Immunoprecipitation showed an interaction of AdipoR1 with AdipoR2 and the co-receptor T-cadherin, but no direct interaction with calreticulin. Thus, CTRP9 mediates cardioprotective effects through inhibition of ROS production induced by pro-hypertrophic agents via AMPK-mediated activation of anti-oxidant enzymes.
Collapse
Affiliation(s)
- Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Ling Li
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.L.); (D.S.); (B.H.S.); (F.K.); (J.H.); (R.S.)
| | - Dorothee Siegler
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.L.); (D.S.); (B.H.S.); (F.K.); (J.H.); (R.S.)
| | - Benedikt H. Siegler
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.L.); (D.S.); (B.H.S.); (F.K.); (J.H.); (R.S.)
| | - Fabienne Knapp
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.L.); (D.S.); (B.H.S.); (F.K.); (J.H.); (R.S.)
| | - Jakob Hanna
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.L.); (D.S.); (B.H.S.); (F.K.); (J.H.); (R.S.)
| | - Muhammad Aslam
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.L.); (D.S.); (B.H.S.); (F.K.); (J.H.); (R.S.)
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.L.); (D.S.); (B.H.S.); (F.K.); (J.H.); (R.S.)
- Correspondence: ; Tel.: +49-641-99-47268
| |
Collapse
|
44
|
Li Y, Sun J, Gu L, Gao X. Protective effect of CTRP6 on cerebral ischemia/reperfusion injury by attenuating inflammation, oxidative stress and apoptosis in PC12 cells. Mol Med Rep 2020; 22:344-352. [PMID: 32377750 PMCID: PMC7248524 DOI: 10.3892/mmr.2020.11108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
The newly identified C1q/tumor necrosis factor (TNF)-related protein-6 (CTRP6) is a highly conserved paralog of adiponectin with modulatory effects on metabolism and inflammation. However, the role of CTRP6 in cerebral ischemia/reperfusion (I/R) injury remains unknown. The aim of the present study was to explore the protective effects of CTRP6 against cerebral I/R injury and elucidate the possible underlying mechanisms. Oxygen-glucose deprivation and reperfusion (OGD/R) was used to induce an I/R injury model in vitro. Western blotting, reverse transcription-quantitative PCR, ELISA and flow cytometry analysis were used to measure the levels of CTRP6 along with those of inflammation-, oxidative stress- and apoptosis-related cytokines. The results indicated that CTRP6 expression was markedly downregulated following OGD/R. OGD/R also increased i) the activities of pro-inflammatory factors TNF-α, interleukin (IL)-1β, IL-6 and the levels of the oxidative products reactive oxygen species and malondialdehyde; ii) the ratio of apoptotic PC12 cells and iii) the expression of the pro-apoptotic proteins Bax, cleaved caspase-3 and cleaved caspase-9. In addition, the activities of the anti-inflammatory factors IL-10 and superoxide dismutase and the expression of the anti-apoptotic protein Bcl-2 were decreased. However, overexpression of CTRP6 rescued OGD/R-stimulated exacerbation of inflammation, oxidative stress and apoptosis. Mechanistically, OGD/R activated Ras homolog family member A (RhoA)/Rho-associated coiled-coil-containing protein kinase (Rock)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN) signaling, whereas CTRP6 overexpression restored the expression of RhoA, Rock, PTEN, phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). Furthermore, when CTRP6 and RhoA were overexpressed at the same time, RhoA abolished the protective effects of CTRP6 overexpression on OGD/R-induced inflammation, oxidative stress and apoptosis, while the presence of a PTEN inhibitor recovered the protective effects of CTRP6. Taken together, the findings of the present study indicate that CTRP6 attenuates cerebral ischemia/reperfusion-induced inflammation, oxidative stress and apoptosis via inhibiting the RhoA/Rock/PTEN pathway, thereby activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ying Li
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Jie Sun
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Lei Gu
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Xufang Gao
- Department of Neurology, General Hospital of The Yangtze River Shipping and Wuhan Brain Hospital, Wuhan, Hubei 430010, P.R. China
| |
Collapse
|
45
|
Chen X, Wang C, Yang P, Shi L, Wang H. Ube2s-stabilized β-catenin protects against myocardial ischemia/reperfusion injury by activating HIF-1α signaling. Aging (Albany NY) 2020; 12:5716-5732. [PMID: 32250966 PMCID: PMC7185123 DOI: 10.18632/aging.102960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/22/2020] [Indexed: 04/12/2023]
Abstract
The activation of hypoxia-inducible factor (HIF) is an important event for mediating the adaptive response to myocardial ischemia/reperfusion (MI/R) injury. The ubiquitin-conjugating enzyme E2S (Ube2s) catalyzes ubiquitin conjugation to target proteins. Here, we report the positive regulation of HIF-1α signaling by Ube2s via stabilizing β-catenin, by which Ube2s acts to protect against MI/R injury. We show that Ube2s expression is upregulated in the hearts of mice subjected to MI/R injury. Functionally, Ube2s depletion exacerbates and its overexpression ameliorates MI/R injury. In addition, Ube2s augments the activation of HIF-1α and reduces myocardial apoptosis. Moreover, Ube2s induces the accumulation of β-Catenin through increasing its stabilization. Importantly, β-Catenin knockdown abrogates Ube2s-augmented HIF-1α activation, and meanwhile, diminishes the protective effect of Ube2s on MI/R injury, thus establishing a causal link between Ube2s-stabilized β-catenin and HIF-1α-mediated myocardial protection. Altogether, this study identifies the Ube2s/β-catenin/HIF-1α axis as a novel protective regulator involved in MI/R injury, and also implies that it might represent a potential therapeutic target for ameliorating MI/R injury.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Chiyao Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Pei Yang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Haiyan Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
46
|
Stoner MW, McTiernan CF, Scott I, Manning JR. Calreticulin expression in human cardiac myocytes induces ER stress-associated apoptosis. Physiol Rep 2020; 8:e14400. [PMID: 32323496 PMCID: PMC7177173 DOI: 10.14814/phy2.14400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
The global burden of heart failure following myocardial ischemia-reperfusion (IR) injury is a growing problem. One pathway that is key to understanding the progression of myocardial infarction and IR injury is the endoplasmic reticulum (ER) stress pathway, which contributes to apoptosis signaling and tissue death. The role of calreticulin in the progression of ER stress remains controversial. We hypothesized that calreticulin induction drives proapoptotic signaling in response to ER stress. We find here that calreticulin is upregulated in human ischemic heart failure cardiac tissue, as well as simulated hypoxia and reoxygenation (H/R) and thapsigargin-mediated ER stress. To test the impact of direct modulation of calreticulin expression on ER stress-induced apoptosis, human cardiac-derived AC16 cells with stable overexpression or silencing of calreticulin were subjected to thapsigargin treatment, and markers of apoptosis were evaluated. It was found that overexpression of calreticulin promotes apoptosis, while a partial knockdown protects against the expression of caspase 12, CHOP, and reduces thapsigargin-driven TUNEL staining. These data shed light on the role that calreticulin plays in apoptosis signaling during ER stress in cardiac cells.
Collapse
Affiliation(s)
- Michael W. Stoner
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Charles F. McTiernan
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Iain Scott
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Janet R. Manning
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| |
Collapse
|
47
|
Xin G, Xu-Yong L, Shan H, Gang W, Zhen C, Ji-Jun L, Ping Y, Man-Hua C. SH2B1 protects cardiomyocytes from ischemia/reperfusion injury via the activation of the PI3K/AKT pathway. Int Immunopharmacol 2020; 83:105910. [PMID: 32222636 DOI: 10.1016/j.intimp.2019.105910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/27/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Apoptosis, reactive oxidative stress (ROS) and inflammation act as the pivotal pathogenesis of myocardial ischemia/reperfusion (I/R) injury (MIRI). Our prior study and other investigation have demonstrated the participations of src homology 2 (SH2) B adaptor protein 1 (SH2B1) in ischemic injury and cardiac hypertrophy; whereas, the involvements of SH2B1 in MIRI and underlying mechanisms are completely unknown. METHOD In present study, MIRI model in vivo was induced by 30 min of ligation of LAD coronary artery and 24 h of reperfusion, and primary cultured cardiomyocytes were challenged with 2 h of hypoxia followed by 4 h of reoxygenation (H/R) to mimic MIRI in vitro. Adenovirus encoding for SH2B1 or GFP were pre-transfected into myocardium prior to MIRI both in vivo and in vitro. The myocardial damage, cardiac function, apoptosis, ROS and inflammation were evaluated systematically. Immunofluorescence staining and western blotting were alternatively performed to detect protein expression. RESULTS The results exhibited that H/R or I/R significantly reduced SH2B1 in cardiomyocytes, followed by impaired cell survival and function, which were strongly reversed after the adenovirus-mediated SH2B1 up-regulation. Meanwhile, I/R- and H/R-elevated inflammation, apoptosis and ROS were also alleviated by SH2B1 up-regulation. A mechanistic study suggested that the protective contributions of SH2B1 on H/R-suffered cardiomyocytes were based on the activation of the PI3K/AKT pathway. The abolishment of the PI3K/AKT via a pharmacological inhibitor (LY294002) repressed anti-H/R capabilities of SH2B1. CONCLUSION Therefore, SH2B1 prevents cardiomyocytes from inflammation, apoptosis and ROS in MIRI partially through the PI3K/AKT-dependent avenues. It may provide a novel therapeutic target for the treatment of MIRI.
Collapse
Affiliation(s)
- Guo Xin
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Li Xu-Yong
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Hu Shan
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Wu Gang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Zhen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Liu Ji-Jun
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ye Ping
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China.
| | - Chen Man-Hua
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China.
| |
Collapse
|
48
|
Guo Y, Chen J, Qiu H. Novel Mechanisms of Exercise-Induced Cardioprotective Factors in Myocardial Infarction. Front Physiol 2020; 11:199. [PMID: 32210839 PMCID: PMC7076164 DOI: 10.3389/fphys.2020.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI). Exercise-induced cardioprotective factors have been implicated in mediating cardiac repair under pathological conditions. These protective factors secreted by or enriched in the heart could exert cardioprotective functions in an autocrine or paracrine manner. Extracellular vesicles, especially exosomes, contain key molecules and play an essential role in cell-to-cell communication via delivery of various factors, which may be a novel target to study the mechanism of exercise-induced benefits, besides traditional signaling pathways. This review is designed to demonstrate the function and underlying protective mechanism of exercise-induced cardioprotective factors in MI, with an aim to offer more potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| |
Collapse
|
49
|
Postconditioning with Calreticulin Attenuates Myocardial Ischemia/Reperfusion Injury and Improves Autophagic Flux. Shock 2020; 53:363-372. [DOI: 10.1097/shk.0000000000001387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Zuo A, Zhao X, Li T, Li J, Lei S, Chen J, Xu D, Song C, Liu T, Li C, Guo Y. CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway. J Cell Mol Med 2020; 24:2635-2647. [PMID: 31930700 PMCID: PMC7028852 DOI: 10.1111/jcmm.14982] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022] Open
Abstract
CTRP9 has been reported to regulate lipid metabolism and exert cardioprotective effects, yet its role in high‐fat diet (HFD)‐induced cardiac lipotoxicity and the underlying mechanisms remain unclear. In the current study, we established HFD‐induced obesity model in wild‐type (WT) or CTRP9 knockout (CTRP9‐KO) mice and palmitate‐induced lipotoxicity model in neonatal rat cardiac myocytes (NRCMs) to investigate the effects of CTRP9 on cardiac lipotoxicity. Our results demonstrated that the HFD‐fed CTRP9‐KO mice accentuated cardiac hypertrophy, fibrosis, endoplasmic reticulum (ER) stress‐initiated apoptosis and oxidative stress compared with the HFD‐fed WT mice. In vitro, CTRP9 treatment markedly alleviated palmitate‐induced oxidative stress and ER stress‐induced apoptosis in NRCMs in a dose‐dependent manner. Phosphorylated AMPK at Thr172 was reduced, and phosphorylated mammalian target of rapamycin (mTOR) was strengthened in the heart of the HFD‐fed CTRP9‐KO mice compared with the HFD‐fed control mice. In vitro, AMPK inhibitor compound C significantly abolished the effects of CTRP9 on the inhibition of the apoptotic pathway in palmitate‐treated NRCMs. In a further mechanistic study, CTRP9 enhanced expression of phosphorylated LKB1 at Ser428 and promoted LKB1 cytoplasmic localization. Besides, silencing of LKB1 gene by lentivirus significantly prohibited activation of AMPK by CTRP9 and partially eliminated the protective effect of CTRP9 on the cardiac lipotoxicity. These results indicate that CTRP9 exerted anti‐myocardial lipotoxicity properties and inhibited cardiac hypertrophy probably through the LKB1/AMPK signalling pathway.
Collapse
Affiliation(s)
- Anju Zuo
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China
| | - Xiaoyu Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Clinical Trial Research Center, Jinan Central Hospital Affiliated to Shandong University, Ji'nan, China
| | - Tingting Li
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Jun Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Shengyun Lei
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China
| | - Jiying Chen
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Dan Xu
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Chengxiang Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Tianjiao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China
| | - Cuigang Li
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China
| | - Yuan Guo
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, China
| |
Collapse
|