1
|
Wang H, Li Y, Wu N, Lv C, Wang Y. P4HB regulates the TGFβ/SMAD3 signaling pathway through PRMT1 to participate in high glucose-induced epithelial-mesenchymal transition and fibrosis of renal tubular epithelial cells. BMC Nephrol 2024; 25:297. [PMID: 39251943 PMCID: PMC11385120 DOI: 10.1186/s12882-024-03733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS HG induced an increase in the expression of P4HB and TGFβ, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. CONCLUSION P4HB regulated the TGFβ/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of nephrology, China-Japan Friendship Hospital, chaoyang District, 100029, Beijing, China
| | - Yang Li
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Na Wu
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Chunmei Lv
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Yishu Wang
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China.
| |
Collapse
|
2
|
Tanaka LY, Kumar S, Gutierre LF, Magnun C, Kajihara D, Kang DW, Laurindo FRM, Jo H. Disturbed flow regulates protein disulfide isomerase A1 expression via microRNA-204. Front Physiol 2024; 15:1327794. [PMID: 38638277 PMCID: PMC11024637 DOI: 10.3389/fphys.2024.1327794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Leonardo Y. Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Lucas F. Gutierre
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Celso Magnun
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Daniela Kajihara
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Tanveer F, Ilyas A, Syed B, Hashim Z, Ahmed A, Zarina S. Differential Protein Expression in Response to Varlitinib Treatment in Oral Cancer Cell Line: an In Vitro Therapeutic Approach. Appl Biochem Biotechnol 2024; 196:2110-2121. [PMID: 37470935 DOI: 10.1007/s12010-023-04642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Epidermal growth factor receptor (EGFR) is the most frequently overexpressed receptor histologically exhibited by oral squamous cell carcinoma (OSCC) patients. Aberrated EGFR signaling may lead to recurrence and metastasis, thus laying the foundation of targeted therapy. Deactivating EGFR is likely to prevent downstream signaling thus resulting in apoptosis. Tyrosine kinase inhibitors (TKIs) have come into play to revert aggressiveness of OSCC. We exploited comparative proteomic analyses based on anti-EGFR potential of varlitinib, using cellular proteomes from treated and untreated groups of oral cancer cells to identify protein players functional during oral carcinogenesis. Following separation by two-dimensional electrophoresis, differentially expressed cellular proteins (varlitinib-treated and untreated cells) were analyzed and later identified using QTOF mass spectrometer. In silico analysis for protein-protein interaction was carried out using STRING. Six differentially expressed proteins were identified as binding immunoglobulin protein (BiP), heat shock protein 7 C (HSP7C), protein disulfide isomerase 1 A (PDIA1), vimentin (VIME), keratin type I cytoskeletal 14 (K1C14), and β-Actin (ACTB). Relative expression of five proteins was found to be downregulated upon varlitinib treatment, whereas only K1C14 was upregulated in treated cells compared to control. Protein network analysis depicts the interaction between BiP, PDIA1, VIME, etc. indicating their role in oral carcinogenesis. Oral cancer cells show proteome shift based on varlitinib treatment compared to corresponding controls. Our data suggest candidature of varlitinib as a potent therapeutic agent and BiP, PDIA1, HSP7C, VIME, and β-Actin as complementary/prognostic markers of OSCC.
Collapse
Affiliation(s)
- Fariha Tanveer
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Amber Ilyas
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Basir Syed
- School of Pharmacy, Chapman University, Orange, CA, USA
| | - Zehra Hashim
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- School of Pharmacy, Chapman University, Orange, CA, USA
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
4
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Moretti AIS, Baksheeva VE, Roman AY, De Bessa TC, Devred F, Kovacic H, Tsvetkov PO. Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. Int J Mol Sci 2024; 25:2095. [PMID: 38396772 PMCID: PMC10889200 DOI: 10.3390/ijms25042095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The interplay between metal ion binding and the activity of thiol proteins, particularly within the protein disulfide isomerase family, remains an area of active investigation due to the critical role that these proteins play in many vital processes. This research investigates the interaction between recombinant human PDIA1 and zinc ions, focusing on the subsequent implications for PDIA1's conformational stability and enzymatic activity. Employing isothermal titration calorimetry and differential scanning calorimetry, we systematically compared the zinc binding capabilities of both oxidized and reduced forms of PDIA1 and assessed the structural consequences of this interaction. Our results demonstrate that PDIA1 can bind zinc both in reduced and oxidized states, but with significantly different stoichiometry and more pronounced conformational effects in the reduced form of PDIA1. Furthermore, zinc binding was observed to inhibit the catalytic activity of reduced-PDIA1, likely due to induced alterations in its conformation. These findings unveil a potential regulatory mechanism in PDIA1, wherein metal ion binding under reductive conditions modulates its activity. Our study highlights the potential role of zinc in regulating the catalytic function of PDIA1 through conformational modulation, suggesting a nuanced interplay between metal binding and protein stability in the broader context of cellular redox regulation.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Viktoria E. Baksheeva
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Andrei Yu. Roman
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Tiphany Coralie De Bessa
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - François Devred
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Hervé Kovacic
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Philipp O. Tsvetkov
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| |
Collapse
|
6
|
Ye ZW, Zhang J, Aslam M, Blumental-Perry A, Tew KD, Townsend DM. Protein disulfide isomerase family mediated redox regulation in cancer. Adv Cancer Res 2023; 160:83-106. [PMID: 37704292 PMCID: PMC10586477 DOI: 10.1016/bs.acr.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Protein disulfide isomerase (PDI) and its superfamilies are mainly endoplasmic reticulum (ER) resident proteins with essential roles in maintaining cellular homeostasis, via thiol oxidation/reduction cycles, chaperoning, and isomerization of client proteins. Since PDIs play an important role in ER homeostasis, their upregulation supports cell survival and they are found in a variety of cancer types. Despite the fact that the importance of PDI to tumorigenesis remains to be understood, it is emerging as a new therapeutic target in cancer. During the past decade, several PDI inhibitors has been developed and commercialized, but none has been approved for clinical use. In this review, we discuss the properties and redox regulation of PDIs within the ER and provide an overview of the last 5 years of advances regarding PDI inhibitors.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Muhammad Aslam
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Blumental-Perry
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biol 2022; 57:102489. [PMID: 36198205 PMCID: PMC9535304 DOI: 10.1016/j.redox.2022.102489] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive phytocannabinoid of Cannabis sativa L., is one of the most studied compounds in pharmacotherapeutic approaches to treat oxidative stress-related diseases such as cardiovascular, metabolic, neurodegenerative, and neoplastic diseases. The literature data to date indicate the possibility of both antioxidant and pro-oxidative effects of CBD. Thus, the mechanism of action of this natural compound in the regulation of nuclear factor 2 associated with erythroid 2 (Nrf2), which plays the role of the main cytoprotective regulator of redox balance and inflammation under oxidative stress conditions, seems to be particularly important. Moreover, Nrf2 is strongly correlated with the cellular neoplastic profile and malignancy, which in turn is critical in determining the cellular response induced by CBD under pathophysiological conditions. This paper summarizes the CBD-mediated pathways of regulation of the Nrf2 system by altering the expression and modification of both proteins directly involved in Nrf2 transcriptional activity and proteins involved in the relationship between Nrf2 and the nuclear factor kappa B (NF-κB) which is another redox-sensitive transcription factor.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
8
|
Pagano A, Breuzard G, Parat F, Tchoghandjian A, Figarella-Branger D, De Bessa TC, Garrouste F, Douence A, Barbier P, Kovacic H. Tau Regulates Glioblastoma Progression, 3D Cell Organization, Growth and Migration via the PI3K-AKT Axis. Cancers (Basel) 2021; 13:cancers13225818. [PMID: 34830972 PMCID: PMC8616151 DOI: 10.3390/cancers13225818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Microtubule-associated protein Tau is expressed in different cancers; however, its role and prognostic value are still debated. In the present work, we evaluated the role of Tau in glioblastoma by down-regulating its expression in glioblastoma cells. We showed that Tau: (1) is required for tumor progression in nude mice; (2) is necessary for glioblastoma 3D cell organization, growth, and migration; and (3) regulates the PI3K/AKT signaling pathway. Abstract The Microtubule-Associated Protein Tau is expressed in several cancers, including low-grade gliomas and glioblastomas. We have previously shown that Tau is crucial for the 2D motility of several glioblastoma cell lines, including U87-MG cells. Using an RNA interference (shRNA), we tested if Tau contributed to glioblastoma in vivo tumorigenicity and analyzed its function in a 3D model of multicellular spheroids (MCS). Tau depletion significantly increased median mouse survival in an orthotopic glioblastoma xenograft model. This was accompanied by the inhibition of MCS growth and cell evasion, as well as decreased MCS compactness, implying N-cadherin mislocalization. Intracellular Signaling Array analysis revealed a defective activation of the PI3K/AKT pathway in Tau-depleted cells. Such a defect in PI3K/AKT signaling was responsible for reduced MCS growth and cell evasion, as demonstrated by the inhibition of the pathway in control MCS using LY294002 or Perifosine, which did not significantly affect Tau-depleted MCS. Finally, analysis of the glioblastoma TCGA dataset showed a positive correlation between the amount of phosphorylated Akt-Ser473 and the expression of MAPT RNA encoding Tau, underlining the relevance of our findings in glioblastoma disease. We suggest a role for Tau in glioblastoma by controlling 3D cell organization and functions via the PI3K/AKT signaling axis.
Collapse
Affiliation(s)
- Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 9, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (G.B.); (F.P.); (F.G.); (A.D.); (P.B.); (H.K.)
- Correspondence:
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 9, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (G.B.); (F.P.); (F.G.); (A.D.); (P.B.); (H.K.)
| | - Fabrice Parat
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 9, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (G.B.); (F.P.); (F.G.); (A.D.); (P.B.); (H.K.)
| | - Aurélie Tchoghandjian
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 8, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (A.T.); (D.F.-B.)
| | - Dominique Figarella-Branger
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 8, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (A.T.); (D.F.-B.)
- Service d’Anatomie Pathologique et de Neuropathologie, CHU Timone, APHM, 13005 Marseille, France
| | - Tiphany Coralie De Bessa
- LIM 64: Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-090, SP, Brazil;
| | - Françoise Garrouste
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 9, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (G.B.); (F.P.); (F.G.); (A.D.); (P.B.); (H.K.)
| | - Alexis Douence
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 9, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (G.B.); (F.P.); (F.G.); (A.D.); (P.B.); (H.K.)
| | - Pascale Barbier
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 9, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (G.B.); (F.P.); (F.G.); (A.D.); (P.B.); (H.K.)
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Team 9, UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (G.B.); (F.P.); (F.G.); (A.D.); (P.B.); (H.K.)
| |
Collapse
|
9
|
Mao CG, Jiang SS, Wang XY, Tao SL, Jiang B, Mao CY, Yang YL, Hu ZY, Long T, Jin H, Tan QY, Huang Y, Deng B. BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. Int J Biol Sci 2021; 17:2461-2475. [PMID: 34326687 PMCID: PMC8315020 DOI: 10.7150/ijbs.61790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background: We investigated the roles of breast cancer anti-estrogen resistance 1 (BCAR1/p130Cas) in the formation and immunoevasion of invasive circulating tumor cells (CTCs) in lung adenocarcinoma (LUAD). Methods: Biomarkers of CTCs including BCAR1 and CD274, were evaluated by the CanPatrol method. Proteomics analysis of LUAD cells and exosomes after BCAR1 overexpression (BCAR1-OE) was performed by mass spectrometry. Cell functions and relevant signaling pathways were investigated after BCAR1 knockdown (BCAR1-KO) or BCAR1-OE in LUAD cells. Lastly, in vitro and in vivo experiments were performed to confirm the roles of BCAR1 in the formation and immunoevasion of CTCs. Results: High expression of BCAR1 by CTCs correlated with CD274 expression and epithelial-to-mesenchymal transition (EMT). RAC1, together with BCAR1, was found to play an important role in the carcinogenesis of LUAD. RAC1 functioned with BCAR1 to induce EMT and to enhance cell proliferation, colony formation, cell invasion and migration, and anoikis resistance in LUAD cells. BCAR1 up-regulated CD274 expression probably by shuttling the short isoform of BRD4 (BRD4-S) into the nucleus. CTCs, as well as tumor formation, were prohibited in nude mice xenografted with BCAR1-KO cells. The co-expression of BCAR1/RAC1 and BCAR1/CD274 was confirmed in LUAD. BCAR1 expression in LUAD is an indicator of poor prognosis, and it associates with immunoevasion. Conclusion: BCAR1, as a new target for the treatment of LUAD, plays roles in the formation and immunoevasion of invasive CTCs. The mechanism includes triggering EMT via RAC1 signaling and up-regulating CD274 expression by shuttling BRD4-S into the nucleus.
Collapse
Affiliation(s)
- Chun-Guo Mao
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sha-sha Jiang
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao-yang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Shao-Lin Tao
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bin Jiang
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Cheng-Yi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yan-Lian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhi-Yuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tan Long
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hua Jin
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qun-You Tan
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Bo Deng
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
10
|
Fernandes DC, Wosniak J, Gonçalves RC, Tanaka LY, Fernandes CG, Zanatta DB, de Mattos ABM, Strauss BE, Laurindo FRM. PDIA1 acts as master organizer of NOX1/NOX4 balance and phenotype response in vascular smooth muscle. Free Radic Biol Med 2021; 162:603-614. [PMID: 33227407 DOI: 10.1016/j.freeradbiomed.2020.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023]
Abstract
Changes in vascular smooth muscle cell (VSMC) phenotype underlie disease pathophysiology and are strongly regulated by NOX NADPH oxidases, with NOX1 favoring synthetic proliferative phenotype and NOX4 supporting differentiation. Growth factor-triggered NOX1 expression/activity strictly depends on the chaperone oxidoreductase protein disulfide isomerase-A1 (PDIA1). Intracellular PDIA1 is required for VSMC migration and cytoskeleton organization, while extracellular PDIA1 fine-tunes cytoskeletal mechanoadaptation and vascular remodeling. We hypothesized that PDIA1 orchestrates NOX1/NOX4 balance and VSMC phenotype. Using an inducible PDIA1 overexpression model in VSMC, we showed that early PDIA1 overexpression (for 24-48 h) increased NOX1 expression, hydrogen peroxide steady-state levels and spontaneous VSMC migration distances. Sustained PDIA1 overexpression for 72 h and 96 h supported high NOX1 levels while also increasing NOX4 expression and, remarkably, switched VSMC phenotype to differentiation. Differentiation was preceded by increased nuclear myocardin and serum response factor-response element activation, with no change in cell viability. Both NOX1 and hydrogen peroxide were necessary for later PDIA1-induced VSMC differentiation. In primary VSMC, PDIA1 knockdown decreased nuclear myocardin and increased the proliferating cell nuclear antigen expression. Newly-developed PDIA1-overexpressing mice (TgPDIA1) exhibited normal general and cardiovascular baseline phenotypes. However, in TgPDIA1 carotids, NOX1 was decreased while NOX4 and calponin expressions were enhanced, indicating overdifferentiation vs. normal carotids. Moreover, in a rabbit overdistension injury model during late vascular repair, PDIA1 silencing impaired VSMC redifferentiation and NOX1/NOX4 balance. Our results suggest a model in which PDIA1 acts as an upstream organizer of NOX1/NOX4 balance and related VSMC phenotype, accounting for baseline differentiation setpoint.
Collapse
Affiliation(s)
- Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil.
| | - João Wosniak
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Renata C Gonçalves
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Carolina G Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Daniela B Zanatta
- Viral Vector Laboratory, Center for Translational Research in Oncology/LIM24, Cancer Institute of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Ana Barbosa M de Mattos
- Laboratory of Genetic and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Research in Oncology/LIM24, Cancer Institute of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil.
| |
Collapse
|
11
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
12
|
Stojak M, Milczarek M, Kurpinska A, Suraj-Prazmowska J, Kaczara P, Wojnar-Lason K, Banach J, Stachowicz-Suhs M, Rossowska J, Kalviņš I, Wietrzyk J, Chlopicki S. Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells. Cancers (Basel) 2020; 12:cancers12102850. [PMID: 33023153 PMCID: PMC7601413 DOI: 10.3390/cancers12102850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer cell cross-talk with the host endothelium plays a crucial role in metastasis, but the underlying mechanisms are still not fully understood. We studied the involvement of protein disulphide isomerase A1 (PDIA1) in human breast cancer cell (MCF-7 and MDA-MB-231) adhesion and transendothelial migration. For comparison, the role of PDIA1 in proliferation, migration, cell cycle and apoptosis was also assessed. Pharmacological inhibitor, bepristat 2a and PDIA1 silencing were used to inhibit PDIA1. Inhibition of PDIA1 by bepristat 2a markedly decreased the adhesion of breast cancer cells to collagen type I, fibronectin and human lung microvascular endothelial cells. Transendothelial migration of breast cancer cells across the endothelial monolayer was also inhibited by bepristat 2a, an effect not associated with changes in ICAM-1 expression or changes in cellular bioenergetics. The silencing of PDIA1 produced less pronounced anti-adhesive effects. However, inhibiting extracellular free thiols by non-penetrating blocker p-chloromercuribenzene sulphonate substantially inhibited adhesion. Using a proteomic approach, we identified that β1 and α2 integrins were the most abundant among all integrins in breast cancer cells as well as in lung microvascular endothelial cells, suggesting that integrins could represent a target for PDIA1. In conclusion, extracellular PDIA1 plays a major role in regulating the adhesion of cancer cells and their transendothelial migration, in addition to regulating cell cycle and caspase 3/7 activation by intracellular PDIA1. PDIA1-dependent regulation of cancer-endothelial cell interactions involves disulphide exchange and most likely integrin activation but is not mediated by the regulation of ICAM-1 expression or changes in cellular bioenergetics in breast cancer or endothelial cells.
Collapse
Affiliation(s)
- Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Joanna Rossowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Ivars Kalviņš
- Laboratory of Carbofunctional Compounds, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia;
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
- Correspondence: (J.W.); (S.C.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
- Correspondence: (J.W.); (S.C.)
| |
Collapse
|
13
|
LaFavers KA, Macedo E, Garimella PS, Lima C, Khan S, Myslinski J, McClintick J, Witzmann FA, Winfree S, Phillips CL, Hato T, Dagher PC, Wu XR, El-Achkar TM, Micanovic R. Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel. Sci Transl Med 2020; 11:11/512/eaaw3639. [PMID: 31578243 DOI: 10.1126/scitranslmed.aaw3639] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/26/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
High serum concentrations of kidney-derived protein uromodulin [Tamm-Horsfall protein (THP)] have recently been shown to be independently associated with low mortality in both older adults and cardiac patients, but the underlying mechanism remains unclear. Here, we show that THP inhibits the generation of reactive oxygen species (ROS) both in the kidney and systemically. Consistent with this experimental data, the concentration of circulating THP in patients with surgery-induced acute kidney injury (AKI) correlated with systemic oxidative damage. THP in the serum dropped after AKI and was associated with an increase in systemic ROS. The increase in oxidant injury correlated with postsurgical mortality and need for dialysis. Mechanistically, THP inhibited the activation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) channel. Furthermore, inhibition of TRPM2 in vivo in a mouse model mitigated the systemic increase in ROS during AKI and THP deficiency. Our results suggest that THP is a key regulator of systemic oxidative stress by suppressing TRPM2 activity, and our findings might help explain how circulating THP deficiency is linked with poor outcomes and increased mortality.
Collapse
Affiliation(s)
- Kaice A LaFavers
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Etienne Macedo
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Pranav S Garimella
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Camila Lima
- Division of Nephrology, Department of Medicine, University of Sao Paulo, Sao Paulo 05403, Brazil
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jered Myslinski
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeanette McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Frank A Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carrie L Phillips
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pierre C Dagher
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine and Veterans Affairs, New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA. .,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Radmila Micanovic
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Li PL, Liu H, Chen GP, Li L, Shi HJ, Nie HY, Liu Z, Hu YF, Yang J, Zhang P, Zhang XJ, She ZG, Li H, Huang Z, Zhu L. STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy. Hypertension 2020; 76:1219-1230. [PMID: 32862709 DOI: 10.1161/hypertensionaha.120.14752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathological cardiac hypertrophy is one of the major predictors and inducers of heart failure, the end stage of various cardiovascular diseases. However, the molecular mechanisms underlying pathogenesis of pathological cardiac hypertrophy remain largely unknown. Here, we provided the first evidence that STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) is a key negative regulator of this disease. We found that the expression of STEAP3 was reduced in pressure overload-induced hypertrophic hearts and phenylephrine-induced hypertrophic cardiomyocytes. In a transverse aortic constriction-triggered mouse cardiac hypertrophy model, STEAP3 deficiency remarkably deteriorated cardiac hypertrophy and fibrosis, whereas the opposite phenotype was observed in the cardiomyocyte-specific STEAP3 overexpressing mice. Accordingly, STEAP3 significantly mitigated phenylephrine-induced cell enlargement in primary neonatal rat cardiomyocytes. Mechanistically, via RNA-seq and immunoprecipitation-mass screening, we demonstrated that STEAP3 directly bond to Rho family small GTPase 1 and suppressed the activation of downstream mitogen-activated protein kinase-extracellular signal-regulated kinase signaling cascade. Remarkably, the antihypertrophic effect of STEAP3 was largely blocked by overexpression of constitutively active mutant Rac1 (G12V). Our study indicates that STEAP3 serves as a novel negative regulator of pathological cardiac hypertrophy by blocking the activation of the Rac1-dependent signaling cascade and may contribute to exploring effective therapeutic strategies of pathological cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Peng-Long Li
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China.,Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hui Liu
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China.,Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Guo-Peng Chen
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Ling Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hong-Jie Shi
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hong-Yu Nie
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Zhen Liu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Yu-Feng Hu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Juan Yang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Peng Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Xiao-Jing Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zhi-Gang She
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hongliang Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zan Huang
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China
| | - Lihua Zhu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| |
Collapse
|
15
|
Liu J, Zheng Y, Gao Y, Quan Z, Qiao B, Li L, Li T, Duan L, Yang J, Luo C, Wu X. Inhibitor 9 Combined With Androgen Deprivation Therapy or Chemotherapy Delays the Malignant Behavior of Castration-Resistant Prostate Cancer Through K-Ras/PLCε/PKCε Signaling Pathway. Front Oncol 2020; 10:75. [PMID: 32158687 PMCID: PMC7051985 DOI: 10.3389/fonc.2020.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a progressed stage of prostate cancer, which requires better understanding of the mechanisms and remains an unmet clinical need. As a common oncogene, K-Ras is associated with malignant behavior in different types of tumors but its role in CRPC is unknown. The present study aims to find the mechanism of K-Ras in CRPC and whether it can be used as a crucial molecule for the treatment of CRPC. For this purpose, tissue samples from primary prostate cancer (PPC) and CRPC patients were analyzed by immunohistochemistry and the data showed that K-Ras was elevated in CRPC. More importantly, higher K-Ras expression was related to a shorter recurrence-free survival time in patients with CRPC. In addition, K-Ras promoted the invasion, migration, and drug resistance of CRPC cells by activation of PLCε/PKCε signaling pathway. Meanwhile, the inhibitor of K-RasG12C mutants was able to inhibit malignant behavior of CRPC cells in vitro and in vivo. Inhibitors of K-RasG12C mutants have entered clinical trials. Taken together, the study shows that K-Ras may activate PKCε through PLCε, resulting in the alterations of malignant behavior of CRPC. Inhibitor 9, an inhibitor of the K-RasG12C mutant, has a strong anti-tumor effect in CRPC, which potentially suggests that inhibitors of this nature may serve as a promising treatment for CRPC.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Gao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, China.,Department of Laboratory Diagnosis, Clinical Medical College, Jiamusi University, Heilongjiang, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luo Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, China.,Department of Laboratory Diagnosis, Chongqing Public Health Medical Treatment Center, Chongqing, China
| | - Ting Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, China
| | - Limei Duan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, China
| | - Jinxiao Yang
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019; 9:735. [PMID: 31766246 PMCID: PMC6920770 DOI: 10.3390/biom9110735] [Citation(s) in RCA: 642] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Punjab, Chandigarh 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Ayşegül Varol
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir TR26470, Turkey;
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey;
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India;
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|