1
|
Xie Y, Wu F, Chen Z, Hou Y. Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target. Biomark Med 2024; 18:995-1005. [PMID: 39469853 PMCID: PMC11633390 DOI: 10.1080/17520363.2024.2416887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a member of the small hydrophobic membrane protein subfamily. EMP1 is aberrantly expressed in various tumor tissues and governs multiple cellular behaviors (e.g., proliferation, differentiation, and migration). The resultant regulation of the cancer pathway is responsible for the metastasis of cancer cells and determines the risk of malignant tumor progression. This review provides an updated overview of EMP1 as either an oncogene or a tumor suppressor contingent on the cancer type and summarizes its upstream regulators and downstream target genes. This systematic review summarizes our current understanding of the role of EMP1 in malignant tumor development, including critical functional mechanisms and implications for its potential use as the biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Wu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Li J, Wang Z, Wang T. Machine-learning prediction of a novel diagnostic model using mitochondria-related genes for patients with bladder cancer. Sci Rep 2024; 14:9282. [PMID: 38654047 DOI: 10.1038/s41598-024-60068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Bladder cancer (BC) is the ninth most-common cancer worldwide and it is associated with high morbidity and mortality. Mitochondrial Dysfunction is involved in the progression of BC. This study aimed to developed a novel diagnostic model based on mitochondria-related genes (MRGs) for BC patients using Machine Learning. In this study, we analyzed GSE13507 datasets and identified 752 DE-MRGs in BC specimens. Functional enrichment analysis uncovered the significant roles of 752 DE-MRGs in key processes such as cellular and organ development, as well as gene regulation. The analysis revealed the crucial functions of these genes in transcriptional regulation and protein-DNA interactions. Then, we performed LASSO and SVM-RFE, and identified four critical diagnostic genes including GLRX2, NMT1, OXSM and TRAF3IP3. Based on the above four genes, we developed a novel diagnostic model whose diagnostic value was confirmed in GSE13507, GSE3167 and GSE37816 datasets. Moreover, we reported the expressing pattern of GLRX2, NMT1, OXSM and TRAF3IP3 in BC samples. Immune cell infiltration analysis revealed that the four genes were associated with several immune cells. Finally, we performed RT-PCR and confirmed NMT1 was highly expressed in BC cells. Functional experiments revealed that knockdown of NMT1 suppressed the proliferation of BC cells. Overall, we have formulated a diagnostic potential that offered a comprehensive framework for delving into the underlying mechanisms of BC. Before proceeding with clinical implementation, it is essential to undertake further investigative efforts to validate its diagnostic effectiveness in BC patients.
Collapse
Affiliation(s)
- Jian Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhiyong Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianen Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Abdullah AR, Gamal El-Din AM, El-Mahdy HA, Ismail Y, El-Husseiny AA. The crucial role of fascin-1 in the pathogenesis, metastasis, and chemotherapeutic resistance of breast cancer. Pathol Res Pract 2024; 254:155079. [PMID: 38219494 DOI: 10.1016/j.prp.2023.155079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Breast cancer (BC) is the most common type of cancer in women to be diagnosed, and it is also the second leading cause of cancer death in women globally. It is the disease that causes the most life years adjusted for disability lost among women, making it a serious worldwide health issue. Understanding and interpreting carcinogenesis and metastatic pathways is critical for curing malignancy. Fascin-1 was recognized as an actin-bundling protein with parallel, rigid bundles as a result of the cross-linking of F-actin microfilaments. Increasing levels of fascin-1 have been associated with bad prognostic profiles, aggressiveness of clinical courses, and poor survival outcomes in a variety of human malignancies. Cancer cells that overexpress fascin-1 have higher capabilities for proliferation, invasion, migration, and metastasis. Fascin-1 is being considered as a potential target for therapy as well as a potential biomarker for diagnostics in a variety of cancer types. This review aims to provide an overview of the FSCN1 gene and its protein structure, elucidate its physiological and pathological roles, and throw light on its involvement in the initiation, development, and chemotherapeutic resistance of BC.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ayman M Gamal El-Din
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Yahia Ismail
- Medical Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt.
| |
Collapse
|
4
|
Alsaidan OA, Onobun E, Ye C, Lou L, Beharry Z, Xie ZR, Lebedyeva I, Crich D, Cai H. Inhibition of N-myristoyltransferase activity promotes androgen receptor degradation in prostate cancer. Prostate 2024; 84:254-268. [PMID: 37905842 PMCID: PMC10872856 DOI: 10.1002/pros.24645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Even though prostate cancer (PCa) patients initially respond to androgen deprivation therapy, some will eventually develop castration resistant prostate cancer (CRPC). Androgen receptor (AR) mediated cell signaling is a major driver in the progression of CRPC while only a fraction of PCa becomes AR negative. This study aimed to understand the regulation of AR levels by N-myristoyltransferase in PCa cells. METHODS Two enantiomers, (1S,2S)- d-NMAPPD and (1R,2R)- d-NMAPPD (LCL4), were characterized by various methods (1 H and 13 C NMR, UHPLC, high-resolution mass spectra, circular dichroism) and evaluated for the ability to bind to N-myristoyltransferase 1 (NMT1) using computational docking analysis. structure-activity relationship analysis of these compounds led to the synthesis of (1R,2R)-LCL204 and evaluation as a potential NMT1 inhibitor utilizing the purified full length NMT1 enzyme. The NMT inhibitory activity wase determined by Click chemistry and immunoblotting. Regulation of NMT1 on tumor growth was evaluated in a xenograft tumor model. RESULTS (1R,2R)- d-NMAPPD, but not its enantiomer (1S,2S)- d-NMAPPD, inhibited NMT1 activity and reduced AR protein levels. (1R,2R)-LCL204, a derivative of (1R,2R)- d-NMAPPD, inhibited global protein myristoylation. It also suppressed protein levels, nuclear translocation, and transcriptional activity of AR full-length or variants in PCa cells. This was due to enhanced ubiquitin and proteasome-mediated degradation of AR. Knockdown of NMT1 levels inhibited tumor growth and proliferation of cancer cells. CONCLUSION Inhibitory efficacy on N-myristoyltransferase activity by d-NMAPPD is stereospecific. (1R,2R)-LCL204 reduced global N-myristoylation and androgen receptor protein levels at low micromolar concentrations in prostate cancer cells. pharmacological inhibition of NMT1 enhances ubiquitin-mediated proteasome degradation of AR. This study illustrates a novel function of N-myristoyltransferase and provides a potential strategy for treatment of CRPC.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
| | - Emmanuel Onobun
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia Athens, Athens, Georgia 30602
| | - Chenming Ye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
| | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia Athens, Athens, Georgia 30602
| | - Zanna Beharry
- Department of Chemical and Physical Sciences, University of the Virgin Islands, St. Thomas, VI 00802
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia Athens, Athens, Georgia 30602
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia 30912
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia Athens, Athens, Georgia 30602
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
| |
Collapse
|
5
|
Abstract
N-myristoyltransferase 1 (NMT1) is an indispensable eukaryotic enzyme that catalyses the transfer of myristoyl groups to the amino acid terminal residues of numerous proteins. This catalytic process is required for the growth and development of many eukaryotes and viruses. Elevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types (e.g. colon, lung and breast tumours). Furthermore, an elevated level of NMT1 in tumours is associated with poor survival. Therefore, a relationship exists between NMT1 and tumours. In this review, we discuss the underlying mechanisms by which NMT1 is associated with tumour development from the perspective of oncogene signalling, involvement in cellular metabolism, and endoplasmic reticulum stress. Several NMT inhibitors used in cancer treatment are introduced. The review will provide some directions for future research.Key MessagesElevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types which creates the possibility of targeting NMT1 in tumours.NMT1-mediated myristoylation plays a pivotal role in cancer cell metabolism and may be particularly relevant to cancer metastasis and drug resistance. These insights can be used to direct potential therapeutic avenues for NMT1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Wang H, Xu X, Wang Y, Xue X, Guo W, Guo S, Qiu S, Cui J, Qiao Y. NMT1 sustains ICAM-1 to modulate adhesion and migration of tumor cells. Cell Signal 2023:110739. [PMID: 37269961 DOI: 10.1016/j.cellsig.2023.110739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Protein modifications have significant effects on tumorigenesis. N-Myristoylation is one of the most important lipidation modifications, and N-myristoyltransferase 1 (NMT1) is the main enzyme required for this process. However, the mechanism underlying how NMT1 modulates tumorigenesis remains largely unclear. Here, we found that NMT1 sustains cell adhesion and suppresses tumor cell migration. Intracellular adhesion molecule 1 (ICAM-1) was a potential functional downstream effector of NMT1, and its N-terminus could be N-myristoylated. NMT1 prevented ubiquitination and proteasome degradation of ICAM-1 by inhibiting Ub E3 ligase F-box protein 4, which prolonged the half-life of ICAM1 protein. Correlations between NMT1 and ICAM-1 were observed in liver and lung cancers, which were associated with metastasis and overall survival. Therefore, carefully designed strategies focusing on NMT1 and its downstream effectors might be helpful to treat tumors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Jiangtao Cui
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
7
|
Xu Y, Lin H. Use of alkyne-tagged myristic acid to detect N-terminal myristoylation. Methods Enzymol 2023; 684:191-208. [PMID: 37230589 DOI: 10.1016/bs.mie.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein N-terminal myristoylation is a lipidic modification typically occurring to the α-amino group of N-terminal glycine residues of proteins. It is catalyzed by the N-myristoyltransferase (NMT) enzyme family. Many studies in the past three decades have highlighted the importance of N-terminal glycine myristoylation as it affects protein localization, protein-protein interaction, and protein stability, thereby regulating multiple biological processes, including immune cell signaling, cancer progression, and infections. This book chapter will present protocols for using alkyne-tagged myristic acid to detect the N-myristoylation of targeted proteins in cell lines and compare global N-myristoylation levels. We then described a protocol of SILAC proteomics that compare the levels of N-myristoylation on a proteomic scale. These assays allow for the identification of potential NMT substrates and the development of novel NMT inhibitors.
Collapse
Affiliation(s)
- Yilai Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
8
|
SPI1 Mediates N-Myristoyltransferase 1 to Advance Gastric Cancer Progression via PI3K/AKT/mTOR Pathway. Can J Gastroenterol Hepatol 2023; 2023:2021515. [PMID: 36967718 PMCID: PMC10038735 DOI: 10.1155/2023/2021515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Gastric cancer (GC) is a common digestive tract malignancy worldwide. N-myristoyltransferase 1 (NMT1) has been implicated in many cancers, but its association with gastric cancer remains to be clarified. Thus, this paper elucidated the role of NMT1 in GC. The NMT1 expression level in GC and normal tissue samples as well as the relationship between NMT1 high or low expression and overall survival in GC was analyzed via GEPIA. GC cells were transfected with NMT1 or SPI1 overexpression plasmid and short hairpin RNA against NMT1 (shNMT1) or shSPI1. NMT1, SPI1, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mTOR levels were detected through qRT-PCR and western blot. MTT, wound healing, and transwell assays were applied to test cell viability, migration, and invasion. The binding relationship of SPI1 and NMT1 was determined through a dual-luciferase reporter assay and chromatin immunoprecipitation. NMT1 was upregulated in GC, the high level of which connected with a poor prognosis. Overexpressed NMT1 elevated viability, migration rate, and invasion rate of GC cells, whereas NMT1 knockdown leads to the opposite results. Besides, SPI1 could bind to NMT1. Overexpressed NMT1 reversed the effects of shSPI1 on decreasing viability, migration, invasion, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR in GC cells, and NMT1 knockdown reversed the effects of SPI1 overexpression on increasing viability, migration, invasion, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. SPI1 upregulated NMT1 to facilitate the malignant behaviors of GC cells through the PI3K/AKT/mTOR pathway.
Collapse
|
9
|
Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct Target Ther 2023; 8:14. [PMID: 36617552 PMCID: PMC9826789 DOI: 10.1038/s41392-022-01248-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Identification of the underlying mechanism of HCC progression and exploration of new therapeutic drugs are urgently needed. Here, a compound library consisting of 419 FDA-approved drugs was taken to screen potential anticancer drugs. A series of functional assays showed that desloratadine, an antiallergic drug, can repress proliferation in HCC cell lines, cell-derived xenograft (CDX), patient-derived organoid (PDO) and patient-derived xenograft (PDX) models. N-myristoyl transferase 1 (NMT1) was identified as a target protein of desloratadine by drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) assays. Upregulation of NMT1 expression enhanced but NMT1 knockdown suppressed tumor growth in vitro and in vivo. Metabolic labeling and mass spectrometry analyses revealed that Visinin-like protein 3 (VILIP3) was a new substrate of NMT1 in protein N-myristoylation modification, and high NMT1 or VILIP3 expression was associated with advanced stages and poor survival in HCC. Mechanistically, desloratadine binds to Asn-246 in NMT1 and inhibits its enzymatic activity, disrupting the NMT1-mediated myristoylation of the VILIP3 protein and subsequent NFκB/Bcl-2 signaling. Conclusively, this study demonstrates that desloratadine may be a novel anticancer drug and that NMT1-mediated myristoylation contributes to HCC progression and is a potential biomarker and therapeutic target in HCC.
Collapse
|
10
|
Zhao HC, Chen CZ, Song HQ, Wang XX, Zhang L, Zhao HL, He JF. Single-cell RNA Sequencing Analysis Reveals New Immune Disorder Complexities in Hypersplenism. Front Immunol 2022; 13:921900. [PMID: 35865544 PMCID: PMC9294158 DOI: 10.3389/fimmu.2022.921900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hypersplenism (HS) is a concomitant symptom of liver or blood disease. Not only does the treatment of HS face challenges, but the transcriptome of individual cells is also unknown. Here, the transcriptional profiles of 43,037 cells from four HS tissues and one control tissue were generated by the single-cell RNA sequencing and nine major cell types, including T-cells, B-cells, NK cells, hematopoietic stem cells, neutrophil cells, mast cells, endothelial cells, erythrocytes, and dendritic cells were identified. Strikingly, the main features were the lack of CCL5+ B-cells in HS and the presence of SESN1+ B cells in HS with hepatocellular carcinoma (HS-HCC). In cell-cell interaction analysis, CD74-COPA and CD94-HLA-E in HS were found to be up-regulated. We further explored HS-specifically enriched genes (such as FKBP5, ADAR, and RPS4Y1) and found that FKBP5 was highly expressed in HCC-HS, leading to immunosuppression. Taken together, this research provides new insights into the genetic characteristics of HS via comprehensive single-cell transcriptome analysis.
Collapse
Affiliation(s)
- Hai-chao Zhao
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chang-zhou Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huang-qin Song
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiao-xiao Wang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-liang Zhao
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Jie-feng He, ; Hao-liang Zhao,
| | - Jie-feng He
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Jie-feng He, ; Hao-liang Zhao,
| |
Collapse
|
11
|
Bian Y, Wang X, Zheng Z, Ren G, Zhu H, Qiao M, Li G. Resveratrol drives cancer cell senescence via enhancing p38MAPK and DLC1 expressions. Food Funct 2022; 13:3283-3293. [PMID: 35234761 DOI: 10.1039/d1fo02365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pro-senescence therapy is a recently proposed anti-cancer strategy and has been shown to effectively inhibit cancer. Resveratrol is gaining attention for its cancer preventive and suppressive properties. The mechanisms of resveratrol in cancer suppression by inducing cancer cell senescence are unclear. Our results showed that resveratrol induced cell senescence along with an increase of SA-β-Gal activity and inhibition of colony formation in breast and lung cancer cells. The underlying mechanisms were that resveratrol induced ER-stress by increasing SIRT1 to promote p38MAPK expression and by reducing NO level to up-regulate DLC1 expression, and ER-stress further resulted in DNA damage and mitochondrial dysfunction, eventually leading to cancer cell senescence. Our findings on resveratrol's induction of cancer cell senescence via activating ER-stress through the SIRT1/p38MAPK and NO/DLC1 pathways provide a solid base for its clinical application and its preventive application as a food additive.
Collapse
Affiliation(s)
- Yan Bian
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Xingjie Wang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Hongyan Zhu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Mengxue Qiao
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
12
|
Sun Y, Guan Z, Sheng Q, Duan W, Zhao H, Zhou J, Deng Q, Pei X. N-myristoyltransferase-1 deficiency blocks myristoylation of LAMTOR1 and inhibits bladder cancer progression. Cancer Lett 2022; 529:126-138. [PMID: 34999170 DOI: 10.1016/j.canlet.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
N-myristoyltransferase-1 (NMT1) catalyzes protein posttranslational myristoylation and functions as an oncogene in various cancers, although its roles in bladder cancer remain elusive. Here, we demonstrated that NMT1 was obviously upregulated in bladder cancer and correlated with overall survival and poor prognosis. Elevation of NMT1 promotes cancer progression and inhibits autophagy in vitro and in vivo. Furthermore, we confirm that LAMTOR1 was myristoylated by NMT1 at Gly 2, resulting in increased LAMTOR1 protein stability and lysosomal localization. Importantly, B13, an inhibitor of NMT1 enzymatic activity, exerted its anti-tumor effects against bladder cancer cells in vitro and in vivo. Taken together, these findings uncover a molecular mechanism of NMT1 in modulating bladder cancer progression and indicate that targeting NMT1 may represent a novel clinical intervention in bladder cancer.
Collapse
Affiliation(s)
- Yi Sun
- Department of Urology, Shaanxi Provincial People's Hospital, 710068, Xi'an, PR China.
| | - Zhenfeng Guan
- Department of Urology, Shaanxi Provincial People's Hospital, 710068, Xi'an, PR China
| | - Qiu Sheng
- Department of Prevention and Health Care, Hospital of Northwestern Polytechnical University, 710072, Xi'an, PR China
| | - Wanli Duan
- Department of Urology, Shaanxi Provincial People's Hospital, 710068, Xi'an, PR China
| | - Huacai Zhao
- Department of Urology, Shaanxi Provincial People's Hospital, 710068, Xi'an, PR China
| | - Jiancheng Zhou
- Department of Urology, Shaanxi Provincial People's Hospital, 710068, Xi'an, PR China
| | - Qian Deng
- Department of Urology, Shaanxi Provincial People's Hospital, 710068, Xi'an, PR China
| | - Xinqi Pei
- Department of Urology, Shaanxi Provincial People's Hospital, 710068, Xi'an, PR China
| |
Collapse
|
13
|
Ding J, Xu J, Deng Q, Ma W, Zhang R, He X, Liu S, Zhang L. Knockdown of Oligosaccharyltransferase Subunit Ribophorin 1 Induces Endoplasmic-Reticulum-Stress-Dependent Cell Apoptosis in Breast Cancer. Front Oncol 2021; 11:722624. [PMID: 34778038 PMCID: PMC8578895 DOI: 10.3389/fonc.2021.722624] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Ribophorin 1 (RPN1) is a major part of Oligosaccharyltransferase (OST) complex, which is vital for the N-linked glycosylation. Though it has been verified that the abnormal glycosylation is closely related to the development of breast cancer, the detail role of RPN1 in breast cancer remains unknown. In this study, we explored the public databases to investigate the relationship between the expression levels of OST subunits and the prognosis of breast cancer. Then, we focused on the function of RPN1 in breast cancer and its potential mechanisms. Our study showed that the expression of several OST subunits including RPN1, RPN2, STT3A STT3B, and DDOST were upregulated in breast cancer samples. The protein expression level of RPN1 was also upregulated in breast cancer. Higher expression of RPN1 was correlated with worse clinical features and poorer prognosis. Furthermore, knockdown of RPN1 suppressed the proliferation and invasion of breast cancer cells in vitro and induced cell apoptosis triggered by endoplasmic reticulum stress. Our results identified the oncogenic function of RPN1 in breast cancer, implying that RPN1 might be a potential biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jiajun Ding
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China.,Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
An Open Question: Is Non-Ionizing Radiation a Tool for Controlling Apoptosis-Induced Proliferation? Int J Mol Sci 2021; 22:ijms222011159. [PMID: 34681819 PMCID: PMC8537877 DOI: 10.3390/ijms222011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.
Collapse
|
15
|
He Y, Shi Y, Yang Y, Huang H, Feng Y, Wang Y, Zhan L, Wei B. Chrysin induces autophagy through the inactivation of the ROS‑mediated Akt/mTOR signaling pathway in endometrial cancer. Int J Mol Med 2021; 48:172. [PMID: 34278450 PMCID: PMC8285048 DOI: 10.3892/ijmm.2021.5005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer (EC) is widely known as an aggressive malignancy. Due to the limited therapeutic options and poor prognosis of patients with advanced-stage EC, there is a need to identify effective alternative treatments. Chrysin is a naturally active flavonoid (5,7-dihydroxyflavone), which has been demonstrated to exert anticancer effects and may present a novel strategy for EC treatment. However, the role of chrysin in EC remains largely unclear. The aim of the present study was to examine the anticancer effects of chrysin on EC. The results revealed that, in addition to apoptosis, chrysin increased the LC3II expression levels and markedly accelerated the autophagic flux, suggesting that chrysin induced both the autophagy and apoptosis of EC cells. Furthermore, the inhibition of autophagy by chloroquine enhanced the inhibitory effect on cell proliferation and the promotion of the chrysin-induced apoptosis of EC cells, indicating that chrysin-induced autophagy was a cytoprotective mechanism. Additionally, chrysin led to the production of intracellular reactive oxygen species (ROS). N-acetylcysteine (NAC) pretreatment significantly inhibited chrysin-induced autophagy, suggesting that ROS activated autophagy induced by chrysin in EC cells. Furthermore, the phosphorylated (p-) Akt and p-mTOR levels were significantly decreased in a concentration-dependent manner following treatment with chrysin, while NAC blocked these effects. Taken together, these findings demonstrated that chrysin-induced autophagy via the inactivation of the ROS-mediated Akt/mTOR signaling pathway in EC cells.
Collapse
Affiliation(s)
- Yu He
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuchuan Shi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Huanhuan Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yifan Feng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yunmeng Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
16
|
Ma X, Yuan Y, Lu J, Li M, Yu Y, Liu J, Zhou J. Long noncoding RNA ANCR promotes migration, invasion, EMT progress and stemness of nasopharyngeal carcinoma cells via the miR-4731-5p/NMT1 axis. Pathol Res Pract 2021; 224:153540. [PMID: 34333213 DOI: 10.1016/j.prp.2021.153540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND In our previous study, we revealed that Antidifferentiation noncoding RNA (ANCR) promoted proliferation and radiation resistance of nasopharyngeal carcinoma (NPC) cells. However, the molecular mechanism and function of ANCR are not fully studied. The current study aimed to further investigate the role and underlying molecular mechanism of ANCR in NPC. METHODS RT-qPCR and western blot analyses were used to detect the levels of RNAs and proteins in NPC cells. Wound healing and Transwell assays were used to examine the migration and invasion of NPC cells. The relationship among ANCR, miR-4731-5p and N-myristoyltransferase 1 (NMT1) was investigated by RIP and luciferase reporter assays. The NPC cell stemness was accessed by the sphere formation assay. RESULTS ANCR was significantly highly expressed in NPC cell lines. Silenced ANCR suppressed cell migration, invasion epithelial-mesenchymal transition (EMT) process and cell stemness in NPC. Furthermore, ANCR sponged miR-4731-5p to upregulate the NMT1 expression. Rescue assays indicated that NMT1 neutralized the antioncogenic effect induced by silenced ANCR on NPC cells. CONCLUSIONS Long noncoding RNA ANCR suppresses malignant behaviors of nasopharyngeal carcinoma cells by regulating miR-4731-5p/NMT1 axis.
Collapse
Affiliation(s)
- Xingkai Ma
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou 215600, Jiangsu, China
| | - Yifang Yuan
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou 215600, Jiangsu, China
| | - Jianbin Lu
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou 215600, Jiangsu, China
| | - Menglin Li
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou 215600, Jiangsu, China
| | - Yan Yu
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou 215600, Jiangsu, China
| | - Jianyong Liu
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou 215600, Jiangsu, China.
| | - Jieyu Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201999, China; Ear Institute Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200025, China.
| |
Collapse
|
17
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Herrera-Melle L, Crespo M, Leiva M, Sabio G. Stress-activated kinases signaling pathways in cancer development. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zhang Q, Zhou W, Yu S, Ju Y, To SKY, Wong AST, Jiao Y, Poon TCW, Tam KY, Lee LTO. Metabolic reprogramming of ovarian cancer involves ACSL1-mediated metastasis stimulation through upregulated protein myristoylation. Oncogene 2020; 40:97-111. [PMID: 33082557 DOI: 10.1038/s41388-020-01516-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 11/09/2022]
Abstract
As a result of the hostile microenvironment, metabolic alterations are required to enable the malignant growth of cancer cells. To understand metabolic reprogramming during metastasis, we conducted shotgun proteomic analysis of highly metastatic (HM) and non-metastatic (NM) ovarian cancer cells. The results suggest that the genes involved in fatty-acid (FA) metabolism are upregulated, with consequent increases of phospholipids with relatively short FA chains (myristic acid, MA) in HM cells. Among the upregulated proteins, ACSL1 expression could convert the lipid profile of NM cells to that similar of HM cells and make them highly aggressive. Importantly, we demonstrated that ACSL1 activates the AMP-activated protein kinase and Src pathways via protein myristoylation and finally enhances FA beta oxidation. Patient samples and tissue microarray data also suggested that omentum metastatic tumours have higher ACSL1 expression than primary tumours and a strong association with poor clinical outcome. Overall, our data reveal that ACSL1 enhances cancer metastasis by regulating FA metabolism and myristoylation.
Collapse
Affiliation(s)
- Qingyu Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Department of Obstetrics and Gynaecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Shan Yu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yaojun Ju
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Sally Kit Yan To
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yufei Jiao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Terence Chuen Wai Poon
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kin Yip Tam
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China. .,Centre of Reproduction, Development, and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
20
|
Targeting Signaling Pathways in Inflammatory Breast Cancer. Cancers (Basel) 2020; 12:cancers12092479. [PMID: 32883032 PMCID: PMC7563157 DOI: 10.3390/cancers12092479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory breast cancer (IBC), although rare, is the most aggressive type of breast cancer. Only 2-4% of breast cancer cases are classified as IBC, but-owing to its high rate of metastasis and poor prognosis-8% to 10% of breast cancer-related mortality occur in patients with IBC. Currently, IBC-specific targeted therapies are not available, and there is a critical need for novel therapies derived via understanding novel targets. In this review, we summarize the biological functions of critical signaling pathways in the progression of IBC and the preclinical and clinical studies of targeting these pathways in IBC. We also discuss studies of crosstalk between several signaling pathways and the IBC tumor microenvironment.
Collapse
|
21
|
N-myristoyltransferase-1 is necessary for lysosomal degradation and mTORC1 activation in cancer cells. Sci Rep 2020; 10:11952. [PMID: 32686708 PMCID: PMC7371688 DOI: 10.1038/s41598-020-68615-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
N-myristoyltransferase-1 (NMT1) catalyzes protein myristoylation, a lipid modification that is elevated in cancer cells. NMT1 sustains proliferation and/or survival of cancer cells through mechanisms that are not completely understood. We used genetic and pharmacological inhibition of NMT1 to further dissect the role of this enzyme in cancer, and found an unexpected essential role for NMT1 at promoting lysosomal metabolic functions. Lysosomes mediate enzymatic degradation of vesicle cargo, and also serve as functional platforms for mTORC1 activation. We show that NMT1 is required for both lysosomal functions in cancer cells. Inhibition of NMT1 impaired lysosomal degradation leading to autophagy flux blockade, and simultaneously caused the dissociation of mTOR from the surface of lysosomes leading to decreased mTORC1 activation. The regulation of lysosomal metabolic functions by NMT1 was largely mediated through the lysosomal adaptor LAMTOR1. Accordingly, genetic targeting of LAMTOR1 recapitulated most of the lysosomal defects of targeting NMT1, including defective lysosomal degradation. Pharmacological inhibition of NMT1 reduced tumor growth, and tumors from treated animals had increased apoptosis and displayed markers of lysosomal dysfunction. Our findings suggest that compounds targeting NMT1 may have therapeutic benefit in cancer by preventing mTORC1 activation and simultaneously blocking lysosomal degradation, leading to cancer cell death.
Collapse
|
22
|
Kosciuk T, Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem Biol 2020; 15:1747-1758. [PMID: 32453941 DOI: 10.1021/acschembio.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Wang J, Li S, Lin S, Fu S, Qiu L, Ding K, Liang K, Du H. B-cell lymphoma 2 family genes show a molecular pattern of spatiotemporal heterogeneity in gynaecologic and breast cancer. Cell Prolif 2020; 53:e12826. [PMID: 32419250 PMCID: PMC7309952 DOI: 10.1111/cpr.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives BCL2 family proteins have been widely studied over the past decade due to their essential roles in apoptosis, oncogenesis and anti‐cancer therapy. However, the similarities and differences in the spatial pattern of the BCL2 gene family within the context of chromatin have not been well characterized. We sought to fill this knowledge gap by assessing correlations between gene alteration, gene expression, chromatin accessibility, and clinical outcomes in gynaecologic and breast cancer. Materials and methods In this study, the molecular characteristics of the BCL2 gene family in gynaecologic cancer were systematically analysed by integrating multi‐omics datasets, including transcriptomics, chromatin accessibility, copy number variation, methylomics and clinical outcome. Results We evaluated spatiotemporal associations between long‐range regulation peaks and tumour heterogeneity. Differential expression of the BCL2 family was coupled with widespread chromatin accessibility changes in gynaecologic cancer, accompanied by highly heterogeneous distal non‐coding accessibility surrounding the BCL2L1 gene loci. A relationship was also identified between gene expression, gene amplification, enhancer signatures, DNA methylation and overall patient survival. Prognostic analysis implied clinical correlations with BAD, BIK and BAK1. A shared protein regulatory network was established in which the co‐mutation signature of TP53 and PIK3CA was linked to the BCL2L1 gene. Conclusions Our results provide the first systematic identification of the molecular features of the BCL2 family under the spatial pattern of chromatin in gynaecologic and breast cancer. These findings broaden the therapeutic scope of the BCL2 family to the non‐coding region by including a significantly conserved distal region overlaying an enhancer.
Collapse
Affiliation(s)
- Jiajian Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Sidi Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Obaidi I, Cassidy H, Ibáñez Gaspar V, McCaul J, Higgins M, Halász M, Reynolds AL, Kennedy BN, McMorrow T. Curcumin Sensitizes Kidney Cancer Cells to TRAIL-Induced Apoptosis via ROS Mediated Activation of JNK-CHOP Pathway and Upregulation of DR4. BIOLOGY 2020; 9:E92. [PMID: 32370057 PMCID: PMC7284747 DOI: 10.3390/biology9050092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Ismael Obaidi
- NIBRT|National Institute for Bioprocessing, Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., A94 X099 Dublin, Ireland
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Hilary Cassidy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Verónica Ibáñez Gaspar
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Jasmin McCaul
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Michael Higgins
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Melinda Halász
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Alison L. Reynolds
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- UCD School of Veterinary Medicine, Rm 232, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Breandan N. Kennedy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Tara McMorrow
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| |
Collapse
|
25
|
Barbu MC, Spiliopoulou A, Colombo M, McKeigue P, Clarke TK, Howard DM, Adams MJ, Shen X, Lawrie SM, McIntosh AM, Whalley HC. Expression quantitative trait loci-derived scores and white matter microstructure in UK Biobank: a novel approach to integrating genetics and neuroimaging. Transl Psychiatry 2020; 10:55. [PMID: 32066731 PMCID: PMC7026054 DOI: 10.1038/s41398-020-0724-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
Expression quantitative trait loci (eQTL) are genetic variants associated with gene expression. Using genome-wide genotype data, it is now possible to impute gene expression using eQTL mapping efforts. This approach can be used to analyse previously unexplored relationships between gene expression and heritable in vivo measures of human brain structural connectivity. Using large-scale eQTL mapping studies, we computed 6457 gene expression scores (eQTL scores) using genome-wide genotype data in UK Biobank, where each score represents a genetic proxy measure of gene expression. These scores were then tested for associations with two diffusion tensor imaging measures, fractional anisotropy (NFA = 14,518) and mean diffusivity (NMD = 14,485), representing white matter structural integrity. We found FDR-corrected significant associations between 8 eQTL scores and structural connectivity phenotypes, including global and regional measures (βabsolute FA = 0.0339-0.0453; MD = 0.0308-0.0381) and individual tracts (βabsolute FA = 0.0320-0.0561; MD = 0.0295-0.0480). The loci within these eQTL scores have been reported to regulate expression of genes involved in various brain-related processes and disorders, such as neurite outgrowth and Parkinson's disease (DCAKD, SLC35A4, SEC14L4, SRA1, NMT1, CPNE1, PLEKHM1, UBE3C). Our findings indicate that eQTL scores are associated with measures of in vivo brain connectivity and provide novel information not previously found by conventional genome-wide association studies. Although the role of expression of these genes regarding white matter microstructural integrity is not yet clear, these results suggest it may be possible, in future, to map potential trait- and disease-associated eQTL to in vivo brain connectivity and better understand the mechanisms of psychiatric disorders and brain traits, and their associated imaging findings.
Collapse
Affiliation(s)
- Miruna C. Barbu
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Athina Spiliopoulou
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Marco Colombo
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul McKeigue
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David M. Howard
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK ,grid.13097.3c0000 0001 2322 6764Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Mark J. Adams
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen M. Lawrie
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew M. McIntosh
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Centre for Cognitive Ageing and Cognitive Epidemiology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C. Whalley
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Li P, Zhao S, Hu Y. SFRP2 modulates non‑small cell lung cancer A549 cell apoptosis and metastasis by regulating mitochondrial fission via Wnt pathways. Mol Med Rep 2019; 20:1925-1932. [PMID: 31257495 DOI: 10.3892/mmr.2019.10393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/20/2019] [Indexed: 11/05/2022] Open
Abstract
The secreted frizzled‑related protein 2 (SFRP2) has been reported to inhibit non‑small cell lung cancer (NSCLC) cell survival and metastasis; however, the underlying mechanisms are yet to be fully determined. The present study focused on mitochondrial fission and the Wnt signaling pathway. The results demonstrated that SFRP2 was downregulated in the NSCLC cell line A549 compared with in a normal pulmonary epithelial cell line using western blotting, reverse transcription‑quantitative PCR and immunofluorescence. Subsequently, it was demonstrated that SFRP2 overexpression promoted the apoptosis, and inhibited the proliferation and metastasis of A549 cells using MTT assays, TUNEL staining and 5‑ethynyl‑2'‑deoxyuridine labeling. At the molecular level, the overexpression of SFRP2 in A549 cells led to the activation of mitochondrial fission by inhibiting the Wnt signal pathway. Excessive mitochondrial fission induced low ATP generation, impaired mitochondrial respiratory function, induced mitochondrial potential depolarization, and increased mitochondrial permeability transition pore opening, and imbalances in pro‑ and antiapoptotic protein expression. Furthermore, mitochondrial fission was involved in the inhibition of A549 cell proliferation and metastasis. Thus, SFRP2 may inhibit the survival and metastasis of NSCLC cells via the Wnt/mitochondrial fission pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shu Zhao
- Department of Oncology, Τhe Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yi Hu
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
27
|
Guan X, Liu Z, Zhao Z, Zhang X, Tao S, Yuan B, Zhang J, Wang D, Liu Q, Ding Y. Emerging roles of low-density lipoprotein in the development and treatment of breast cancer. Lipids Health Dis 2019; 18:137. [PMID: 31182104 PMCID: PMC6558919 DOI: 10.1186/s12944-019-1075-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease with increasing incidence and mortality and represents one of the most common cancer types worldwide. Low-density lipoprotein (LDL) is a complex particle composed of several proteins and lipids, which carries cholesterol into peripheral tissues and also affects the metabolism of fatty acids. Recent reports have indicated an emerging role of LDL in breast cancer, affecting cell proliferation and migration, thereby facilitating disease progression. However, controversy still exists among distinct types of breast cancer that can be affected by LDL. Classical therapeutic approaches, such as radiotherapy, chemotherapy, and lipid-lowering drugs were also reported as affecting LDL metabolism and content in breast cancer patients. Therefore, in this review we summarized and discussed the role of LDL in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Zhuo Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130333 China
| | - Zhen Zhao
- Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015 China
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
- The 85th Hospital of CPLA, Shanghai, 200040 China
| | - Xuefeng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Siteng Tao
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Dawei Wang
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015 China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| |
Collapse
|
28
|
Affiliation(s)
- David K Finlay
- School of Biochemistry and Immunology and School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Yao JN, Zhang XX, Zhang YZ, Li JH, Zhao DY, Gao B, Zhou HN, Gao SL, Zhang LF. Discovery and anticancer evaluation of a formononetin derivative against gastric cancer SGC7901 cells. Invest New Drugs 2019; 37:1300-1308. [PMID: 30929157 DOI: 10.1007/s10637-019-00767-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Background Gastric cancer (GC) is the second most common cause of cancer-related death worldwide. Novel anticancer drugs against gastric cancer are urgently needed. Methods Compound 10 was designed and synthesized via a molecular hybridization strategy based on the natural product formononetin. It was evaluated for their antiproliferative activity against three gastric cancer cell lines (SGC7901, MKN45 and MGC803). Results Derivative 10 displayed potently antiproliferative activity with an IC50 value of 1.07 μM against SGC7901 cells. Derivative 10 could inhibit the growth and migration against gastric cancer SGC7901 cells through the Wnt/β-Catenin and AKT/mTOR pathways. From the in vivo expremints, it could effectively inhibited SGC7901 xenograft tumor growth in vivo without significant loss of the body weight. Conclusion Derivative 10 is an novel antitumor agent with potential for further clinical applications to treat gastric cancer. Graphical abstract.
Collapse
Affiliation(s)
- Jian-Ning Yao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xue-Xiu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan-Zhen Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Heng Li
- Reproductive Medicine Department, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dong-Yao Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bing Gao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hai-Ning Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Lin Gao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lian-Feng Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|