1
|
Yao Q, Wen J, Chen S, Wang Y, Wen X, Wang X, Li C, Zheng C, Li J, Ma Z, Zhan X, Xiao X, Bai Z. Shuangdan Jiedu Decoction improved LPS-induced acute lung injury by regulating both cGAS-STING pathway and inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118661. [PMID: 39159837 DOI: 10.1016/j.jep.2024.118661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.
Collapse
Affiliation(s)
- Qing Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yan Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xinru Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Congyang Zheng
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, PR China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Xiaohe Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Zhaofang Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| |
Collapse
|
2
|
Wang Y, Liu C, Wang N, Weng D, Zhao Y, Yang H, Wang H, Xu S, Gao J, Lang C, Fan Z, Yu L, He Z. hAMSCs regulate EMT in the progression of experimental pulmonary fibrosis through delivering miR-181a-5p targeting TGFBR1. Stem Cell Res Ther 2025; 16:2. [PMID: 39757225 DOI: 10.1186/s13287-024-04095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a common and multidimensional devastating interstitial lung disease. The development of novel and more effective interventions for PF is an urgent clinical need. A previous study has found that miR-181a-5p plays an important role in the development of PF, and human amniotic mesenchymal stem cells (hAMSCs) exert potent therapeutic potential on PF. However, whether hAMSCs act on PF by delivering miR-181a-5p and its detailed mechanism still remain unknown. Thus, this study was designed to investigate the underlying possible mechanism of hAMSCs on PF in bleomycin (BLM)-induced mouse PF model, and a co-culture system of hAMSCs and A549 cells epithelial mesenchymal transition (EMT) model, focusing on its effects on collagen deposition, EMT, and epithelial cell cycle regulation. METHODS hAMSCs with different miR-181a-5p expression levels were constructed. BLM (4 mg/kg) was used to create a PF model, while TGF-β1 was used to induce A549 cells to construct an EMT model. Furthermore, the effects of different miR-181a-5p expression in hAMSCs on collagen deposition and EMT during lung fibrosis were assessed in vivo and in vitro. RESULTS We found that hAMSCs exerted anti-fibrotic effect in BLM-induced mouse PF model. Moreover, hAMSCs also exerted protective effect on TGFβ1-induced A549 cell EMT model. Furthermore, hAMSCs ameliorated PF by promoting epithelial cell proliferation, reducing epithelial cell apoptosis, and attenuating EMT of epithelial cells through paracrine effects. hAMSCs regulated EMT in PF through delivering miR-181a-5p targeting TGFBR1. CONCLUSIONS Our findings reveal for the first time that hAMSCs inhibit PF by promoting epithelial cell proliferation, reducing epithelial cell apoptosis, and attenuating EMT. Mechanistically, the therapeutic effect of hMASCs on PF is achieved through delivering miR-181a-5p targeting TGFBR1.
Collapse
Affiliation(s)
- Yanyang Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Chan Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yan Zhao
- Department of Prevention Healthcare, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, 400038, China
| | - Hongyu Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Haoyuan Wang
- Department of Cardiothoracic Surgery, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi, China
| | - Shangfu Xu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563000, Guizhou, China
| | - Changhui Lang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Zhixu He
- Center of Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
3
|
Zhang S, Zhao X, Lv Y, Niu J, Wei X, Luo Z, Wang X, Chen XL. Exosomes of different cellular origins: prospects and challenges in the treatment of acute lung injury after burns. J Mater Chem B 2024. [PMID: 39704476 DOI: 10.1039/d4tb02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Acute lung injury (ALI) is a critical clinical disease caused by direct factors (inhalation injury, gastroesophageal reflux, etc.) or indirect factors (including infection, sepsis, burn, shock, trauma, acute pancreatitis, fat embolism, drug overdose, etc.). ALI is characterized mainly by diffuse interstitial and alveolar edema caused by an uncontrolled inflammatory response and damage to the alveoli-capillary barrier and has very high morbidity and mortality rates. Currently, there is no effective treatment strategy other than mechanical ventilation, fluid management or other supportive treatments. Exosomes are nanovesicle-like vesicles with double-membrane structures detached from the cell membrane or secreted by cells. These vesicles can be used as drug carriers because of their unique biological properties, such as anti-inflammatory, anti-apoptotic, pro-cell growth and immunomodulatory functions, and have been applied in the treatment of ALI in recent years. In this study, the mechanism and pathophysiological characteristics of ALI were first systematically described. The different cellular sources and characteristics of exosomes are summarized, and their functions and value as drug carriers in the treatment of ALI are discussed, as are the challenges that may be faced in the treatment of ALI with exosomes.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yang Lv
- Plastic Surgery Department, The Second Affiliated Hospital of Anhui Medical University, 230061, P. R. China
| | - Jianguo Niu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xiaolong Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
4
|
Xiubing C, Huazhen L, Xueyan W, Jing N, Qing L, Haixing J, Shanyu Q, Jiefu L. SERPINA1 promotes the invasion, metastasis, and proliferation of pancreatic ductal adenocarcinoma via the PI3K/Akt/NF-κB pathway. Biochem Pharmacol 2024; 230:116580. [PMID: 39427920 DOI: 10.1016/j.bcp.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Serpin peptidase inhibitor clade A member 1 (SERPINA1) is highly expressed in a variety of solid tumors. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, we report evidence that SERPINA1 acts as a potent oncogene to drive its extremely malignant character. We found that elevated SERPINA1 expression in primary tumors was associated with lymph node metastasis and shorter survival in PDAC patients. Mechanistic investigations revealed that overexpression of SERPINA1 induced nuclear translocation and phosphorylation of the p65 subunit through the PI3K/Akt/NF-κB pathway, thereby promoting the invasion, metastasis and proliferation of PDAC cells in vitro and in vivo. Conversely, the knockdown of SERPINA1 attenuated this signaling pathway and restored the phenotype of PDAC cells overexpressing SERPINA1. Overall, our study reveals that SERPINA1 affects the properties of PDAC through the PI3K/Akt/NF-κB pathway, and its activation confers the clinical features of epithelial-mesenchymal transition and proliferation in the disease.
Collapse
Affiliation(s)
- Chen Xiubing
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Huazhen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xueyan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ning Jing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Qing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiang Haixing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qin Shanyu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Lu Jiefu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
5
|
Rojas DA, Coronado K, Pérez-Reytor D, Karahanian E. Reduction of Alcohol-Dependent Lung Pathological Features in Rats Treated with Fenofibrate. Int J Mol Sci 2024; 25:12814. [PMID: 39684525 DOI: 10.3390/ijms252312814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Alcohol use disorder (AUD) is a public health problem characterized by a marked increment in systemic inflammation. In the last few years, it has been described as the role of alcohol in neuroinflammation affecting some aspects of neuronal function. Interestingly, inflammation is reduced with fenofibrate treatment, a PPARα agonist used to treat dyslipidemia. On the other hand, alcohol has been associated with chronic inflammation and fibrosis in the lungs, affecting their normal function and increasing respiratory infections. However, a deep characterization of the role of alcohol in the worsening of chronic respiratory diseases has not been described completely. In this work, we present a novel study using rats treated with alcohol and fenofibrate to evaluate the relevant features of chronic respiratory disease: inflammation, mucus hypersecretion, and fibrosis. The analysis of extracted lungs showed an increment in the inflammatory infiltrates and pro-inflammatory cytokine levels associated with alcohol. Interestingly, the treatment with fenofibrate decreased the expression of these markers and the infiltrates observed in the lungs. The levels of mucin Muc5ac showed an increment in animals treated with alcohol. However, this increment was markedly reduced if animals were subsequently treated with fenofibrate. Finally, we documented an increment of collagen deposition around airways in the animals treated with alcohol compared with control animals. However, fenofibrate treatment reduced this deposition to a level similar to the control animals. These results showed the role of alcohol in the increment of pathological features in the lungs. Moreover, these features were attenuated due to the fibrate treatment, which allows us to glimpse this drug's promising role as lung anti-inflammatory therapy.
Collapse
Affiliation(s)
- Diego A Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Krishna Coronado
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910132, Chile
| |
Collapse
|
6
|
Jin T, Liu X, Li G, Sun S, Xie L. Intravenous injection of BMSCs modulate tsRNA expression and ameliorate lung remodeling in COPD mice. Stem Cell Res Ther 2024; 15:450. [PMID: 39587604 PMCID: PMC11590572 DOI: 10.1186/s13287-024-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by lung remodeling induced by chronic inflammation, presenting challenges for effective treatment. Mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) have shown promise in mitigating inflammation and tissue repairing in various diseases, including COPD. However, the optimal therapeutic pathways for different stages of COPD remain unclear. Transfer RNA-derived small RNAs (tsRNAs) are emerging as key regulators of cellular processes. However, their role in COPD and MSC therapy remains poorly understood. METHODS This study explored the optimal administration routes and efficacy of bone marrow mesenchymal stem cells (BMSCs) and their extracellular vesicles (BMSC-EVs) in treating inflammatory or emphysematous COPD stages in mouse models. Male C57BL/6 mice were exposed to cigarette smoke daily for 6 or 16 weeks, with intraperitoneal CSE injections every 10 days, to model different stages of COPD. Mice were then treated with tracheal or intravenous injections of BMSCs or BMSC-EVs. PKH26 fluorescent dye labeled BMSCs and BMSC-EVs for pulmonary distribution observation. Lung tissue inflammation, apoptosis, EMT, and collagen deposition were assessed using HE staining, TUNEL assay, immunohistochemistry, and Sirius Red staining. Gene and tsRNA expression in lung tissues were analyzed by high-throughput sequencing. Differentially expressed tsRNAs (DE-tsRNAs) were validated by RT-qPCR. Statistical analysis was performed using GraphPad Prism 9.0. Data are presented as mean ± standard deviation (SD). RESULTS In 16-week COPD mice characterized by emphysema, tracheal administration of BMSC-EVs showed more significant lung distribution and inhibition of emphysematous pathology. In 6-week COPD mice characterized by inflammation, intravenous injection of BMSCs led to significant pulmonary homing, significantly reduced lung inflammation, apoptosis, EMT, and collagen deposition (P < 0.05). High-throughput sequencing indicated BMSC treatment downregulated genes related to these processes while upregulating mitochondrial function genes. Co-expression networks of DE-tsRNAs and target genes suggested potential roles in COPD. RT-qPCR confirmed significant differential expression of two DE-tsRNAs during COPD progression and BMSC treatment (P < 0.05). CONCLUSIONS Our study provides insights into selecting MSC and MSC-EV administration routes for different COPD stages. High-throughput sequencing supports BMSCs' inhibitory effects on lung remodeling and identifies the first tsRNA expression profile in a COPD model, warranting further investigation.
Collapse
Affiliation(s)
- Ting Jin
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xianyang Liu
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guoan Li
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Sun
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Xie
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
7
|
Hao X, Li P, Wang Y, Zhang Q, Yang F. Mesenchymal Stem Cell-Exosomal miR-99a Attenuate Silica-Induced Lung Fibrosis by Inhibiting Pulmonary Fibroblast Transdifferentiation. Int J Mol Sci 2024; 25:12626. [PMID: 39684337 DOI: 10.3390/ijms252312626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Silicosis is one of the most prevalent and fatal occupational diseases worldwide, with unsatisfactory clinical outcomes. This study aimed to investigate the therapeutic effect and related molecular mechanisms of how mesenchymal stem cell (MSC)-secreted exosomes alleviate SiO2-induced pulmonary fibrosis. miR-99a-5p was significantly downregulated in silicosis models via high-throughput miRNA screening, and was overlapped with miRNAs in exosomes from MSCs. miR-99a-5p was significantly downregulated in the lung of a mice silicosis model and in TGFβ1-induced NIH-3T3 cells. In contrast, fibroblast growth factor receptor 3 (FGFR3), a direct target gene of miR-99a-5p, was upregulated in vitro and in vivo. Furthermore, we demonstrated that MSC-derived exosomes deliver enriched miR-99a-5p to target cells and inhibit TGF-β1-induced fibroblast transdifferentiation to reduce collagen protein production. Similarly, in a silicosis mouse model, MSC-derived exosome treatment through the tail veins of the mice counteracted the upregulation of fibrosis-related proteins and collagen deposition in the lung of the mice. By constructing exosomal therapeutic cell models with different miR-99a expressions, we further demonstrated that miR-99a-5p might attenuate pulmonary fibrosis by regulating target protein FGFR3 and downstream mitogen-activated protein kinase (MAPK) signalling pathways. Our study demonstrated that MSC-derived exosomes ameliorate SiO2-induced pulmonary fibrosis by inhibiting fibroblast transdifferentiation and represent an attractive method of pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, China
- Hebei Coordinated Innovation Center of Occupational Health and Safety, North China University of Science and Technology, Tangshan 063210, China
| | - Peiyuan Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yudi Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Qinxin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Fang Yang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
8
|
Wang J, Xia Z, Qing B, Chen Y, Gu L, Chen H, Ge Z, Yuan Y. DsbA-L activates TGF-β1/SMAD3 signaling and M2 macrophage polarization by stimulating AKT1 and NLRP3 to promote pulmonary fibrosis. Mol Med 2024; 30:228. [PMID: 39580448 PMCID: PMC11585156 DOI: 10.1186/s10020-024-00983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive and difficult-to-heal lung disease that poses a significant threat to human life and health. This study aimed to investigate the potential pathological mechanisms of PF and to identify new avenues for the treatment of PF. METHODS Clinical samples were collected to assess the effect of disulfide-bond A oxidoreductase-like protein (DsbA-L) on PF. TGF-β1-induced MLE-12 cell model and bleomycin (BLM)-induced mice model were established. Changes in physiological morphology and fibrosis were observed in the lung tissues. The degree of apoptosis and the mitochondrial function was analyzed. The expression of relative cytokines was examined. The CD68+/CD206+ ratio was determined to indicate M2 macrophage polarization. RESULTS The expression of DsbA-L was upregulated in patients with PF and PF-like models. In vitro, DsbA-L overexpression exacerbated TGF-β1-induced the deposition of extracellular matrix (ECM), apoptosis, inflammation, and mitochondrial damage, whereas DsbA-L silencing exerted the opposite effects. DsbA-L silencing inhibited the activation of AKT1, NLRP3, and SMAD3 by TGF-β1. MLE-12 cells silencing DsbA-L limited the polarization of RAW264.7 cells towards the M2 phenotype. AKT1 agonist or NLRP3 agonist reversed the role of DsbA-L silencing in inhibiting the TGF-β1/SMAD3 pathway and M2 macrophage polarization. In vivo, DsbA-L knockout protected mice from PF-like pathological damage caused by BLM. CONCLUSION DsbA-L exhibited a significant profibrotic effect in lung epithelial cells and mice, which increased the levels of AKT1 and NLRP3 to activate the TGF-β1/SMAD3 pathway and M2 macrophage polarization. These findings could shed light on new clues for comprehension and treatment of PF.
Collapse
Affiliation(s)
- Juan Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linguo Gu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hongzuo Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenglian Ge
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Zheng Y, Li G, Shi A, Guo J, Xu Y, Cai W. Role of miR-455-3p in the alleviation of LPS-induced acute lung injury by allicin. Heliyon 2024; 10:e39338. [PMID: 39502213 PMCID: PMC11535764 DOI: 10.1016/j.heliyon.2024.e39338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Acute lung injury (ALI) is a type of diffuse lung injury that seriously affects the survival of critically ill patients. MicroRNAs (miRNAs) can serve as promising therapeutic targets or offer insights for the development of potential therapeutic strategies against ALI. In our previous study, we demonstrated the protective effect of allicin in ALI, but the role of miRNAs in the alleviation of ALI by allicin remains unclear. This study aimed to investigate whether miRNAs mediate the effects of allicin on ALI. Cell viability and proliferation were determined using CCK-8 and EdU assays, respectively, while cellular apoptosis was analyzed by flow cytometry. The claudin-4 protein was detected by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting. The binding of miR-455 with claudin-4 was determined by bioinformatics analysis and validated by dual luciferase reporter assays. The lung wet/dry ratio of lipopolysaccharide (LPS)-treated rats was determined by hematoxylin and eosin (HE) and TUNEL staining of the pulmonary tissues. The levels of myeloperoxidase (MPO), interleukin (IL)-2, IL-6, and tumor necrosis factor (TNF)-α were determined by enzyme-linked immunosorbent assay (ELISA). We observed that allicin alleviated LPS-induced injury in A549 cells, and claudin-4 knockdown reversed the protective effect of allicin in ALI. Claudin-4 is a direct target of miR-455-3p, and miR-455-3p overexpression partially reversed the protective effect of allicin in LPS-treated A549 cells. Subsequent in vivo experiments confirmed that allicin protects against LPS-induced ALI by regulating the miR-455-3p/claudin-4 axis. The study revealed that the protective effect of allicin in ALI is mediated via miR-455-3p, which suppresses the expression of claudin-4.
Collapse
Affiliation(s)
- Yueliang Zheng
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gaoxiang Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aili Shi
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junping Guo
- Rainbowfish Rehabilitation & Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, China
| | - Yingge Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenwei Cai
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Hou Q, Ouyang S, Xie Z, He Y, Deng Y, Guo J, Yu P, Tan X, Ma W, Li P, Yu J, Mo Q, Zhang Z, Chen D, Lin X, Liu Z, Chen X, Peng T, Li L, Xie W. Exosome is a Fancy Mobile Sower of Ferroptosis. J Cardiovasc Transl Res 2024; 17:1067-1082. [PMID: 38776048 DOI: 10.1007/s12265-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 10/29/2024]
Abstract
Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.
Collapse
Affiliation(s)
- Qin Hou
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yinling He
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiamin Guo
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Xu W, Huang M, Dong R, Yan S, An Y, Liu B, Ma Z, Mu K, Yang Q. Anti-carbamylated protein antibodies drive AEC II toward a profibrotic phenotype by interacting with carbamylated TLR5. Rheumatology (Oxford) 2024; 63:2874-2886. [PMID: 38366924 DOI: 10.1093/rheumatology/keae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024] Open
Abstract
OBJECTIVES This study looked at the role of anti-carbamylated protein (anti-CarP) antibodies in contributing to lung fibrosis in CTD-associated interstitial lung disease (ILD) in an autoantigen-dependent manner. METHODS ELISA was used to test serum samples, including 89 from the CTD-ILD group and 170 from the non-CTD-ILD group, for anti-CarP levels. Male C57BL/6 mice were used for the pulmonary fibrosis model and anti-CarP treatment in vivo (n = 5) and patient serum-derived or commercialized anti-CarP was used for cell treatment. We identified the carbamylated membrane protein via immunofluorescence (IF) and co-immunoprecipitation followed by mass spectrometry (MS) analysis. Quantitative RT-PCR, IF and western blot were performed to explore the antigen-dependent role of anti-CarP. A native electrophoretic mobility shift assay and MS analysis were used to verify direct interaction and carbamylation sites. RESULTS A significantly higher serum anti-CarP level was observed in CTD with ILD than without ILD. In vivo, intrapulmonary delivery of anti-CarP induces epithelial-mesenchymal transition (EMT) and microfibrotic foci. Carbamylation was enriched in type II alveolar epithelial cells (AEC II). A novel carbamylated membrane receptor, specifically recognized by anti-CarP, was identified as toll-like receptor 5 (TLR5). We found anti-CarP induces the nuclear translocation of NF-κB and downstream events, including EMT and expression of inflammatory cytokines in AEC II, which were reversed by TLR5 blocking or TLR5 knockdown. Moreover, up to 12 lysine carbamylation sites were found in TLR5 ectodomain, allowing the interaction of anti-CarP with carbamylated TLR5. CONCLUSIONS Overall, we found anti-CarP drives aberrant AEC II activation by interacting with carbamylated TLR5 to promote ILD progression.
Collapse
Affiliation(s)
- Wei Xu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghua Huang
- Department of Respiratory Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Rongrong Dong
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suyan Yan
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
| | - Yan An
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baocheng Liu
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
| | - Zhenzhen Ma
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
- Department of Integrated traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kun Mu
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Qingrui Yang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Lv K, Wu T, Liu S, Lou P, Zhou P, Wang Y, Zhou X, Zhang S, Du D, Lu Y, Wan M, Liu J. Disease-derived circulating extracellular vesicle preconditioning: A promising strategy for precision mesenchymal stem cell therapy. Acta Pharm Sin B 2024; 14:4526-4543. [PMID: 39525589 PMCID: PMC11544168 DOI: 10.1016/j.apsb.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies have emerged as promising methods for regenerative medicine; however, how to precisely enhance their tissue repair effects is still a major question in the field. Circulating extracellular vesicles (EVs) from diseased states carry diverse pathological information and affect the functions of recipient cells. Based on this unique property, we report that disease-derived circulating EV (disease-EV) preconditioning is a potent strategy for precisely enhancing the tissue repair potency of MSCs in diverse disease models. Briefly, plasma EVs from lung or kidney tissue injuries were shown to contain distinctly enriched molecules and were shown to induce tissue injury-specific gene expression responses in cultured MSCs. Disease-EV preconditioning improved the performance (including proliferation, migration, and growth factor production) of MSCs through metabolic reprogramming (such as via enhanced oxidative phosphorylation and lipid metabolism) without inducing an adverse immune response. Consequently, compared with normal MSCs, disease-EV-preconditioned MSCs exhibited superior tissue repair effects (including anti-inflammatory and antiapoptotic effects) in diverse types of tissue injury (such as acute lung or kidney injury). Disease-derived EVs may serve as a type of "off-the-shelf" product due to multiple advantages, such as flexibility, stability, long-term storage, and ease of shipment and use. This study highlights the idea that disease-EV preconditioning is a robust strategy for precisely enhancing the regenerative capacity of MSC-based therapies.
Collapse
Affiliation(s)
- Ke Lv
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Wu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Lou
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingya Zhou
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhuo Wang
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiyue Zhou
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- The First People's Hospital of Shuangliu District, Chengdu 610299, China
| | - Jingping Liu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Wang S, Yu H, Liu S, Liu Y, Gu X. Regulation of idiopathic pulmonary fibrosis: a cross-talk between TGF- β signaling and MicroRNAs. Front Med (Lausanne) 2024; 11:1415278. [PMID: 39386739 PMCID: PMC11461268 DOI: 10.3389/fmed.2024.1415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Pulmonary fibrosis (PF) is a highly complex and challenging disease affecting the respiratory system. Patients with PF usually have an abbreviated survival period and a consequential high mortality rate after the diagnosis is confirmed, posing serious threats to human health. In clinical practice, PF is typically treated by antifibrotic agents, such as Pirfenidone and Nintedanib. However, these agents have been reported to correlate with substantial adverse effects, escalating costs, and insufficient efficacy. Moreover, it remains unclarified about the multifactorial pathology of PF. Therefore, there is an urgent demand for elucidating these underlying mechanisms and identifying safe, efficient, and targeted therapeutic strategies for PF treatment. The crucial role of the transforming growth factor-β (TGF-β) signaling pathway in PF development has been explored in many studies. MicroRNAs (miRNAs), which function as post-transcriptional regulators of gene expression, can significantly affect the development of PF by modulating TGF-β signaling. In turn, TGF-β signaling can regulate the expression and biogenesis of miRNAs, thereby substantially affecting the progression of PF. Hence, the therapeutic strategies that focus on the drug-targeted regulation of miRNAs, either by augmenting down-regulated miRNAs or inhibiting overexpressed miRNAs, may hinder the pathways related to TGF-β signaling. These strategies may contribute to the prevention and suppression of PF progression and may provide novel insights into the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Liu L, Fandiño J, McCarthy SD, Masterson CH, Sallent I, Du S, Warren A, Laffey JG, O'Toole D. The Effects of the Pneumonia Lung Microenvironment on MSC Function. Cells 2024; 13:1581. [PMID: 39329762 PMCID: PMC11430541 DOI: 10.3390/cells13181581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Despite promise in preclinical models of acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC) have failed to translate to therapeutic benefit in clinical trials. The MSC is a live cell medicine and interacts with the patient's disease state. Here, we explored this interaction, seeking to devise strategies to enhance MSC therapeutic function. METHODS Human bone-marrow-derived MSCs were exposed to lung homogenate from healthy and E. coli-induced ARDS rat models. Apoptosis and functional assays of the MSCs were performed. RESULTS The ARDS model showed reduced arterial oxygenation, decreased lung compliance and an inflammatory microenvironment compared to controls. MSCs underwent more apoptosis after stimulation by lung homogenate from controls compared to E. coli, which may explain why MSCs persist longer in ARDS subjects after administration. Changes in expression of cell surface markers and cytokines were associated with lung homogenate from different groups. The anti-microbial effects of MSCs did not change with the stimulation. Moreover, the conditioned media from lung-homogenate-stimulated MSCs inhibited T-cell proliferation. CONCLUSIONS These findings suggest that the ARDS microenvironment plays an important role in the MSC's therapeutic mechanism of action, and changes can inform strategies to modulate MSC-based cell therapy for ARDS.
Collapse
Affiliation(s)
- Lanzhi Liu
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- Discipline of Physiology, University of Galway, H91 W5P7 Galway, Ireland
| | - Juan Fandiño
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Sean D McCarthy
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Claire H Masterson
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Ignacio Sallent
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Shanshan Du
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Abigail Warren
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- Discipline of Anaesthesia, University of Galway, H91 V4AY Galway, Ireland
| | - John G Laffey
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- Discipline of Anaesthesia, University of Galway, H91 V4AY Galway, Ireland
- Anaesthesia and Critical Care, Galway University Hospital, H91 V4AY Galway, Ireland
| | - Daniel O'Toole
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- Discipline of Physiology, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
15
|
Chang S, Xie W, Qu H, Ban J, Ma P, Fei S, Liu F. Exosome miRNA profile and mitigating effect of miR-23a-3p/Cul3 axis on apoptosis in the pathogenesis of SiO 2 dust-induced lung fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116971. [PMID: 39216223 DOI: 10.1016/j.ecoenv.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Silicosis is an irreversible interstitial lung fibrosis resulting from persistent inflammation induced by long-term inhalation of SiO2 dust. Treatment and early diagnosis are extremely challenging due to the lack of specific targets and biomarkers. MiRNAs play an important role in the early diagnosis and treatment of various diseases, due to their stability, small variations, and easy detection. Exosomes have become fashionable candidates to deliver miRNAs. However, the specific role of exosomes-loaded miRNAs in silicosis inflammation and fibrosis remains unclear. In the present study, the expression profile of serum exosomal miRNAs in the peripheral blood of silicosis patients was determined by transcritome sequencing. MiR-23a-3p was recognized as a protector against silicosis by bioinformatic analysis. The expression and regulatory axis of miR-23a-3p and its predicted target gene CUL3 were then confirmed. The therapeutic role of the miR-23a-3p/CUL3 axis and its alleviating effect on SiO2-induced apoptosis were verified in mice and in epithelial cells. Furthermore, the communication of exosomes carrying miR-23a-3p between macrophages and epithelial cells was demonstrated using a cell co-culture model. Our results suggest that exosomal miR-23a-3p could be prospective as a biomarker in early diagnose for SiO2-induced lung fibrosis, and provided new threads for the treatment of silicosis.
Collapse
Affiliation(s)
- Shuai Chang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Weidong Xie
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Huiyan Qu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Pengwei Ma
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China; Aksu Fourth People's Hospital, Aksu, China
| | - Siping Fei
- Liaoning Centers for Disease Control and Prevention, Shenyang, China.
| | - Fangwei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Hu J, Wang N, Jiang Y, Li Y, Qin B, Wang Z, Gao L. BMSCs promote alveolar epithelial cell autophagy to reduce pulmonary fibrosis by inhibiting core fucosylation modifications. Stem Cells 2024; 42:809-820. [PMID: 38982795 DOI: 10.1093/stmcls/sxae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat PF. This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS C57BL/6 male mice, AEC-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, Western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were used in this study. RESULTS First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were used to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were used to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.
Collapse
Affiliation(s)
- Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Nan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yina Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Biaojie Qin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| |
Collapse
|
17
|
Yang X, Xie L, Yin Y, Yang C, Xiao J, Wu H, Wang C, Tian Y, Feng H. Black carp A20 inhibits interferon signaling through de-ubiquitinating IKKβ. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109781. [PMID: 39029718 DOI: 10.1016/j.fsi.2024.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
IkappaB kinase beta (IKKβ) is a key member of IκB kinases and functions importantly in interferon (IFN) signaling. Phosphorylation and ubiquitination are involved in the activation of IKKβ. A20 is a de-ubiquitin enzyme and functions as a suppressor in inflammation signaling, which has been reported to be phosphorylated and activated by IKKβ. However, the role and relationship of IKKβ and A20 in teleost remains unclear. In this study, IKKβ (bcIKKβ) and A20 (bcA20) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Overexpressed bcIKKβ in EPC cells showed strong anti-viral ability by activating both NF-κB and IFN signaling. EPC cells stable expressing bcIKKβ presented improved anti-viral activity as well. The interaction between bcA20 and bcIKKβ was identified, and overexpression of bcA20 was able to suppress bcIKKβ-mediated activation of NF-κB and IFN signaling. Meanwhile, knock-down of A20 increased host the antiviral ability of host cells. Importantly, it has been identified that bcA20 was able to remove K27-linked ubiquitination and decrease the phosphorylation of bcIKKβ. Thus, our data conclude that bcA20 suppresses the anti-viral activity of bcIKKβ and removes its K27-linked ubiquitination, which presents a new mechanism of IKKβ regulation.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lixia Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuqi Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Can Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Chanyuan Wang
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, 410007, China
| | - Yu Tian
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, 410007, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
18
|
Xu S, Xing J, Zheng L, Su H, Zou Y, Niu Y, Di H. Azithromycin regulates Mettl3-mediated NF-κB pathway to enhance M2 polarization of RAW264.7 macrophages and attenuate LPS-triggered cytotoxicity of MLE-12 alveolar cells. Int Immunopharmacol 2024; 137:112426. [PMID: 38878491 DOI: 10.1016/j.intimp.2024.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Azithromycin (AZM) has been proposed as a potential therapeutic drug in acute pulmonary injury due to its immunomodulatory and anti-inflammatory properties. However, its therapeutic mechanism remains not fully understood. METHODS LPS was used to stimulate MLE-12 cells and RAW264.7 macrophages. Analyses of viability and apoptosis were performed by CCK-8 assay and flow cytometry, respectively. Protein analysis was performed by immunoblotting, and mRNA expression was tested by quantitative PCR. The secretion levels of TNF-α and IL-6 were detected by ELISA. MDA, GSH, ROS and Fe2+ contents were analyzed using assay kits. RESULTS Administration of AZM or depletion of methyltransferase-like 3 (Mettl3) could attenuate LPS-triggered apoptosis, inflammation and ferroptosis in MLE-12 alveolar cells, as well as enhance M2 polarization of LPS-stimulated RAW264.7 macrophages. In LPS-exposed MLE-12 and RAW264.7 cells, AZM reduced Mettl3 protein expression and inactivated the NF-κB signaling through downregulation of Mettl3. Furthermore, Mettl3 restoration abated AZM-mediated anti-apoptosis, anti-inflammation and anti-ferroptosis effects in LPS-exposed MLE-12 cells and reversed AZM-mediated M2 polarization enhancement of LPS-exposed RAW264.7 macrophages. CONCLUSION Our study indicates that AZM can promote M2 polarization of LPS-exposed RAW264.7 macrophages and attenuate LPS-triggered injury of MLE-12 alveolar cells by inactivating the Mettl3-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Shuna Xu
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Xing
- Department of Medical Affairs, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zheng
- Department of Respiratory and Critical Care Medicine, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hui Su
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunhong Zou
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yanxin Niu
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huifeng Di
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
19
|
Yang F, Cheng MH, Pan HF, Gao J. Progranulin: A promising biomarker and therapeutic target for fibrotic diseases. Acta Pharm Sin B 2024; 14:3312-3326. [PMID: 39220875 PMCID: PMC11365408 DOI: 10.1016/j.apsb.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Progranulin (PGRN), a multifunctional growth factor-like protein expressed by a variety of cell types, serves an important function in the physiologic and pathologic processes of fibrotic diseases, including wound healing and the inflammatory response. PGRN was discovered to inhibit pro-inflammation effect by competing with tumor necrosis factor-alpha (TNF-α) binding to TNF receptors. Notably, excessive tissue repair in the development of inflammation causes tissue fibrosis. Previous investigations have indicated the significance of PGRN in regulating inflammatory responses. Recently, multiple studies have shown that PGRN was linked to fibrogenesis, and was considered to monitor the formation of fibrosis in multiple organs, including liver, cardiovascular, lung and skin. This paper is a comprehensive review summarizing our current knowledge of PGRN, from its discovery to the role in fibrosis. This is followed by an in-depth look at the characteristics of PGRN, consisting of its structure, basic function and intracellular signaling. Finally, we will discuss the potential of PGRN in the diagnosis and treatment of fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
20
|
Shi X, Li Y, Chen S, Xu H, Wang X. Desflurane alleviates LPS-induced acute lung injury by modulating let-7b-5p/HOXA9 axis. Immunol Res 2024; 72:683-696. [PMID: 38676899 DOI: 10.1007/s12026-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
Acute lung injury (ALI) is characterized by acute respiratory failure with tachypnea and widespread alveolar infiltrates, badly affecting patients' health. Desflurane (Des) is effective against lung injury. However, its mechanism in ALI remains unknown. BEAS-2B cells were incubated with lipopolysaccharide (LPS) to construct an ALI cell model. Cell apoptosis was evaluated using flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to examine the levels of inflammatory cytokines. Interactions among let-7b-5p, homeobox A9 (HOXA9), and suppressor of cytokine signaling 2 (SOCS2) were verified using Dual luciferase activity, chromatin immunoprecipitation (ChIP), and RNA pull-down analysis. All experimental data of this study were derived from three repeated experiments. Des treatment improved LPS-induced cell viability, reduced inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)) levels, decreased cell apoptosis, down-regulated the pro-apoptotic proteins (Bcl-2-associated X protein (Bax) and cleaved caspase 3) expression, and up-regulated the anti-apoptotic protein B-cell-lymphoma-2 (Bcl-2) expression in LPS-induced BEAS-2B cells. Des treatment down-regulated let-7b-5p expression in LPS-induced BEAS-2B cells. Moreover, let-7b-5p inhibition improved LPS-induced cell injury. let-7b-5p overexpression weakened the protective effects of Des. Mechanically, let-7b-5p could negatively modulate HOXA9 expression. Furthermore, HOXA9 inhibited the NF-κB signaling by enhancing SOCS2 transcription. HOXA9 overexpression weakened the promotion of let-7b-5p mimics in LPS-induced cell injury. Des alleviated LPS-induced ALI via regulating let-7b-5p/ HOXA9/NF-κB axis.
Collapse
Affiliation(s)
- Xiaoyun Shi
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China
| | - Yundie Li
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China
| | - Shibiao Chen
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China
| | - Huaping Xu
- Department of Rehabilitation, Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiuhong Wang
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
21
|
Jia YJ, Xiong S, Yao M, Wei Y, He Y. HMGB1 inhibition blocks ferroptosis and oxidative stress to ameliorate sepsis-induced acute lung injury by activating the Nrf2 pathway. Kaohsiung J Med Sci 2024; 40:710-721. [PMID: 38837857 DOI: 10.1002/kjm2.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The proinflammatory properties of high-mobility group box protein 1 (HMGB1) in sepsis have been extensively studied. This study aimed to investigate the impact of HMGB1 on ferroptosis and its molecular mechanism in sepsis-induced acute lung injury (ALI). A septic mouse model was established using the cecal ligation and puncture method. Blocking HMGB1 resulted in improved survival rates, reduced lung injury, decreased levels of ferroptosis markers (reactive oxygen species, malondialdehyde, and Fe2+), and enhanced antioxidant enzyme activities (superoxide dismutase and catalase) in septic mice. In addition, knockdown of HMGB1 reduced cellular permeability, ferroptosis markers, and raised antioxidant enzyme levels in lipopolysaccharide (LPS)-stimulated MLE-12 cells. Silencing of HMGB1 led to elevations in the expressions of ferroptosis core-regulators in LPS-treated MLE-12 cells, such as solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member A2 (SLC3A2), and glutathione peroxidase 4. Furthermore, blocking HMGB1 did not alter ferroptosis, oxidative stress-related changes, and permeability in LPS-treated MLE-12 cells that were pretreated with ferrostatin-1 (a ferroptosis inhibitor). HMGB1 inhibition also led to elevated expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream targets, heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in LPS-treated MLE-12 cells and lung tissues from septic mice. The Nrf2-specific inhibitor ML385 reversed the effects of HMGB1 silencing on ferroptosis and cell permeability in LPS-treated MLE-12 cells. Our findings indicated that the inhibition of HMGB1 restrains ferroptosis and oxidative stress, thereby alleviating sepsis-induced ALI through the activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Ya-Jie Jia
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Sha Xiong
- Department of Pharmacy, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ming Yao
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yu Wei
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan He
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Xia LX, Xiao YY, Jiang WJ, Yang XY, Tao H, Mandukhail SR, Qin JF, Pan QR, Zhu YG, Zhao LX, Huang LJ, Li Z, Yu XY. Exosomes derived from induced cardiopulmonary progenitor cells alleviate acute lung injury in mice. Acta Pharmacol Sin 2024; 45:1644-1659. [PMID: 38589686 PMCID: PMC11272782 DOI: 10.1038/s41401-024-01253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.
Collapse
Affiliation(s)
- Luo-Xing Xia
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Ying Xiao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Jing Jiang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiang-Yu Yang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hua Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Safur Rehman Mandukhail
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian-Feng Qin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qian-Rong Pan
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Guang Zhu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Xin Zhao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Juan Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhan Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
23
|
He Q, Xu S, Ma X, Qian Y, Lu X, Feng W, Chen Z. SHP-1 mediates cigarette smoke extract-induced epithelial-mesenchymal transformation and inflammation in 16HBE cells. Open Med (Wars) 2024; 19:20240991. [PMID: 39091610 PMCID: PMC11292789 DOI: 10.1515/med-2024-0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/04/2024] Open
Abstract
Src-homology region 2 domain-containing phosphatase 1 (SHP-1) is considered an anti-inflammatory factor, but its role in chronic obstructive pulmonary disease (COPD) remains unknown. Herein, overexpression of SHP-1 was utilized to explore the functions of SHP-1 in COPD models established by stimulating 16HBE cells with cigarette smoke extracts (CSE) in vitro. SHP-1 was downregulated in both COPD patients and CES-treated 16HBE cells. SHP-1 overexpression reinforced cell viability and significantly prevented CSE-induced cell apoptosis in 16HBE cells. Furthermore, SHP-1 overexpression greatly reversed the CSE-induced migration, epithelial-mesenchymal transition (EMT), and pro-inflammatory factor production in 16HBE cells. In addition, CSE activated the P65 and PI3K/AKT pathways in 16HBE cells, which was also reversed by SHP-1 overexpression. Our findings indicated that SHP-1 alleviated CSE-induced EMT and inflammation in 16HBE cells, suggesting that SHP-1 regulated the development of COPD, and these functions may be linked to the inhibition of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Quan He
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, 212000, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, 650021, China
| | - Xiaomei Ma
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, 212000, China
| | - Yuanxia Qian
- Department of Pharmacy, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, 212000, China
| | - Xuzhi Lu
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, 212000, China
| | - Weiqi Feng
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, 212000, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
24
|
Zhang S, Huang R, Jing J, Wei X, Zhang Y, Wu Y, Ou G, Hu J, Wu Y, Li Y, Ying S, You Z. A phytomedicine extract exerts an anti-inflammatory response in the lungs by reducing STING-mediated type I interferon release. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155373. [PMID: 38850630 DOI: 10.1016/j.phymed.2024.155373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is an acute respiratory disease characterized by bilateral chest radiolucency and severe hypoxemia. Quzhou Fructus Aurantii ethyl acetate extract (QFAEE), which is prepared from the traditional Chinese respiratory anti-inflammatory natural herb Quzhou Fructus Arantii, has the potential to alleviate ARDS. In this work, we aimed to investigate the potential and mechanism underlying the action of QFAEE on ARDS and how QFAEE modulates the STING pathway to reduce type I interferon release to alleviate the inflammatory response. METHODS Lipopolysaccharide (LPS), a potential proinflammatory stimulant capable of causing pulmonary inflammation with edema after nasal drops, was employed to model ARDS in vitro and in vivo. Under QFAEE intervention, the mechanism of action of QFAEE to alleviate ARDS was explored in this study. TREX1-/- mice were sued as a research model for the activation of the congenital STING signaling pathway. The effect of QFAEE on TREX1-/- mice could explain the STING-targeted effect of QFAEE on alleviating the inflammatory response. Our explorations covered several techniques, Western blot, histological assays, immunofluorescence staining, transcriptomic assays and qRT-PCR to determine the potential mechanism of action of QFAEE in antagonizing the inflammatory response in the lungs, as well as the mechanism of action of QFAEE in targeting the STING signaling pathway to regulate the release of type I interferon. RESULTS QFAEE effectively alleviates ARDS symptoms in LPS-induced ARDS. We revealed that the mechanism underlying LPS-induced ARDS is the STING-TBK1 signaling pathway and further elucidated the molecular mechanism of QFAEE in the prevention and treatment of ARDS. QFAEE reduced the release of type I interferons by inhibiting the STING-TBK1-IRF3 axis, thus alleviating LPS-induced pneumonia and lung cell death in mice. Another key finding is that activation of the STING pathway by activators or targeted knockdown of the TREX1 gene can also induce ARDS. As expected, QFAEE was found to be an effective protective agent in alleviating ARDS and the antagonistic effect of QFAEE on ARDS was achieved by inhibiting the STING signaling pathway. CONCLUSIONS The main anti-inflammatory effect of QFAEE was achieved by inhibiting the STING signaling pathway and reducing the release of type I interferons. According to this mechanism of effect, QFAEE can effectively alleviate ARDS and can be considered a potential therapeutic agent. In addition, the STING pathway plays an essential role in the development and progression of ARDS, and it is a potential target for ARDS therapy.
Collapse
Affiliation(s)
- Sheng Zhang
- Center for Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Rongrong Huang
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China; Key discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Junsong Jing
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China; Key discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Xueping Wei
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China; Key discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Yu Zhang
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China; Key discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Youping Wu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Guoteng Ou
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China
| | - Jingjin Hu
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China; Key discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Yueguo Wu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310013, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310013, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Zhenqiang You
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou 310013, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; Key discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China.
| |
Collapse
|
25
|
Satheeshan G, Si AK, Rutta J, Venkatesh T. Exosome theranostics: Comparative analysis of P body and exosome proteins and their mutations for clinical applications. Funct Integr Genomics 2024; 24:124. [PMID: 38995459 DOI: 10.1007/s10142-024-01404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Exosomes are lipid-bilayered vesicles, originating from early endosomes that capture cellular proteins and genetic materials to form multi-vesicular bodies. These exosomes are secreted into extracellular fluids such as cerebrospinal fluid, blood, urine, and cell culture supernatants. They play a key role in intercellular communication by carrying active molecules like lipids, cytokines, growth factors, metabolites, proteins, and RNAs. Recently, the potential of exosomal delivery for therapeutic purposes has been explored due to their low immunogenicity, nano-scale size, and ability to cross cellular barriers. This review comprehensively examines the biogenesis of exosomes, their isolation techniques, and their diverse applications in theranostics. We delve into the mechanisms and methods for loading exosomes with mRNA, miRNA, proteins, and drugs, highlighting their transformative role in delivering therapeutic payloads. Additionally, the utility of exosomes in stem cell therapy is discussed, showcasing their potential in regenerative medicine. Insights into exosome cargo using pre- or post-loading techniques are critical for exosome theranostics. We review exosome databases such as ExoCarta, Expedia, and ExoBCD, which document exosome cargo. From these databases, we identified 25 proteins common to both exosomes and P-bodies, known for mutations in the COSMIC database. Exosome databases do not integrate with mutation analysis programs; hence, we performed mutation analysis using additional databases. Accounting for the mutation status of parental cells and exosomal cargo is crucial in exosome theranostics. This review provides a comprehensive report on exosome databases, proteins common to exosomes and P-bodies, and their mutation analysis, along with the latest studies on exosome-engineered theranostics.
Collapse
Affiliation(s)
- Greeshma Satheeshan
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India
| | - Ayan Kumar Si
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India
| | - Joel Rutta
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India
| | - Thejaswini Venkatesh
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India.
| |
Collapse
|
26
|
Zaliunas BR, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Tamasauskas A, Liutkeviciene R. Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas. Cancers (Basel) 2024; 16:2509. [PMID: 39061149 PMCID: PMC11274473 DOI: 10.3390/cancers16142509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
AIM The aim of this study was to determine associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) gene polymorphisms and TRAF2, TAB2, IKBKB protein levels with clinical and morphological features of pituitary adenomas (PAs). METHODS This case-control study included 459 individuals divided into two groups: a control group (n = 320) and a group of individuals with PAs (n = 139). DNA from peripheral blood leukocytes was isolated using salt precipitation and column method. Real-time PCR was used for TRAF2 (rs867186), TAB2 (rs237025), and IKBKB (rs13278372) SNP genotyping, and TRAF2, TAB2, IKBKB protein concentration measurements were performed by immunoenzymatic analysis tests using a commercial ELISA kit according to the manufacturer's recommendations. The labeling index Ki-67 was determined by immunohistochemical analysis using a monoclonal antibody (clone SP6; Spring Bioscience Corporation). Statistical data analysis was performed using the programs "IMB SPSS Statistics 29.0". RESULTS We found significant differences in TRAF2 (rs867186) genotypes (AA, AG, GG) between groups: 79.1%, 17.3%, 3.6% vs. 55.3%, 20.9%, 23.8% (p < 0.001). The G allele was less frequent in the PA group than in controls (12.2% vs. 34.2%, p < 0.001). The AG and GG genotypes reduced PA occurrence by 1.74-fold and 9.43-fold, respectively, compared to AA (p < 0.001). In the dominant model, GG and AG genotypes reduced PA odds by 3.07-fold, while in the recessive model, the GG genotype reduced PA odds by 8.33-fold (p < 0.001). Each G allele decreased PA odds by 2.49-fold in the additive model (p < 0.001). Microadenomas had significant genotype differences compared to controls: 81.3%, 18.8%, 0.0% vs. 55.3%, 20.9%, 23.8% (p < 0.001), with the G allele being less frequent (9.4% vs. 34.2%, p < 0.001). In macroadenomas, genotype differences were 78%, 16.5%, 5.5% vs. 55.3%, 20.9%, 23.8% (p < 0.001), and the G allele was less common (13.7% vs. 34.2%, p < 0.001). The dominant model showed that GG and AG genotypes reduced microadenoma odds by 3.5-fold (p = 0.001), and each G allele reduced microadenoma odds by 3.1-fold (p < 0.001). For macroadenomas, the GG genotype reduced odds by 6.1-fold in the codominant model (p < 0.001) and by 2.9-fold in GG and AG genotypes combined compared to AA (p < 0.001). The recessive model indicated the GG genotype reduced macroadenoma odds by 5.3-fold (p < 0.001), and each G allele reduced odds by 2.2-fold in the additive model (p < 0.001). CONCLUSIONS The TRAF2 (rs867186) G allele and GG genotype are significantly associated with reduced odds of pituitary adenomas, including both microadenomas and macroadenomas, compared to the AA genotype. These findings suggest a protective role of the G allele against the occurrence of these tumors.
Collapse
Affiliation(s)
- Balys Remigijus Zaliunas
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
| | - Greta Gedvilaite-Vaicechauskiene
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Arimantas Tamasauskas
- Department of Neurosurgery, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| |
Collapse
|
27
|
Sholihah IA, Barlian A. Anti-Inflammatory Potency of Human Wharton's Jelly Mesenchymal Stem Cell-Derived Exosomes on L2 Cell Line Induced by Lipopolysaccharides. Adv Pharm Bull 2024; 14:434-444. [PMID: 39206409 PMCID: PMC11347737 DOI: 10.34172/apb.2024.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose At present, therapeutic interventions to treat acute lung injury (ALI) remain largely limited to lung-protective strategies, as no real molecular-driven therapeutic intervention has yet become available. The administration of bacterial lipopolysaccharides (LPS) is known as an inflammatory activator, representing a frequently used model of ALI. This study investigated the biological function of normoxic (21% O2 ) vs. hypoxic conditions (5% O2 ) obtained from human Wharton's Jelly mesenchymal stem cells (hWJ-MSCs) and discovered that exosomes have the ability to suppress inflammatory responses by specifically targeting TNF-α, IL-1β, IL-6. and identify the toll-like receptor 4 (TLR4) NF-κβ gene expression. Methods Primer culture hWJ-MSCs characterization with trilineage differentiation and CD markers was conducted. To obtain exosomes, hWJ-MSCs were stimulated with two different oxygen levels: 21% (nor-exo) and 5% (hypo-exo). Then, the L2 cell line was induced with LPS 1 µg/mL. Inflamed-L2 was treated with nor-exo, hypo-exo, and dexamethasone as a positive control. The RNA extracted from treated L2 cells was utilized to examine the gene expression profiles of TLR4 and NF-κβ, and the medium was used to measure tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6 levels using ELISA. Lastly, proteomic analysis of the exosome using LC/MS-MS was conducted. Results Nor-exo and hypo-exo can be characterized and can produce higher yields exosomes under hypoxic conditions. The expression of TLR4 and NF-κβ genes and the proinflammatory levels such as IL-6, IL-1β, and TNF-α levels in nor-exo and hypo-exo treatments decreased. Conclusion Nor-exo and hypo-exo derived from hWJ-MSCs were proven to have anti-inflammatory activities.
Collapse
Affiliation(s)
- Ika Adhani Sholihah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No.10, Bandung 40132, Indonesia
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No.10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung, West Java 40132, Indonesia
| |
Collapse
|
28
|
Guo B, Liu W, Ji X, Xi B, Meng X, Xie W, Sun Y, Zhang M, Liu P, Zhang W, Yan X, Chen B. CSF3 aggravates acute exacerbation of pulmonary fibrosis by disrupting alveolar epithelial barrier integrity. Int Immunopharmacol 2024; 135:112322. [PMID: 38788452 DOI: 10.1016/j.intimp.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.
Collapse
Affiliation(s)
- Bingnan Guo
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenwen Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xuan Ji
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Respiratory Medicine, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, China
| | - Bin Xi
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiao Meng
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wanwan Xie
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yitian Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Maowei Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Pingli Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenhui Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xianliang Yan
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Emergency Medicine, Suining People's Hospital, Xuzhou 221225, Jiangsu, China.
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
29
|
Wang G, Ma X, Huang W, Wang S, Lou A, Wang J, Tu Y, Cui W, Zhou W, Zhang W, Li Y, Geng S, Meng Y, Li X. Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury. J Nanobiotechnology 2024; 22:362. [PMID: 38910259 PMCID: PMC11194988 DOI: 10.1186/s12951-024-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaoxin Ma
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangmei Zhou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
30
|
Gu J, Chen C, He P, Du Y, Zhu B. Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy. Biomolecules 2024; 14:683. [PMID: 38927085 PMCID: PMC11201890 DOI: 10.3390/biom14060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation. These pathways play important roles in immune regulation and inflammatory responses. In addition, USP5 regulates the activity and function of immunomodulatory signaling pathways via the deubiquitination of key proteins, thereby affecting the activity of immune cells and the regulation of immune responses. In the present review, the structure and function of USP5, its role in immune regulation, and the mechanism by which USP5 affects the development of diseases by regulating immune signaling pathways are comprehensively overviewed. In addition, we also introduce the latest research progress of targeting USP5 in the treatment of related diseases, calling for an interdisciplinary approach to explore the therapeutic potential of targeting USP5 in immune regulation.
Collapse
Affiliation(s)
- Jinyi Gu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
- Clinical Laboratory, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Pu He
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Bingdong Zhu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| |
Collapse
|
31
|
Liang J, Dai W, Xue S, Wu F, Cui E, Pan R. Recent progress in mesenchymal stem cell-based therapy for acute lung injury. Cell Tissue Bank 2024; 25:677-684. [PMID: 38466563 DOI: 10.1007/s10561-024-10129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases in critically ill patients. Although pathophysiology of ALI/ARDS has been investigated in many studies, effective therapeutic strategies are still limited. Mesenchymal stem cell (MSC)-based therapy is emerging as a promising therapeutic intervention for patients with ALI. During the last two decades, researchers have focused on the efficacy and mechanism of MSC application in ALI animal models. MSC derived from variant resources exhibited therapeutic effects in preclinical studies of ALI with different mechanisms. Based on this, clinical studies on MSC treatment in ALI/ARDS has been tried recently, especially in COVID-19 caused lung injury. Emerging clinical trials of MSCs in treating COVID-19-related conditions have been registered in past two years. The advantages and potential of MSCs in the defense against COVID-19-related ALI or ARDS have been confirmed. This review provides a brief overview of recent research progress in MSC-based therapies in preclinical study and clinical trials in ALI treatment, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Jinfeng Liang
- Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Weiyou Dai
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihang Xue
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, China
| | - Feifei Wu
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No.181 Wuchang Road, Hangzhou, 311122, Zhejiang, People's Republic of China
| | - Enhai Cui
- Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, 313000, People's Republic of China.
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No.181 Wuchang Road, Hangzhou, 311122, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
33
|
Lin Z, Bao R, Niu Y, Kong X. KLF5-mediated pyroptosis of airway epithelial cells leads to airway inflammation in asthmatic mice through the miR-182-5p/TLR4 axis. Mol Immunol 2024; 170:9-18. [PMID: 38593669 DOI: 10.1016/j.molimm.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Asthma is viewed as an airway disease and an inflammatory condition. This study aims to reveal the role of Kruppel-like factor 5 (KLF5)-mediated pyroptosis of airway epithelial cells in airway inflammation in asthma. The asthmatic mouse model was established. The mice were infected with the lentivirus containing sh-KLF5, antagomiR-182-5p, and pc-Toll-like receptor 4 (TLR4). Airway hyperresponsiveness was measured, and the cells in bronchoalveolar lavage fluid (BALF) were sorted and counted. The expression levels of interleukin (IL)-4/IL-13/IL-6/IL-18/IL-1β/NOD-like receptor family pyrin domain containing 3 (NLRP3)/N-gasdermin D (GSDMD-N)/cleaved caspase-1 were detected. The pathological changes in lung tissue were observed. The enrichment of KLF5 in the miR-182-5p promoter region was measured. The binding relationship among KLF5, miR-182-5p, and TLR4 were analyzed. KLF5 was highly expressed in asthmatic mice. Silencing KLF5 improved airway resistance and lung dynamic compliance, reduced the cells in BALF and the expression of IL-4/IL-13/IL-6/NLRP3/GSDMD-N/cleaved caspase-1/IL-18/IL-1β, and alleviated the pathological changes. Mechanistically, KLF5 bonded to the miR-182-5p promoter to inhibit miR-182-5p expression, and miR-182-5p inhibited TLR4. Silencing miR-182-5p or TLR4 overexpression reversed the improvement of silencing KLF5 on airway inflammation and pyroptosis in asthmatic mice. In conclusion, KLF5 inhibited miR-182-5p to promote TLR4 expression, thus aggravating pyroptosis and airway inflammation in asthmatic mice.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Rong Bao
- Department of Clinical Laboratory, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yang Niu
- Department of Respiratory, Shanxi Province Bronchial Asthma Hospital, China
| | - Xiaomei Kong
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory, The First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
34
|
Mi Y, Liang Y, Liu Y, Bai Z, Li N, Tan S, Hou Y. Integrated network pharmacology and experimental validation-based approach to reveal the underlying mechanisms and key material basis of Jinhua Qinggan granules against acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117920. [PMID: 38373663 DOI: 10.1016/j.jep.2024.117920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinhua Qinggan granules (JHQG), the traditional Chinese formula come into the market in 2016, has been proved clinically effective against coronavirus disease. Acute lung injury (ALI) is a major complication of respiratory infection such as coronavirus and influenza virus, with a high clinical fatality rate. Macrophage activation-induced inflammatory response plays a crucial role in the pathogenesis of ALI. However, the participation of inflammatory response in the efficacy of JHQG and its material basis against ALI is still unknown. AIM OF THE STUDY The research aims to investigate the inflammatory response-involved efficacy of JHQG on ALI, explore the "ingredient-target-pathway" mechanisms, and searching for key material basis of JHQG by integrated network pharmacology and experimental validation-based approach. MATERIALS AND METHODS Lipopolysaccharide (LPS)-induced ALI mice was established to assess the protective impact of JHQG. Network pharmacology was utilized to identify potential targets of JHQG and investigate its action mechanisms related to inflammatory response in treating ALI. The therapeutic effect and mechanism of the primary active ingredient in JHQG was verified through high performance liquid chromatography (HPLC) and a combination of wet experiments. RESULTS JHQG remarkably alleviated lung damage in mice model via suppressing macrophage activation, and inhibiting pro-inflammatory mediator level, p-ERK and p-STAT3 expression, TLR4/NF-κB activation. Network pharmacology combined with HPLC found luteolin is the main effective component of JHQG, and it could interact with TLR4/MD2 complex, further exerting the anti-inflammatory property and the protective role against ALI. CONCLUSIONS In summary, our finding clarified the underlying mechanisms and material basis of JHQG therapy for ALI by integrated network pharmacology and experimental validation-based strategy.
Collapse
Affiliation(s)
- Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yusheng Liang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Zisong Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China; School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaowen Tan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
35
|
Ahmed SH, AlMoslemany MA, Witwer KW, Tehamy AG, El-Badri N. Stem Cell Extracellular Vesicles as Anti-SARS-CoV-2 Immunomodulatory Therapeutics: A Systematic Review of Clinical and Preclinical Studies. Stem Cell Rev Rep 2024; 20:900-930. [PMID: 38393666 PMCID: PMC11087360 DOI: 10.1007/s12015-023-10675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND COVID-19 rapidly escalated into a worldwide pandemic with elevated infectivity even from asymptomatic patients. Complications can lead to severe pneumonia and acute respiratory distress syndrome (ARDS), which are the main contributors to death. Because of their regenerative and immunomodulatory capacities, stem cells and their derived extracellular vesicles (EVs) are perceived as promising therapies against severe pulmonary conditions, including those associated with COVID-19. Herein, we evaluate the safety and efficacy of stem cell EVs in treating COVID-19 and complicating pneumonia, acute lung injury, and ARDS. We also cover relevant preclinical studies to recapitulate the current progress in stem cell EV-based therapy. METHODS Using PubMed, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science, we searched for all English-language published studies (2000-2023) that used stem cell EVs as a therapy for COVID-19, ARDS, or pneumonia. The risk of bias (ROB) was assessed for all studies. RESULTS Forty-eight studies met our inclusion criteria. Various-sized EVs derived from different types of stem cells were reported as a potentially safe and effective therapy to attenuate the cytokine storm induced by COVID-19. EVs alleviated inflammation and regenerated the alveolar epithelium by decreasing apoptosis, proinflammatory cytokines, neutrophil infiltration, and M2 macrophage polarization. They also prevented fibrin production and promoted the production of anti-inflammatory cytokines and endothelial cell junction proteins. CONCLUSION Similar to their parental cells, stem cell EVs mediate lung tissue regeneration by targeting multiple pathways and thus hold promise in promoting the recovery of COVID-19 patients and improving the survival rate of severely affected patients.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Atef AlMoslemany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmed Gamal Tehamy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt.
| |
Collapse
|
36
|
Kulus M, Farzaneh M, Bryja A, Zehtabi M, Azizidoost S, Abouali Gale Dari M, Golcar-Narenji A, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Dzięgiel P, Zabel M, Mozdziak P, Bukowska D, Kempisty B, Antosik P. Phenotypic Transitions the Processes Involved in Regulation of Growth and Proangiogenic Properties of Stem Cells, Cancer Stem Cells and Circulating Tumor Cells. Stem Cell Rev Rep 2024; 20:967-979. [PMID: 38372877 PMCID: PMC11087301 DOI: 10.1007/s12015-024-10691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Golcar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mikołaj Chwarzyński
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, USA
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, USA.
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
37
|
Yang J, Yuan Y, Wang L, Deng G, Huang J, Liu Y, Gu W. Suppression of long noncoding RNA SNHG6 alleviates cigarette smoke-induced lung inflammation by modulating NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:2634-2641. [PMID: 38205902 DOI: 10.1002/tox.24132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a widespread inflammatory disease with a high mortality rate. Long noncoding RNAs play important roles in pulmonary diseases and are potential targets for inflammation intervention. METHODS The expression of small nucleolar RNA host gene 6 (SNHG6) in mouse lung epithelial cell line MLE12 with or without cigarette smoke extract (CSE) treatment was first detected using quantitative reverse-transcription PCR. ELISA was used to evaluate the release of inflammatory cytokines (TNF-α, IL-1β, and IL-6). The binding site of miR-182-5p with SNHG6 was predicted by using miRanda, which was verified by double luciferase reporter assay. RESULTS Here, we revealed that SNHG6 was upregulated in CS-exposed MLE12 alveolar epithelial cells and lungs from COPD-model mice. SNHG6 silencing weakened CS-induced inflammation in MLE12 cells and mouse lungs. Mechanistic investigations revealed that SNHG6 could upregulate IκBα kinase through sponging the microRNA miR-182-5p, followed by activated NF-κB signaling. The suppressive effects of SNHG6 silencing on CS-induced inflammation were blocked by an miR-182-5p inhibitor. CONCLUSION Overall, our findings suggested that SNHG6 regulates CS-induced inflammation in COPD by activating NF-κB signaling, thereby offering a novel potential target for COPD treatment.
Collapse
Affiliation(s)
- Junxia Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yaping Yuan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Linxuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Guoping Deng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Jiaru Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Zhu M, Tang X, Xu J, Gong Y. Identification of HK3 as a promising immunomodulatory and prognostic target in sepsis-induced acute lung injury. Biochem Biophys Res Commun 2024; 706:149759. [PMID: 38484574 DOI: 10.1016/j.bbrc.2024.149759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Sepsis is a life-threatening global disease with a significant impact on human health. Acute lung injury (ALI) has been identified as one of the primary causes of mortality in septic patients. This study aimed to identify candidate genes involved in sepsis-induced ALI through a comprehensive approach combining bioinformatics analysis and experimental validation. METHODS The datasets GSE65682 and GSE32707 obtained from the Gene Expression Omnibus database were merged to screen for sepsis-induced ALI related differentially expressed genes (DEGs). Functional enrichment and immune infiltration analyses were conducted on DGEs, with the construction of protein-protein interaction (PPI) networks to identify hub genes. In vitro and in vivo models of sepsis-induced ALI were used to study the expression and function of hexokinase 3 (HK3) using various techniques including Western blot, real-time PCR, immunohistochemistry, immunofluorescence, Cell Counting Kit-8, Enzyme-linked immunosorbent assay, and flow cytometry. RESULTS The results of bioinformatics analysis have identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic significance for sepsis-induced ALI. The HK3 has profound effects on sepsis-induced ALI and exhibits a correlation with immune regulation. Experimental results showed increased HK3 expression in lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro studies demonstrated upregulation of HK3 in lipopolysaccharide (LPS)-stimulated lung epithelial cells, with cytoplasmic localization around the nucleus. Interestingly, following the knockdown of HK3 expression, lung epithelial cells exhibited a significant decrease in proliferation activity and glycolytic flux, accompanied by an increase in cellular inflammatory response, oxidative stress, and cell apoptosis. CONCLUSIONS It was observed for the first time that HK3 plays a crucial role in the progression of sepsis-induced ALI and may be a valuable target for immunomodulation and therapy.Bioinformatics analysis identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic relevance in sepsis-induced ALI. Experimental findings showed increased HK3 expression in the lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro experiments demonstrated increased HK3 levels in lung epithelial cells stimulated with LPS, with cytoplasmic localization near the nucleus. Knockdown of HK3 expression resulted in decreased proliferation activity and glycolytic flux, increased inflammatory response, oxidative stress, and cell apoptosis in lung epithelial cells.
Collapse
Affiliation(s)
- Mingyu Zhu
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaokai Tang
- Department of Orthopaedic, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jingjing Xu
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yuanqi Gong
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
39
|
Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from research to clinic. AMERICAN JOURNAL OF STEM CELLS 2024; 13:37-58. [PMID: 38765802 PMCID: PMC11101986 DOI: 10.62347/jawm2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 05/22/2024]
Abstract
Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Dailin Yuan
- Zhejiang UniversityHangzhou 310058, Zhejiang, PR China
| | - Yufei Bao
- School of Biomedical Engineering, University of SydneyDarlington, NSW 2008, Australia
| | - Ahmed El-Hashash
- Texas A&M University, 3258 TAMU, College StationTX 77843-3258, USA
| |
Collapse
|
40
|
Chang M, Gao H, Li Y, Ding C, Lu Z, Li D, Huang F, Chen J, Sun F. Identification and analysis of MSC-Exo-derived LncRNAs related to the regulation of EMT in hypospadias. BMC Med Genomics 2024; 17:87. [PMID: 38627703 PMCID: PMC11020336 DOI: 10.1186/s12920-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study aims to screen the differentially expressed long non-coding RNAs (DELncRNAs) related to the regulation of epithelial-mesenchymal transition (EMT) in hypospadias in mesenchymal stem cell-derived exosomes (MSC-Exons) and explore the potential mechanism of these lncRNAs for the EMT in hypospadias. METHODS In this study, the microarray data related to MSC-Exos and hypospadias were downloaded from Gene Expression Omnibus (GEO). Besides, the lncRNAs highly expressed in MSC-Exos and the differentially expressed mRNAs and lncRNAs in children with hypospadias were screened, respectively. In addition, the lncRNAs enriched in MSC-Exos and differentially expressed lncRNAs in hypospadias were intersected to obtain the final DElncRNAs. Moreover, the co-expression interaction pairs of differentially expressed lncRNAs and mRNAs were analyzed to construct a Competing Endogenous RNA (ceRNA) network. Finally, the candidate lncRNAs in exosomes were subjected to in vitro cell function verification. RESULTS In this study, a total of 4 lncRNAs were obtained from the microarray data analysis. Further, a ceRNA regulatory network of MSC-Exo-derived lncRNAs related to the regulation of EMT in hypospadias was constructed, including 4 lncRNAs, 2 mRNAs, and 6 miRNAs. The cell function verification results indicated that the exosomes secreted by MSCs may transport HLA complex group 18 (HCG18) into target cells, which promoted the proliferation, migration, and EMT of these cells. CONCLUSION MSC-Exo-derived lncRNA HCG18 can enter target cells, and it may be involved in the regulation of EMT in hypospadias through the ceRNA network.
Collapse
Affiliation(s)
- Mengmeng Chang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hongjie Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yingying Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Ding
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiyi Lu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ding Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Huang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jiawei Chen
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Fengyin Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
41
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
42
|
Pan D, Di X, Yan B, Su X. Advances in the Study of Non-Coding RNA in the Signaling Pathway of Pulmonary Fibrosis. Int J Gen Med 2024; 17:1419-1431. [PMID: 38617054 PMCID: PMC11016256 DOI: 10.2147/ijgm.s455707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Pulmonary fibrosis is a group of chronic, progressive, and irreversible interstitial lung diseases, which are common to most end-stage lung diseases and are one of the most difficult diseases of the respiratory system. In recent years, due to the frequent occurrence of air pollution and smog, the incidence of pulmonary fibrosis in China has increased year by year, the morbidity and mortality rates of pulmonary fibrosis have gradually increased and the age of the disease tends to be younger. However, the pathogenesis of pulmonary fibrosis is not yet fully understood and is needed to further explore new drug targets. Studies have shown that non-coding RNAs play an important role in regulating the process of pulmonary fibrosis, non-coding RNAs and their specifically expressed can promote or inhibit the process. Here, we review the role of some in the regulation of pulmonary fibrosis signaling pathways and provide new ideas for the clinical diagnosis and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Dengyun Pan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaomin Su
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
43
|
Zhen J, Bai J, Liu J, Men H, Yu H. Ginsenoside RG1-induced mesenchymal stem cells alleviate diabetic cardiomyopathy through secreting exosomal circNOTCH1 to promote macrophage M2 polarization. Phytother Res 2024; 38:1745-1760. [PMID: 37740455 DOI: 10.1002/ptr.8018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac complication resulting from long-term uncontrolled diabetes, characterized by myocardial fibrosis and abnormal cardiac function. This study aimed at investigating the potential of ginsenoside RG1 (RG1)-induced mesenchymal stem cells (MSCs) in alleviating DCM. A DCM mouse model was constructed, and the effects of RG1-induced MSCs on myocardial function and fibrosis in diabetic mice were evaluated. RG1-induced MSCs were cocultured with high glucose-treated fibroblasts for subsequent functional and mechanism assays. It was discovered that RG1-induced MSCs secrete exosomes that induce macrophage M2 polarization. Mechanistically, exosomes derived from RG1-induced MSCs transferred circNOTCH1 into macrophages, activating the NOTCH signaling pathway. A competing endogenous RNA (ceRNA) regulatory axis consisting of circNOTCH1, miR-495-3p, and NOTCH1 was found to contribute to DCM alleviation.. This study unveiled that exosomal circNOTCH1 secreted by RG1-induced MSCs can alleviate DCM by activating the NOTCH signaling pathway to induce macrophage M2 polarization. This finding may contribute to the development of new therapeutic approaches for DCM.
Collapse
Affiliation(s)
- Juan Zhen
- Department of Cadre Ward, the First Hospital of Jilin University, Changchun, China
| | - Jinping Bai
- Chronic Diseases Clinic, Jilin Province Faw General Hospital, Changchun, China
| | - Jia Liu
- Department of Cadre Ward, the First Hospital of Jilin University, Changchun, China
| | - Hongbo Men
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China
| | - Haitao Yu
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Han X, Ding W, Qu G, Li Y, Wang P, Yu J, Liu M, Chen X, Xie S, Feng J, Xu S. Danshensu methyl ester attenuated LPS-induced acute lung injury by inhibiting TLR4/NF-κB pathway. Respir Physiol Neurobiol 2024; 322:104219. [PMID: 38242336 DOI: 10.1016/j.resp.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Acute Lung Injury (ALI) manifests as an acute exacerbation of pulmonary inflammation with high mortality. The potential application of Danshensu methyl ester (DME, synthesized in our lab) in ameliorating ALI has not been elucidated. Our results demonstrated that DME led to a remarkable reduction in lung injury. DME promoted a marked increase in antioxidant enzymes, like superoxide dismutase (SOD), and glutathione (GSH), accompanied by a substantial decrease in reactive oxygen species (ROS), myeloperoxidase (MPO), and malondialdehyde (MDA). Moreover, DME decreased the production of IL-1β, TNF-α and IL-6, in vitro and in vivo. TLR4 and MyD88 expression is reduced in the DME-treated cells or tissues, which further leading to a decrease of p-p65 and p-IκBα. Meanwhile, DME effectively facilitated an elevation in cytoplasmic p65 expression. In summary, DME could ameliorate ALI by its antioxidant functionality and anti-inflammation effects through TLR4/NF-κB, which implied that DME may be a viable medicine for lung injury.
Collapse
Affiliation(s)
- Xuejia Han
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, PR China; Department of Laboratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Wensi Ding
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, PR China; Department of Laboratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Guiwu Qu
- School of Gerontology, Binzhou Medical University, Yantai, PR China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, PR China
| | - Pingyu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, PR China
| | - Jiahui Yu
- Binzhou Medical University, Yantai, PR China
| | - Mingyue Liu
- Binzhou Medical University, Yantai, PR China
| | - Xiulan Chen
- Binzhou Medical University, Yantai, PR China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, PR China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, Shandong, PR China.
| | - Jiankai Feng
- Department of Laboratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China.
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
45
|
Szűcs D, Monostori T, Miklós V, Páhi ZG, Póliska S, Kemény L, Veréb Z. Licensing effects of inflammatory factors and TLR ligands on the regenerative capacity of adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2024; 12:1367242. [PMID: 38606318 PMCID: PMC11007080 DOI: 10.3389/fcell.2024.1367242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Adipose tissue-derived mesenchymal stem cells are promising contributors to regenerative medicine, exhibiting the ability to regenerate tissues and modulate the immune system, which is particularly beneficial for addressing chronic inflammatory ulcers and wounds. Despite their inherent capabilities, research suggests that pretreatment amplifies therapeutic effectiveness. Methods: Our experimental design exposed adipose-derived mesenchymal stem cells to six inflammatory factors for 24 h. We subsequently evaluated gene expression and proteome profile alterations and observed the wound closure rate post-treatment. Results: Specific pretreatments, such as IL-1β, notably demonstrated an accelerated wound-healing process. Analysis of gene and protein expression profiles revealed alterations in pathways associated with tissue regeneration. Discussion: This suggests that licensed cells exhibit potentially higher therapeutic efficiency than untreated cells, shedding light on optimizing regenerative strategies using adipose tissue-derived stem cells.
Collapse
Affiliation(s)
- Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | | | - Zoltán G. Páhi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Biobank, University of Szeged, Szeged, Hungary
| |
Collapse
|
46
|
Yang Y, Wang X, Zhang J. Pirfenidone and nintedanib attenuate pulmonary fibrosis in mice by inhibiting the expression of JAK2. J Thorac Dis 2024; 16:1128-1140. [PMID: 38505034 PMCID: PMC10944717 DOI: 10.21037/jtd-23-1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/29/2023] [Indexed: 03/21/2024]
Abstract
Background Pirfenidone and nintedanib were approved by the Food and Drug Administration (FDA) for the treatment of idiopathic pulmonary fibrosis (IPF). These two drugs can slow the progression of the disease, but the specific mechanisms are not fully understood. In the current study, bleomycin (BLM) induced pulmonary fibrosis in mice was accompanied by high p-JAK2 expression in lung tissue, mainly in the nucleus. The expression of p-JAK2 significantly decreased after intragastric administration of pirfenidone and nintedanib. p-JAK2 is reportedly expressed mainly in the cytoplasm and exerts its effect by activating downstream p-STAT3 in the nucleus. Methods In vivo experiments, pulmonary fibrosis was induced in mice with BLM and then treated with pirfenidone and nintedanib. The levels of transforming growth factor-β (TGF-β1), SP-A, SP-D and KL-6 in serum were measured by enzyme-linked immunosorbent assay (ELISA). Pathological staining was performed to assess lung fibrosis in mice, Western blot was performed to detect the expression levels of relevant proteins, and immunofluorescence was performed to observe the fluorescence expression of p-JAK2. In cellular experiments, MLE12 was stimulated with TGF-β1 and intervened with TGF-β1 receptor inhibitor and si-JAK2, pirfenidone and nintedanib, respectively, and the related protein expression levels were detected by Western blot. Results In both in vivo and in vitro experiments, pirfenidone and nintedanib were found to attenuate the expression of lung fibrosis markers by inhibiting the expression of JAK2, which may reduce the entry of p-JAK2 into the nucleus by downregulating JAK2 phosphorylation through inhibition of the TGF-β receptor. In contrast, inhibition of JAK2 expression greatly reduced the expression of TGF-β receptor and α-smooth muscles actin (a myofibroblast activation marker). Conclusions In both in vivo and in vitro experiments, the present study demonstrated that TGF-β1 promotes JAK2 phosphorylation through a non-classical pathway, and conversely, inhibition of JAK2 expression affects the TGF-β1 signalling pathway. Therefore, we speculate that TGF-β1 and JAK2 signaling pathways interact with each other and participate in fibrosis.
Collapse
Affiliation(s)
- Yan Yang
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
| | - Xinmeng Wang
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
| | - Jie Zhang
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
47
|
Hu Z, Dai J, Xu T, Chen H, Shen G, Zhou J, Ma H, Wang Y, Jin L. FGF18 alleviates sepsis-induced acute lung injury by inhibiting the NF-κB pathway. Respir Res 2024; 25:108. [PMID: 38419044 PMCID: PMC10902988 DOI: 10.1186/s12931-024-02733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate, and there is an urgent need for more effective therapies. Fibroblast growth factor 18 (FGF18) has potent anti-inflammatory properties and therefore has become a focus of research for the treatment of lung injury. However, the precise role of FGF18 in the pathological process of ALI and the underlying mechanisms have not been fully elucidated. METHODS A mouse model of ALI and human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS) was established in vivo and in vitro. AAV-FGF18 and FGF18 proteins were used in C57BL/6J mice and HUVEC, respectively. Vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and p65 protein levels were determined by western blotting or immunofluorescent staining. Afterward, related inhibitors were used to explore the potential mechanism by which FGF18 relieves inflammation. RESULTS In this study, we found that FGF18 was significantly upregulated in LPS-induced ALI mouse lung tissues and LPS-stimulated HUVECs. Furthermore, our studies demonstrated that overexpressing FGF18 in the lung or HUVEC could significantly alleviate LPS-induced lung injury and inhibit vascular leakage. CONCLUSIONS Mechanically, FGF18 treatment dramatically inhibited the NF-κB signaling pathway both in vivo and in vitro. In conclusion, these results indicate that FGF18 attenuates lung injury, at least partially, via the NF-κB signaling pathway and therefore may be a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jindan Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianpeng Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guoxiu Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongfang Ma
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Litai Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
48
|
Gao ST, Xin X, Wang ZY, Hu YY, Feng Q. USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Mol Cell Probes 2024; 73:101944. [PMID: 38049041 DOI: 10.1016/j.mcp.2023.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
49
|
Zhang J, Lin R, Li Y, Wang J, Ding H, Fang P, Huang Y, Shi J, Gao J, Zhang T. A large-scale production of mesenchymal stem cells and their exosomes for an efficient treatment against lung inflammation. Biotechnol J 2024; 19:e2300174. [PMID: 38403399 DOI: 10.1002/biot.202300174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
Mesenchymal stem cells (MSCs) and their produced exosomes have demonstrated inherent capabilities of inflammation-guided targeting and inflammatory modulation, inspiring their potential applications as biologic agents for inflammatory treatments. However, the clinical applications of stem cell therapies are currently restricted by several challenges, and one of them is the mass production of stem cells to satisfy the therapeutic demands in the clinical bench. Herein, a production of human amnion-derived MSCs (hMSCs) at a scale of over 1 × 109 cells per batch was reported using a three-dimensional (3D) culture technology based on microcarriers coupled with a spinner bioreactor system. The present study revealed that this large-scale production technology improved the inflammation-guided migration and the inflammatory suppression of hMSCs, without altering their major properties as stem cells. Moreover, these large-scale produced hMSCs showed an efficient treatment against the lipopolysaccharide (LPS)-induced lung inflammation in mice models. Notably, exosomes collected from these large-scale produced hMSCs were observed to inherit the efficient inflammatory suppression capability of hMSCs. The present study showed that 3D culture technology using microcarriers coupled with a spinner bioreactor system can be a promising strategy for the large-scale expansion of hMSCs with improved anti-inflammation capability, as well as their secreted exosomes.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Panfeng Fang
- Ningbo SinoCell Biotechnology Co., Ltd., Ningbo, China
| | - Yingzhi Huang
- Ningbo SinoCell Biotechnology Co., Ltd., Ningbo, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Wei F, Yin Y, Li J, Chang Y, Zhang S, Zhao W, Ma X. Essential oil from Inula japonica Thunb. And its phenolic constituents ameliorate pulmonary injury and fibrosis in bleomycin-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117169. [PMID: 37704119 DOI: 10.1016/j.jep.2023.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary injury and fibrosis can be caused by various factors because of their inflammatory nature, both can lead to serious clinical consequences. Inula japonica Thunb. is used in traditional Chinese medicine for the treatment of lung diseases. However, the effect and mechanism of action of the essential oil of I. japonica (EOI) on pulmonary injury and fibrosis are not well understood. AIM OF THE STUDY To investigate the therapeutic effects of EOI on mice with bleomycin (BLM)-induced acute pulmonary injury and chronic fibrosis formation, as well as its potential mechanism. MATERIALS AND METHODS A short-term mouse model of pulmonary injury was established by intratracheal injection of BLM to investigate the anti-inflammatory effect of EOI, and a long-term model of pulmonary fibrosis was used to explore the anti-fibrosis effect of EOI. High-dose EOI (200 mg/kg) was administered intragastrically, and low-dose (50 mg/kg) was administered by intratracheal injection. Gas chromatography-mass spectrometry (GC-MS) was used to identify the ingredients in EOI, and high-performance liquid chromatography (HPLC) was performed for the preparation of EOI compounds. Western blot and real-time qPCR were used to verify the effects of EOI and its active composition on inflammation, oxidative stress and fibrosis signaling pathway. RESULTS Treatment with EOI significantly reduced the inflammation and oxidative stress by reducing the levels of inflammatory and oxidative cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde in BLM-treated mice with acute pulmonary injury. EOI treatment could also suppress the formation of fibrous tissue in mice with BLM-induced pulmonary fibrosis through inhibiting TGF-β/Smad and PI3K/Akt pathways. Chromatographic analysis and preparation suggested that fatty acid and phenol derivatives are present in EOI. Based on cellular inflammation and fibrosis models, the phenolic compounds in EOI can represent the anti-inflammatory and anti-fibrotic effects of EOI by regulating pro-inflammatory and pro-fibrotic cytokines such as NO, TNF-α, IL-6, TGF-β1, and α-SMA. CONCLUSION EOI ameliorated BLM-induced pulmonary injury and fibrosis in mice by inhibiting the inflammatory response and regulating the redox equilibrium, as well as by mediating TGFβ/Smad and PI3K/Akt, which suggested that EOI has potential to treat pulmonary diseases.
Collapse
Affiliation(s)
- Fan Wei
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuzhen Yin
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Li
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yibo Chang
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuyuan Zhang
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wenyu Zhao
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|