1
|
Liang B, Chen X, Li M, Zhang L, Yang X, Shi L, Gong Y, Gong Y, Xu H, Wu X, Jin Z, Wang Y, Liu L, Yi X, Xie L, Zhong H, Shen C, Wang Y, Yang L. Liuwei Dihuang pills attenuate ovariectomy-induced bone loss by alleviating bone marrow mesenchymal stem cell (BMSC) senescence via the Yes-associated protein (YAP)-autophagy axis. PHARMACEUTICAL BIOLOGY 2024; 62:42-52. [PMID: 38112463 DOI: 10.1080/13880209.2023.2291675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
CONTEXT Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.
Collapse
Affiliation(s)
- Bing Liang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongbin Chen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Li
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingling Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Yang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqin Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Gong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhong Jin
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanru Wang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luwei Liu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Yi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lushuang Xie
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Zhong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongyang Shen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Ryu Y, Seo JH, Kim HS, Nam YJ, Bo Noh K, Oh SH, Hwang JS, Shin YJ. COL8A2 Activation Enhances Function of Corneal Endothelial Cells through HIPPO Signaling/Mitochondria Pathway. Matrix Biol 2024:S0945-053X(24)00122-7. [PMID: 39395654 DOI: 10.1016/j.matbio.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Corneal endothelial cells (CECs) are essential for maintaining corneal transparency and hydration through their barrier and pump functions. The COL8A2 gene encodes a component of the extracellular matrix of the cornea, which is crucial for the normal functioning of these cells. Mutations in COL8A2 are linked to corneal dystrophies, emphasizing the gene's importance in corneal health. The purpose of this research is to explore the effects of COL8A2 activation within CECs, to understand its contribution to cellular behavior and health. COL8A2 CRISPR/dCas9 activation system (aCOL8A2) was used to activate the COL8A2. In rats, wound healing and mitochondrial function were assessed after COL8A2 activation. As a result, aCOL8A2 promoted wound healing of rat corneal endothelium by increasing mitochondrial membrane potential. In cultured human CECs, proteomic analysis was performed to screen and identify the differential protein profiles between control and aCOL8A2 cells. Western blot was used to validate the differential proteins from both cells. Mitochondrial function and intracellular distribution were assessed by measuring ATP production and mitochondrial membrane potential. In cultured human CECs, aCOL8A2 increased COL8A2 and phospho-YAP levels. Transendothelial electrical resistance (TEER) was increased and actin cytoskeleton was attenuated by aCOL8A2. Gene ontology analysis revealed that the proteins were mainly involved in the regulation of folate biosynthesis, ECM-receptor interaction, cell differentiation, NADP activity and cytoskeleton. ATP production was increased, mitochondrial membrane potential was polarized and mitochondrial distribution was widespread in the aCOL8A2 group. In conclusion, aCOL8A2 induces a regulatory cascade affecting mitochondrial positioning and efficiency, mediated by alterations in the cytoskeletal architecture and the YAP signaling pathway. This sequence of events serves to bolster the functional capacities of corneal endothelial cells, including their pump and barrier functions, essential for corneal health and transparency.
Collapse
Affiliation(s)
- Yunkyoung Ryu
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Youn Joo Nam
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Sun J, Liu J, Liu M, Bi X, Huang C. New perspective for pathomechanism and clinical applications of animal toxins: Programmed cell death. Toxicon 2024; 249:108071. [PMID: 39134227 DOI: 10.1016/j.toxicon.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Various animal toxins pose a significant threat to human safety, necessitating urgent attention to their treatment and research. The clinical potential of programmed cell death (PCD) is widely regarded as a target for envenomation, given its crucial role in regulating physiological and pathophysiological processes. Current research on animal toxins examines their specific components in pathomechanisms and injuries, as well as their clinical applications. This review explores the relationship between various toxins and several types of PCD, such as apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis, to provide a reference for future understanding of the pathophysiology of toxins and the development of their potential clinical value.
Collapse
Affiliation(s)
- Jiaqi Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Meiling Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaowen Bi
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
4
|
Luo F, Zhang C, Shi Z, Mao T, Jin LH. Notch signaling promotes differentiation, cell death and autophagy in Drosophila hematopoietic system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104176. [PMID: 39168254 DOI: 10.1016/j.ibmb.2024.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Notch signaling is a highly conserved pathway between mammals and Drosophila and plays a key role in various biological processes. Drosophila has emerged as a powerful model for studying hematopoiesis and leukemia. In exception to crystal cells, the strength of Notch signaling in Drosophila lymph gland cortical zone (CZ)/intermediate zone (IZ) cells is weak. However, the influence of Notch activation in the lymph gland CZ/IZ cells and circulating hemocytes on hematopoietic homeostasis maintenance is unclear. Here, we showed that Notch activation in lymph gland CZ/IZ cells induced overdifferentiation of progenitors. Moreover, Notch activation promoted lamellocyte generation via NFκB/Toll signaling activation and increased reactive oxygen species (ROS). In addition, we found that Notch activation in lymph gland CZ/IZ cells and circulating hemocytes caused caspase-independent and nonautophagic cell death. However, crystal cell autophagy was activated by upregulation of the expression of the target gene of the Hippo/Yki pathway Diap1. Moreover, we showed that Notch activation could alleviate cytokine storms and improve the survival of Rasv12 leukemia model flies. Our study revealed the various mechanisms of hematopoietic dysregulation induced by Notch activation in healthy flies and the therapeutic effect of Notch activation on leukemia model flies.
Collapse
Affiliation(s)
- Fangzhou Luo
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chengcheng Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhengqi Shi
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Mao
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
5
|
Rodrigues AM, Paula Zen Petisco Fiore A, Guardia GDA, Tomasin R, Azevedo Reis Teixeira A, Giordano RJ, Schechtman D, Pagano M, Galante PAF, Bruni-Cardoso A. Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities. Oncogene 2024; 43:2938-2950. [PMID: 39174858 DOI: 10.1038/s41388-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024]
Abstract
Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3∆7 or MST2∆7 (for mRNA or protein, respectively), resulted from the skipping of exon 7. MST2∆7 exhibited increased ubiquitylation and interaction with the E3 ubiquitin-protein ligase CHIP compared to the full-length protein (MST2FL). Exon 7 in STK3 encodes a segment within the kinase domain, and its exclusion compromised MST2 interaction with and phosphorylation of MOB, a major MST1/2 substrate. Nevertheless, MST2∆7 was capable of interacting with MST1 and MST2FL. Unlike MST2FL, overexpression of MST2∆7 did not lead to increased cell death and growth arrest. Strikingly, we observed the exclusion of STK3 exon 7 in 3.2-15% of tumor samples from patients of several types of cancer, while STK3∆7 was seldomly found in healthy tissues. Our study identified a novel STK3 splicing variant with loss of function and the potential to disturb tissue homeostasis by impacting on MST2 activities in the regulation of cell death and quiescence.
Collapse
Affiliation(s)
- Ana Maria Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, New York University, New York, NY, USA
| | | | - Rebeka Tomasin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ricardo Jose Giordano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Yu CL, Huang KY, Chen JJ, Lai CT, Chen GW, Huang CC, Yeh YH, Lee CH, Lee JJ, Huang DM, Wang SW. Hernandonine-mediated autophagic cell death in hepatocellular carcinoma: Interplay of p53 and YAP signaling pathways. Free Radic Biol Med 2024; 222:456-466. [PMID: 38950659 DOI: 10.1016/j.freeradbiomed.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Biomedical Science, MacKay Medical College, New Taipei City, Taiwan
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Ta Lai
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Guang-Wei Chen
- Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chen Huang
- Institute of Biomedical Science, MacKay Medical College, New Taipei City, Taiwan
| | - Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Jie-Jen Lee
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| | - Shih-Wei Wang
- Institute of Biomedical Science, MacKay Medical College, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Guo P, Yang R, Zhong S, Ding Y, Wu J, Wang Z, Wang H, Zhang J, Tu N, Zhou H, Chen S, Wang Q, Li D, Chen W, Chen L. Urolithin A attenuates hexavalent chromium-induced small intestinal injury by modulating PP2A/Hippo/YAP1 pathway. J Biol Chem 2024; 300:107669. [PMID: 39128717 PMCID: PMC11408861 DOI: 10.1016/j.jbc.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.
Collapse
Affiliation(s)
- Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Huiqi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nannan Tu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Chatterjee S, Ghosh S, Sin Z, Davis E, Preval LV, Tran N, Bammidi S, Gautam P, Hose S, Sergeev Y, Flores-Bellver M, Aldiri I, Sinha D, Guha P. βA3/A1-crystallin is an epigenetic regulator of histone deacetylase 3 (HDAC3) in the retinal pigmented epithelial (RPE) cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606634. [PMID: 39211129 PMCID: PMC11361014 DOI: 10.1101/2024.08.06.606634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The retinal pigmented epithelial (RPE) cells maintain retinal homeostasis, and alterations in their function contribute to non-exudative age-related macular degeneration (AMD) 1,2 . Here, we explore the intricate relationship between RPE cells, epigenetic modifications, and the development of AMD. Importantly, the study reveals a substantial decrease in histone deacetylase 3 (HDAC3) activity and elevated histone acetylation in the RPE of human AMD donor eyes. To investigate epigenetic mechanisms in AMD development, we used a mouse model with RPE-specific Cryba1 knockout 3-5 , revealing that the loss of βA3/A1-crystallin selectively reduces HDAC3 activity, resulting in increased histone acetylation. βA3/A1-crystallin activates HDAC3 by facilitating its interaction with the casein kinase II (CK2) and phosphorylating HDAC3, as well as by regulating intracellular InsP6 (phytic acid) levels, required for activating HDAC3. These findings highlight a novel function of βA3/A1-crystallin as an epigenetic regulator of HDAC3 in the RPE cells and provide insights into potential therapeutic strategies in non-exudative AMD.
Collapse
|
9
|
Shen X, Peng X, Guo Y, Dai Z, Cui L, Yu W, Liu Y, Liu CY. YAP/TAZ enhances P-body formation to promote tumorigenesis. eLife 2024; 12:RP88573. [PMID: 39046443 PMCID: PMC11268890 DOI: 10.7554/elife.88573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
The role of processing bodies (P-bodies) in tumorigenesis and tumor progression is not well understood. Here, we showed that the oncogenes YAP/TAZ promote P-body formation in a series of cancer cell lines. Mechanistically, both transcriptional activation of the P-body-related genes SAMD4A, AJUBA, and WTIP and transcriptional suppression of the tumor suppressor gene PNRC1 are involved in enhancing the effects of YAP/TAZ on P-body formation in colorectal cancer (CRC) cells. By reexpression of PNRC1 or knockdown of P-body core genes (DDX6, DCP1A, and LSM14A), we determined that disruption of P-bodies attenuates cell proliferation, cell migration, and tumor growth induced by overexpression of YAP5SA in CRC. Analysis of a pancancer CRISPR screen database (DepMap) revealed co-dependencies between YAP/TEAD and the P-body core genes and correlations between the mRNA levels of SAMD4A, AJUBA, WTIP, PNRC1, and YAP target genes. Our study suggests that the P-body is a new downstream effector of YAP/TAZ, which implies that reexpression of PNRC1 or disruption of P-bodies is a potential therapeutic strategy for tumors with active YAP.
Collapse
Affiliation(s)
- Xia Shen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Xiang Peng
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - YueGui Guo
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Zhujiang Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yun Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| |
Collapse
|
10
|
Li Z, Su P, Yu M, Zhang X, Xu Y, Jia T, Yang P, Zhang C, Sun Y, Li X, Yang H, Ding Y, Zhuang T, Guo H, Zhu J. YAP represses the TEAD-NF-κB complex and inhibits the growth of clear cell renal cell carcinoma. Sci Signal 2024; 17:eadk0231. [PMID: 38954637 DOI: 10.1126/scisignal.adk0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.
Collapse
Affiliation(s)
- Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Miao Yu
- Department of General Surgery, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xufeng Zhang
- Kidney Transplantation, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Yaning Xu
- Department of Clinical Laboratory, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Tianwei Jia
- Department of Clinical Laboratory, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Yanan Sun
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Yinlu Ding
- Department of General Surgery, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Haiyang Guo
- Department of Clinical Laboratory, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, PR China
| |
Collapse
|
11
|
Raslan AA, Pham TX, Lee J, Kontodimas K, Tilston-Lunel A, Schmottlach J, Hong J, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Lung injury-induced activated endothelial cell states persist in aging-associated progressive fibrosis. Nat Commun 2024; 15:5449. [PMID: 38937456 PMCID: PMC11211333 DOI: 10.1038/s41467-024-49545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.
Collapse
Affiliation(s)
- Ahmed A Raslan
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Tho X Pham
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jillian Schmottlach
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jeongmin Hong
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Taha Dinc
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andreea M Bujor
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Aude Thiriot
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Giovanni Ligresti
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Song Y, Na H, Lee SE, Kim YM, Moon J, Nam TW, Ji Y, Jin Y, Park JH, Cho SC, Lee J, Hwang D, Ha SJ, Park HW, Kim JB, Lee HW. Dysfunctional adipocytes promote tumor progression through YAP/TAZ-dependent cancer-associated adipocyte transformation. Nat Commun 2024; 15:4052. [PMID: 38744820 PMCID: PMC11094189 DOI: 10.1038/s41467-024-48179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.
Collapse
Affiliation(s)
- Yaechan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Heeju Na
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - You Min Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihyun Moon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae Wook Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yul Ji
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seok Chan Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Gemcro, Inc, Seoul, 03722, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Gemcro, Inc, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Cheng H, Long J, Su J, Chu J, Wang M, Li Q. Mechanism of Paris polyphylla saponin II inducing autophagic to inhibit angiogenesis of cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3179-3194. [PMID: 37906274 DOI: 10.1007/s00210-023-02794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Paris polyphylla saponin II (PPII) has good biological activity in inhibiting tumor angiogenesis. However, the mechanism of its action is still unclear. This study first observed the inhibitory effect of PPII on cervical cancer cells (Hela) through the establishment of MTT and nude mouse subcutaneous transplantation tumor models. Afterwards, then, we collected Hela cell supernatant for culturing HUVEC cells and treated it with PPII. Observe the invasion, migration, and lumen formation ability of drugs through Transwell, cell scratch test, and angiogenesis experiment. MDC staining was used to observe positive staining in the perinuclear area, AO staining was used to observe acidic areas, and transmission electron microscopy staining was used to observe ultrastructure and autophagy. In addition, the effects of PPII on autophagy- and angiogenesis-related protein expression were detected by Western blotting and quantitative reverse transcriptase polymerase chain reaction. Finally, HUVECs were treated with autophagy inhibitors 3-MA, CQ, and PI3K inhibitor LY294002, respectively. The results showed that the autophagy level of cells treated with PPII was significantly increased. In addition, adding autophagy inhibitors can effectively inhibit angiogenesis in cervical cancer. Further research suggests that PPII induces autophagy in HUVEC cells by regulating the PI3K/AKT/mTOR signaling pathway, thereby affecting angiogenesis and inhibiting Hela cell proliferation, lumen formation, invasion, and migration.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China.
- Department of Experimental Center for Scientific Research, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Jiao Long
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Jing Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China.
- Department of Experimental Center for Scientific Research, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
14
|
Pan C, Lu F, Hao X, Deng X, Liu J, Sun K, Hou W, Shang X, Chi R, Guo F, Xu T. Low-intensity pulsed ultrasound delays the progression of osteoarthritis by regulating the YAP-RIPK1-NF-κB axis and influencing autophagy. J Transl Med 2024; 22:286. [PMID: 38493143 PMCID: PMC10943805 DOI: 10.1186/s12967-024-05086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative disease characterized by chronic inflammation of the joint. As the disease progresses, patients will gradually develop symptoms such as pain, physical limitations and even disability. The risk factors for OA include genetics, gender, trauma, obesity, and age. Unfortunately, due to limited understanding of its pathological mechanism, there are currently no effective drugs or treatments to suspend the progression of osteoarthritis. In recent years, some studies found that low-intensity pulsed ultrasound (LIPUS) may have a positive effect on osteoarthritis. Nonetheless, the exact mechanism by which LIPUS affects osteoarthritis remains unknown. It is valuable to explore the specific mechanism of LIPUS in the treatment of OA. METHODS In this study, we validated the potential therapeutic effect of LIPUS on osteoarthritis by regulating the YAP-RIPK1-NF-κB axis at both cellular and animal levels. To verify the effect of YAP on OA, the expression of YAP was knocked down or overexpressed by siRNA and plasmid in chondrocytes and adeno-associated virus was injected into the knee joint of rats. The effect of LIPUS was investigated in inflammation chondrocytes induced by IL-1β and in the post-traumatic OA model. RESULTS In this study, we observed that YAP plays an important role in the development of osteoarthritis and knocking down of YAP significantly inhibited the inflammation and alleviated cartilage degeneration. We also demonstrated that the expression of YAP was increased in osteoarthritis chondrocytes and YAP could interact with RIPK1, thereby regulating the NF-κB signal pathway and influencing inflammation. Moreover, we also discovered that LIPUS decreased the expression of YAP by restoring the impaired autophagy capacity and inhibiting the binding between YAP and RIPK1, thereby delaying the progression of osteoarthritis. Animal experiment showed that LIPUS could inhibit cartilage degeneration and alleviate the progression of OA. CONCLUSIONS These results showed that LIPUS is effective in inhibiting inflammation and cartilage degeneration and alleviate the progression of OA. As a result, our results provide new insight of mechanism by which LIPUS delays the development of osteoarthritis, offering a novel therapeutic regimen for osteoarthritis.
Collapse
Affiliation(s)
- Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Zhou W, Lim A, Edderkaoui M, Osipov A, Wu H, Wang Q, Pandol S. Role of YAP Signaling in Regulation of Programmed Cell Death and Drug Resistance in Cancer. Int J Biol Sci 2024; 20:15-28. [PMID: 38164167 PMCID: PMC10750275 DOI: 10.7150/ijbs.83586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/29/2023] [Indexed: 01/03/2024] Open
Abstract
Although recent advances in cancer treatment significantly improved the prognosis of patients, drug resistance remains a major challenge. Targeting programmed cell death is a major approach of antitumor drug development. Deregulation of programmed cell death (PCD) contributes to resistance to a variety of cancer therapeutics. Yes-associated protein (YAP) and its paralog TAZ, the main downstream effectors of the Hippo pathway, are aberrantly activated in a variety of human malignancies. The Hippo-YAP pathway, which was originally identified in Drosophila, is well conserved in humans and plays a defining role in regulation of cell fate, tissue growth and regeneration. Activation of YAP signaling has emerged as a key mechanism involved in promoting cancer cell proliferation, metastasis, and drug resistance. Understanding the role of YAP/TAZ signaling network in PCD and drug resistance could facilitate the development of effective strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
16
|
Ogura M, Kaminishi T, Shima T, Torigata M, Bekku N, Tabata K, Minami S, Nishino K, Nezu A, Hamasaki M, Kosako H, Yoshimori T, Nakamura S. Microautophagy regulated by STK38 and GABARAPs is essential to repair lysosomes and prevent aging. EMBO Rep 2023; 24:e57300. [PMID: 37987447 DOI: 10.15252/embr.202357300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Lysosomes are degradative organelles and signaling hubs that maintain cell and tissue homeostasis, and lysosomal dysfunction is implicated in aging and reduced longevity. Lysosomes are frequently damaged, but their repair mechanisms remain unclear. Here, we demonstrate that damaged lysosomal membranes are repaired by microautophagy (a process termed "microlysophagy") and identify key regulators of the first and last steps. We reveal the AGC kinase STK38 as a novel microlysophagy regulator. Through phosphorylation of the scaffold protein DOK1, STK38 is specifically required for the lysosomal recruitment of the AAA+ ATPase VPS4, which terminates microlysophagy by promoting the disassembly of ESCRT components. By contrast, microlysophagy initiation involves non-canonical lipidation of ATG8s, especially the GABARAP subfamily, which is required for ESCRT assembly through interaction with ALIX. Depletion of STK38 and GABARAPs accelerates DNA damage-induced cellular senescence in human cells and curtails lifespan in C. elegans, respectively. Thus, microlysophagy is regulated by STK38 and GABARAPs and could be essential for maintaining lysosomal integrity and preventing aging.
Collapse
Affiliation(s)
- Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takayuki Shima
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Miku Torigata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nao Bekku
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keisuke Tabata
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kohei Nishino
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akiko Nezu
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tamotsu Yoshimori
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Wang T, Wang D, Sun Y, Zhuang T, Li X, Yang H, Zang Y, Liu Z, Yang P, Zhang C, Cui J, Fu M, Zhang S, Su P, Li Z, Zhu J, Ding Y. Regulation of the Hippo/YAP axis by CXCR7 in the tumorigenesis of gastric cancer. J Exp Clin Cancer Res 2023; 42:297. [PMID: 37950281 PMCID: PMC10636825 DOI: 10.1186/s13046-023-02870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The Hippo pathway is crucial in organ size control and tumorigenesis. Dysregulation of the Hippo/YAP axis is commonly observed in gastric cancer, while effective therapeutic targets for the Hippo/YAP axis are lacking. Identification of reliable drug targets and the underlying mechanisms that could inhibit the activity of the Hippo/YAP axis and gastric cancer progression is urgently needed. METHODS We used several gastric cancer cell lines and xenograft models and performed immunoblotting, qPCR, and in vivo studies to investigate the function of CXCR7 in gastric cancer progression. RESULTS In our current study, we demonstrate that the membrane receptor CXCR7 (C-X-C chemokine receptor 7) is an important modulator of the Hippo/YAP axis. The activation of CXCR7 could stimulate gastric cancer cell progression through the Hippo/YAP axis in vitro and in vivo, while pharmaceutical inhibition of CXCR7 via ACT-1004-1239 could block tumorigenesis in gastric cancer. Molecular studies revealed that the activation of CXCR7 could dephosphorylate YAP and facilitate YAP nuclear accumulation and transcriptional activation in gastric cancer. CXCR7 functions via G-protein Gαq/11 and Rho GTPase to activate YAP activity. Interestingly, ChIP assays showed that YAP could bind to the promoter region of CXCR7 and facilitate its gene transcription, which indicates that CXCR7 is both the upstream signalling and downstream target of the Hippo/YAP axis in gastric cancer. CONCLUSION In general, we identified a novel positive feedback loop between CXCR7 and the Hippo/YAP axis, and blockade of CXCR7 could be a plausible strategy for gastric cancer.
Collapse
Affiliation(s)
- Tianshi Wang
- Department of General Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Dehai Wang
- Department of General Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yanan Sun
- Department of General Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, P. R. China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Yifeng Zang
- Department of General Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Ziping Liu
- Department of General Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Jiayao Cui
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Mingxi Fu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China.
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yinlu Ding
- Department of General Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
18
|
Cheng J, Wu BT, Liu HP, Lin WY. Tyrosine Metabolism Pathway Is Downregulated in Dopaminergic Neurons with LRRK2 Overexpression in Drosophila. Int J Mol Sci 2023; 24:15587. [PMID: 37958569 PMCID: PMC10650192 DOI: 10.3390/ijms242115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
LRRK2 mutations are the leading cause of familial Parkinson's disease (PD) and are a significant risk factor for idiopathic PD cases. However, the molecular mechanisms underlying the degeneration of dopaminergic (DA) neurons in LRRK2 PD patients remain unclear. To determine the translatomic impact of LRRK2 expression in DA neurons, we employed gene set enrichment analysis (GSEA) to analyze a translating ribosome affinity purification (TRAP) RNA-seq dataset from a DA-neuron-specific-expressing Drosophila model. We found that the tyrosine metabolism pathway, including tyrosine hydroxylase (TH), is downregulated in DA neurons with LRRK2 overexpression; in contrast, the Hippo signaling pathway is downregulated in the G2019S mutant compared to wild-type LRRK2 in the DA neurons. These results imply that the downregulation of tyrosine metabolism occurs before pronounced DA neuron loss and that LRRK2 may downregulate the tyrosine metabolism in a DA-neuron-loss-independent way.
Collapse
Affiliation(s)
- Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung 40343, Taiwan;
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
19
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
Kim I, Park T, Noh JY, Kim W. Emerging role of Hippo pathway in the regulation of hematopoiesis. BMB Rep 2023; 56:417-425. [PMID: 37574808 PMCID: PMC10471462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation. [BMB Reports 2023; 56(8): 417-425].
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
21
|
Bouabdallah S, Al-Maktoum A, Amin A. Steroidal Saponins: Naturally Occurring Compounds as Inhibitors of the Hallmarks of Cancer. Cancers (Basel) 2023; 15:3900. [PMID: 37568716 PMCID: PMC10417465 DOI: 10.3390/cancers15153900] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a global health burden responsible for an exponentially growing number of incidences and mortalities, regardless of the significant advances in its treatment. The identification of the hallmarks of cancer is a major milestone in understanding the mechanisms that drive cancer initiation, development, and progression. In the past, the hallmarks of cancer have been targeted to effectively treat various types of cancers. These conventional cancer drugs have shown significant therapeutic efficacy but continue to impose unfavorable side effects on patients. Naturally derived compounds are being tested in the search for alternative anti-cancer drugs. Steroidal saponins are a group of naturally occurring compounds that primarily exist as secondary metabolites in plant species. Recent studies have suggested that steroidal saponins possess significant anti-cancer capabilities. This review aims to summarize the recent findings on steroidal saponins as inhibitors of the hallmarks of cancer and covers key studies published between the years 2014 and 2024. It is reported that steroidal saponins effectively inhibit the hallmarks of cancer, but poor bioavailability and insufficient preclinical studies limit their utilization.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Theranostic Biomarkers, LR23ES02, Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis 1006, Tunisia
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
22
|
Laura Francés J, Pagiatakis C, Di Mauro V, Climent M. Therapeutic Potential of EVs: Targeting Cardiovascular Diseases. Biomedicines 2023; 11:1907. [PMID: 37509546 PMCID: PMC10377624 DOI: 10.3390/biomedicines11071907] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Due to their different biological functions, extracellular vesicles (EVs) have great potential from a therapeutic point of view. They are released by all cell types, carrying and delivering different kinds of biologically functional cargo. Under pathological events, cells can increase their secretion of EVs and can release different amounts of cargo, thus making EVs great biomarkers as indicators of pathological progression. Moreover, EVs are also known to be able to transport and deliver cargo to different recipient cells, having an important role in cellular communication. Interestingly, EVs have recently been explored as biological alternatives for the delivery of therapeutics, being considered natural drug delivery carriers. Because cardiovascular disorders (CVDs) are the leading cause of death worldwide, in this review, we will discuss the up-to-date knowledge regarding the biophysical properties and biological components of EVs, focusing on myocardial infarction, diabetic cardiomyopathy, and sepsis-induced cardiomyopathy, three very different types of CVDs.
Collapse
Affiliation(s)
| | - Christina Pagiatakis
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Vittoria Di Mauro
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
23
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
24
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor Microenvironmental Cytokines Drive NSCLC Cell Aggressiveness and Drug-Resistance via YAP-Mediated Autophagy. Cells 2023; 12:cells12071048. [PMID: 37048121 PMCID: PMC10093141 DOI: 10.3390/cells12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.
Collapse
Affiliation(s)
- Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Barbara Ascione
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Camilla Cittadini
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| |
Collapse
|
26
|
Zheng-Wei S, Yuan T, Chao-Shuai F, Lei Z, Zong-Rang S, Tuan-Jiang L, Ding-Jun H. Roles of Hippo-YAP/TAZ signalling in intervertebral disc degeneration. Biomed Pharmacother 2023; 159:114099. [PMID: 36641923 DOI: 10.1016/j.biopha.2022.114099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023] Open
Abstract
Intervertebral disc degeneration (IVDD), a common cartilage-degenerative disease, is considered the main cause of low back pain (LBP). Owing to the complex aetiology and pathophysiology of IVDD, its molecular mechanisms and definitive treatment of IVDD remain unclear. As an evolutionarily and functionally conserved signalling pathway, Hippo-YAP/TAZ signalling plays a crucial role in IVDD progression. In this review, we discuss the regulation of Hippo-YAP/TAZ signalling and summarise the recent research progress on its role in cartilage homeostasis and IVDD. We also discuss the current application and future prospects of IVDD treatments based on Hippo-YAP/TAZ signalling.
Collapse
Affiliation(s)
- Shi Zheng-Wei
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Tuo Yuan
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Feng Chao-Shuai
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Zhu Lei
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Song Zong-Rang
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Liu Tuan-Jiang
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Hao Ding-Jun
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China.
| |
Collapse
|
27
|
Raslan AA, Pham TX, Lee J, Hong J, Schmottlach J, Nicolas K, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Single Cell Transcriptomics of Fibrotic Lungs Unveils Aging-associated Alterations in Endothelial and Epithelial Cell Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.523179. [PMID: 36712020 PMCID: PMC9882122 DOI: 10.1101/2023.01.17.523179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lung regeneration deteriorates with aging leading to increased susceptibility to pathologic conditions, including fibrosis. Here, we investigated bleomycin-induced lung injury responses in young and aged mice at single-cell resolution to gain insights into the cellular and molecular contributions of aging to fibrosis. Analysis of 52,542 cells in young (8 weeks) and aged (72 weeks) mice identified 15 cellular clusters, many of which exhibited distinct injury responses that associated with age. We identified Pdgfra + alveolar fibroblasts as a major source of collagen expression following bleomycin challenge, with those from aged lungs exhibiting a more persistent activation compared to young ones. We also observed age-associated transcriptional abnormalities affecting lung progenitor cells, including ATII pneumocytes and general capillary (gCap) endothelial cells (ECs). Transcriptional analysis combined with lineage tracing identified a sub-population of gCap ECs marked by the expression of Tropomyosin Receptor Kinase B (TrkB) that appeared in bleomycin-injured lungs and accumulated with aging. This newly emerged TrkB + EC population expressed common gCap EC markers but also exhibited a distinct gene expression signature associated with aberrant YAP/TAZ signaling, mitochondrial dysfunction, and hypoxia. Finally, we defined ACKR1 + venous ECs that exclusively emerged in injured lungs of aged animals and were closely associated with areas of collagen deposition and inflammation. Immunostaining and FACS analysis of human IPF lungs demonstrated that ACKR1 + venous ECs were dominant cells within the fibrotic regions and accumulated in areas of myofibroblast aggregation. Together, these data provide high-resolution insights into the impact of aging on lung cell adaptability to injury responses.
Collapse
|
28
|
Maejima Y, Zablocki D, Nah J, Sadoshima J. The role of the Hippo pathway in autophagy in the heart. Cardiovasc Res 2023; 118:3320-3330. [PMID: 35150237 DOI: 10.1093/cvr/cvac014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
The Hippo pathway, an evolutionarily conserved signalling mechanism, controls organ size and tumourigenesis. Increasing lines of evidence suggest that autophagy, an important mechanism of lysosome-mediated cellular degradation, is regulated by the Hippo pathway, which thereby profoundly affects cell growth and death responses in various cell types. In the heart, Mst1, an upstream component of the Hippo pathway, not only induces apoptosis but also inhibits autophagy through phosphorylation of Beclin 1. YAP/TAZ, transcription factor co-factors and the terminal effectors of the Hippo pathway, affect autophagy through transcriptional activation of TFEB, a master regulator of autophagy and lysosomal biogenesis. The cellular abundance of YAP is negatively regulated by autophagy and suppression of autophagy induces accumulation of YAP, which, in turn, acts as a feedback mechanism to induce autophagosome formation. Thus, the Hippo pathway and autophagy regulate each other, thereby profoundly affecting cardiomyocyte survival and death. This review discusses the interaction between the Hippo pathway and autophagy and its functional significance during stress conditions in the heart and the cardiomyocytes therein.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| |
Collapse
|
29
|
Ma FY, Zhou XH, Liang Q. Advances in understanding of role and mechanism of Hippo signaling pathway in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:14-19. [DOI: 10.11569/wcjd.v31.i1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors, and most patients have a poor prognosis. Many studies have shown that the Hippo signaling pathway plays a key role in the occurrence and development of CRC by regulating CRC cell proliferation and apoptosis, tumor invasion and metastasis, autophagy, metabolic reprogramming, drug resistance, and other processes. This article reviews the latest progress in research of the expression of key molecules of the Hippo signaling pathway in CRC as well as the understanding of the mechanism by which this pathway regulates the occurrence and development of CRC.
Collapse
Affiliation(s)
- Fu-Yan Ma
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qiao Liang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
30
|
Anbiyaiee A, Ramazii M, Bajestani SS, Meybodi SM, Keivan M, Khoshnam SE, Farzaneh M. The function of LncRNA-ATB in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1-9. [PMID: 35597865 DOI: 10.1007/s12094-022-02848-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023]
Abstract
Cancer as a progressive and complex disease is caused by early chromosomal changes and stimulated cellular transformation. Previous studies reported that long non-coding RNAs (lncRNAs) play pivotal roles in the initiation, maintenance, and progression of cancer cells. LncRNA activated by TGF-β (ATB) has been shown to be dysregulated in different types of cancer. Aberrant expression of lncRNA-ATB plays an important role in the progression of diverse malignancies. High expression of LncRNA-ATB is associated with cancer cell growth, proliferation, metastasis, and EMT. LncRNA-ATB by targeting various signaling pathways and microRNAs (miRNAs) can trigger cancer pathogenesis. Therefore, lncRNA-ATB can be a novel target for cancer prediction and diagnosis. In this review, we will focus on the function of lncRNA-ATB in various types of human cancers.
Collapse
Affiliation(s)
- Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | | | | | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
31
|
Xia H, Gao M, Chen J, Huang G, Xiang X, Wang Y, Huang Z, Li Y, Su S, Zhao Z, Zeng Q, Ruan Y. M1 macrophage-derived extracellular vesicle containing tsRNA-5006c promotes osteogenic differentiation of aortic valve interstitial cells through regulating mitophagy. PeerJ 2022; 10:e14307. [PMID: 36518291 PMCID: PMC9744173 DOI: 10.7717/peerj.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.
Collapse
Affiliation(s)
- Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Nonalcoholic Fatty Liver Hepatocyte-Derived lncRNA MALAT1 Aggravates Pancreatic Cell Inflammation via the Inhibition of Autophagy by Upregulating YAP. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2930960. [PMID: 36093484 PMCID: PMC9452936 DOI: 10.1155/2022/2930960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Background Acute pancreatitis (AP) is one of the most common gastrointestinal disorders, which causes death with a high mortality rate of about 30%. The study aims to identify whether the nonalcoholic fatty liver disease (NAFLD)-derived lncRNA MALAT1 participates in the inflammation of pancreatic cell and its potential mechanism. Methods The NAFLD cell model was constructed by treating HepG2 cells with FFA. The in vitro model of acute pancreatitis (AP) was established by the administration of caerulein on AR42J cells. MALAT1 and si-MALAT1 were transfected into pancreatic cells, and then exosomes were collected from the NAFLD cell model and then were cocultured with AR42J cells. Transmission electron microscopy was used to observe the morphology of exosomes. Oil Red O staining was applied to reveal the lipid deposition. The triglyceride, IL-6, and TNF-α levels were detected using ELISA. The MALAT1 level in exosomes was detected by qRT-PCR. The CD9, CD63, CD81, and CYP2E1, LC3II, and LC3I levels were detected by western blot. Results MALAT1 was upregulated in NAFLD-derived exosomes and increased the levels of IL-6 and TNF-α in pancreatic cells. NAFLD-derived exosomes inhibited YAP phosphorylation, decreased the levels of IL-6 and TNF-α, and reduced the ratio of LC3II/LC3I protein in pancreatic cells. Silencing MALAT1 significantly returned the inhibitory effect of NAFLD on hippo-YAP pathway. YAP1 signal transduction inhibitor CA3 reversed the decrease of LC3II/LC3I expression and the increase of IL-6 and TNF-α levels induced by MALAT1 in the AP cell model. Conclusions NAFLD-derived MALAT1 exacerbates pancreatic cell inflammation via inhibiting autophagy by upregulating YAP.
Collapse
|
33
|
Yousefi H, Delavar MR, Piroozian F, Baghi M, Nguyen K, Cheng T, Vittori C, Worthylake D, Alahari SK. Hippo signaling pathway: A comprehensive gene expression profile analysis in breast cancer. Biomed Pharmacother 2022; 151:113144. [PMID: 35623167 DOI: 10.1016/j.biopha.2022.113144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women and a major public health concern. The Hippo pathway is an evolutionarily conserved signaling pathway that serves as a key regulator for a wide variety of biological processes. Hippo signaling has been shown to have both oncogenic and tumor-suppressive functions in various cancers. Core components of the Hippo pathway consist of various kinases and downstream effectors such as YAP/TAZ. In the current report, differential expression of Hippo pathway elements as well as the correlation of Hippo pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, receptor status, and methylation status, has been investigated in BC using METABRIC and TCGA datasets. In this review, we note deregulation of several Hippo signaling elements in BC patients. Moreover, we see examples of negative correlations between methylation of Hippo genes and mRNA expression. The expression of Hippo genes significantly varies between different receptor subgroups. Because of the clear associations between mRNA expression and methylation status, DNA methylation may be one of the mechanisms that regulate the Hippo pathway in BC cells. Differential expression of Hippo genes among various BC molecular subtypes suggests that Hippo signaling may function differently in different subtypes of BC. Our data also highlights an interesting link between Hippo components' transcription and ER negativity in BC. In conclusion, substantial deregulation of Hippo signaling components suggests an important role of these genes in breast cancer.
Collapse
Affiliation(s)
- Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Masoud Baghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thomas Cheng
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - David Worthylake
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA
| | - Suresh K Alahari
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA.
| |
Collapse
|
34
|
Elkenani M, Barakat AZ, Held T, Rodrigues DM, Mobarak S, Swarnka S, Adham IM, Mohamed BA. Heat shock protein A4 ablation leads to skeletal muscle myopathy associated with dysregulated autophagy and induced apoptosis. J Transl Med 2022; 20:229. [PMID: 35568953 PMCID: PMC9107738 DOI: 10.1186/s12967-022-03418-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Molecular chaperones assist protein folding, facilitate degradation of misfolded polypeptides, and thereby maintain protein homeostasis. Impaired chaperone activity leads to defective protein quality control that is implicated in multiple skeletal muscle diseases. The heat shock protein A4 (HSPA4) acts as a co-chaperone for HSP70. Previously, we showed that Hspa4 deletion causes impaired protein homeostasis in the heart. However, its functional role in skeletal muscle has not been explored. METHODS We performed a comparative phenotypic and biochemical analyses of Hspa4 knockout (KO) mice with wild-type (WT) littermates. RESULTS HSPA4 is markedly upregulated in regenerating WT muscle in vivo, and in differentiated myoblasts in vitro. Hspa4-KO mice are marked by growth retardation and increased variability in body weight, accompanied by 35% mortality rates during the peri-weaning period. The surviving Hspa4-KO mice experienced progressive skeletal muscle myopathy, characterized by increased number of muscle fibers with centralized nuclei, heterogeneous myofiber size distribution, inflammatory cell infiltrates and upregulation of embryonic and perinatal myosin heavy chain transcripts. Hspa4-KO muscles demonstrated an accumulation of autophagosome-associated proteins including microtubule associated protein1 light chain 3-II (LC3-II) and p62/sequestosome accompanied by increased number of TUNEL-positive nuclei. CONCLUSIONS Our findings underscore the indispensable role of HSPA4 in maintenance of muscle integrity through contribution in skeletal muscle autophagy and apoptosis, which might provide a novel therapeutic strategy for skeletal muscle morbidities.
Collapse
Affiliation(s)
- Manar Elkenani
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Amal Z Barakat
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Torsten Held
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Marques Rodrigues
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Sherok Mobarak
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | - Surabhi Swarnka
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
35
|
Liu XY, Zhou K, Tian KJ, Yan BJ, Ren Z, Zhou ZX, Xiong WH, Jiang ZS. Hippo: a new hub for atherosclerotic disease. Curr Pharm Des 2022; 28:1321-1328. [DOI: 10.2174/1381612828666220428090540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Hippo,an evolutionarily conserved kinase cascade reaction in organisms,can respond to a set of signals,such as mechanical signals and cell metabolism,to maintain cell growth,differentiation,tissue/organ development and homeostasis.In the past ten years,HIPPO has controlled the development of tissues and organs by regulating the process of cell proliferation,especially in the field of cardiac regeneration after myocardial infarction.This suggests that HIPPO signaling is closely linked to cardiovascular disease.Atherosclerosis is the most common disease of the cardiovascular system. It is characterised by chronic inflammation of the vascular wall, mainly involving dysfunction of endothelial cells, smooth muscle cells and macrophages.Oxidized Low density lipoprotein (LDL) damages the barrier function of endothelial cells, which enter the middle membrane of the vascular wall, accelerates the formation of foam cells and promotes the occurrence and development of atherosclerosis.Autophagy is associated with the development of atherosclerosis.However, the mechanism of HIPPO regulation of atherosclerosis has not meant to clarified.In view of the pivotal role of this signaling pathway in maintaining cell growth,proliferation and differentiation,the imbalance of Hippo is related to atherosclerosis and related diseases.In this review,we emphasized Hippo as a hub for regulating atherosclerosis and discussed its potential targets in pathophysiology,human diseases,and related pharmacology.
Collapse
Affiliation(s)
- Xi-Yan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Kai-Jiang Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| |
Collapse
|
36
|
Hippo signaling pathway and respiratory diseases. Cell Death Dis 2022; 8:213. [PMID: 35443749 PMCID: PMC9021242 DOI: 10.1038/s41420-022-01020-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
The hippo signaling pathway is a highly conserved evolutionary signaling pathway that plays an important role in regulating cell proliferation, organ size, tissue development, and regeneration. Increasing evidences consider that the hippo signaling pathway is involved in the process of respiratory diseases. Hippo signaling pathway is mainly composed of mammalian STE20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), WW domain of the Sav family containing protein 1 (SAV1), MOB kinase activator 1 (MOB1), Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ), and members of the TEA domain (TEAD) family. YAP is the cascade effector of the hippo signaling pathway. The activation of YAP promotes pulmonary arterial vascular smooth muscle cells (PAVSMCs) proliferation, which leads to pulmonary vascular remodeling; thereby the pulmonary arterial hypertension (PAH) is aggravated. While the loss of YAP leads to high expression of inflammatory genes and the accumulation of inflammatory cells, the pneumonia is consequently exacerbated. In addition, overexpressed YAP promotes the proliferation of lung fibroblasts and collagen deposition; thereby the idiopathic pulmonary fibrosis (IPF) is promoted. Moreover, YAP knockout reduces collagen deposition and the senescence of adult alveolar epithelial cells (AECs); hence the IPF is slowed. In addition, hippo signaling pathway may be involved in the repair of acute lung injury (ALI) by promoting the proliferation and differentiation of lung epithelial progenitor cells and intervening in the repair of pulmonary capillary endothelium. Moreover, the hippo signaling pathway is involved in asthma. In conclusion, the hippo signaling pathway is involved in respiratory diseases. More researches are needed to focus on the molecular mechanisms by which the hippo signaling pathway participates in respiratory diseases.
Collapse
|
37
|
Kakanj P, Bhide S, Moussian B, Leptin M. Autophagy-mediated plasma membrane removal promotes the formation of epithelial syncytia. EMBO J 2022; 41:e109992. [PMID: 35262206 PMCID: PMC9194749 DOI: 10.15252/embj.2021109992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo‐membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub‐cellular membranes, as shown by its suppression of experimentally induced laminopathy‐like nuclear defects. Our findings reveal a function for TORC1‐mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.
Collapse
Affiliation(s)
- Parisa Kakanj
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sourabh Bhide
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | | | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Li R, Xiao Y, Li K, Tian L. Transcription and Post-translational Regulation of Autophagy in Insects. Front Physiol 2022; 13:825202. [PMID: 35283796 PMCID: PMC8916536 DOI: 10.3389/fphys.2022.825202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy attracts great attention, and numerous progresses have been obtained in the last two decades. Autophagy is implicated in mammalian neurodegenerative diseases, tumorigenesis, as well as development in insects. The regulatory mechanism of autophagy is well documented in yeast and mammals, whereas it is not fully illustrated in insects. Drosophila melanogaster and Bombyx mori are the two well-studied insects for autophagy, and several insect-mammalian evolutionarily conserved or insect-specific mechanisms in regulating autophagy are reported. In this review, we summarize the most recent studies of autophagy regulated at both transcriptional and post-translational levels by insect hormone in cooperation with other signals, such as nutrient, which will provide a reference and deep thinking for studies on autophagy in insects.
Collapse
Affiliation(s)
- Rongsong Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Xiao
- Department of Sericulture and Southern Medicine Resources Utilization, The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Ling Tian,
| |
Collapse
|
39
|
Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cell Mol Life Sci 2022; 79:78. [PMID: 35044538 PMCID: PMC8908880 DOI: 10.1007/s00018-021-04047-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.
Collapse
|
40
|
Zhou Y, Wang C, Ding J, Chen Y, Sun Y, Cheng Z. miR-133a targets YES1 to reduce cisplatin resistance in ovarian cancer by regulating cell autophagy. Cancer Cell Int 2022; 22:15. [PMID: 35012539 PMCID: PMC8751326 DOI: 10.1186/s12935-021-02412-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating evidence has revealed that aberrant microRNA (miRNA) expression can affect the development of chemotherapy drug resistance by modulating the expression of relevant target proteins. Emerging evidence has demonstrated that miR-133a participates in the tumorigenesis of various cancers. However, whether miR-133a is associated with cisplatin resistance in ovarian cancer remains unclear. Objective To investigate the role of miR-133a in the development of cisplatin resistance in ovarian cancer. Methods MiR-133a expression in cisplatin-resistant ovarian cancer cell lines was assessed by reverse-transcription quantitative PCR (RT–qPCR). A cell counting kit-8 (CCK-8) assay was used to evaluate the viability of tumour cells treated with cisplatin in the presence or absence of miR-133a. A luciferase reporter assay was used to analyse the binding of miR-133a with the 3′ untranslated region (3′UTR) of YES proto-oncogene 1 (YES1). The YES1 expression level was analysed using a dataset from the International Cancer Genome Consortium (ICGC) and assessed by RT–qPCR and western blotting in vitro. The roles and mechanisms of YES1 in cell functions were further probed via gain- and loss-of-function analysis. Results The expression of miR-133a was significantly decreased in cisplatin-resistant ovarian cancer cell lines (A2780-DDP and SKOV3-DDP), and the overexpression of the miR-133a mimic reduced cisplatin resistance in A2780-DDP and SKOV3-DDP cells. Treatment with the miR-133a inhibitor increased cisplatin sensitivity in normal A2780 and SKOV3 cells. MiR-133a binds the 3’UTR of YES1 and downregulates its expression. Bioinformatics analysis revealed that YES1 expression was upregulated in recurrent cisplatin-resistant ovarian cancer tissue, and in vitro experiments also verified its upregulation in cisplatin-resistant cell lines. Furthermore, we discovered that miR-133a downregulated the expression of YES1 and thus inhibited cell autophagy to reduce cisplatin resistance. Yes1 knockdown significantly suppressed the cisplatin resistance of ovarian cancer cells by inhibiting autophagy in vitro. Xenograft tumour implantation further demonstrated that Yes1 overexpression promoted ovarian tumour development and cisplatin resistance. Conclusions Our results suggest that the miR-133a/YES1 axis plays a critical role in cisplatin resistance in human ovarian cancer by regulating cell autophagy, which might serve as a promising therapeutic target for ovarian cancer chemotherapy treatment in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02412-x.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Institute of Gynecological Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunyan Wang
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinye Ding
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Institute of Gynecological Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yingying Chen
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Institute of Gynecological Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yaoqi Sun
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Institute of Gynecological Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Institute of Gynecological Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
41
|
Melatonin Attenuates Ropivacaine-Induced Apoptosis by Inhibiting Excessive Mitophagy Through the Parkin/PINK1 Pathway in PC12 and HT22 Cells. Inflammation 2022; 45:725-738. [PMID: 34994877 DOI: 10.1007/s10753-021-01579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 11/05/2022]
Abstract
Melatonin, as an endogenous circadian indoleamine secreted by the pineal gland, executes extensive biological functions, including antioxidant, anti-inflammatory, anti-tumor, and neuroprotective effects. Although melatonin has been reported to serve as a potential therapeutic against many nerve injury diseases, its effect on ropivacaine-induced neurotoxicity remains obscure. Our research aimed to explore the impact and mechanism of melatonin on ropivacaine-induced neurotoxicity. Our results showed that melatonin pretreatment protected the cell viability, morphology, and apoptosis of PC12 and HT22 cells, and it also improved ropivacaine-induced mitochondrial dysfunction and the activation of mitophagy. In addition, we found that autophagy activation with rapamycin significantly weakened the protective effect of melatonin against ropivacaine-induced apoptosis, whereas autophagy inhibition with 3-MA enhanced the effect of melatonin. We also detected the activation of Parkin and PINK1, a canonical mechanism for mitophagy regulation, and results shown that melatonin downregulated the expression of Parkin and PINK1, and upregulated Tomm20 and COXIV proteins, so that those results indicated that melatonin protected ropivacaine-induced apoptosis through suppressing excessive mitophagy by inhibiting the Parkin/PINK1 pathway. Melatonin may be a useful potential therapeutic agent against ropivacaine-induced neurotoxicity.
Collapse
|
42
|
Wang L, Li J, Wang R, Chen H, Wang R, Wang W, Yang X. NGF Signaling Interacts With the Hippo/YAP Pathway to Regulate Cervical Cancer Progression. Front Oncol 2021; 11:688794. [PMID: 34722240 PMCID: PMC8552705 DOI: 10.3389/fonc.2021.688794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nerve growth factor (NGF) is increasingly implicated in cervical cancer progression, but its mechanism in cervical cancer is unclear. Here, studies demonstrate that NGF inhibits the Hippo signaling pathway and activates Yes-associated protein (YAP) to induce cervical cancer cell proliferation and migration. Our results suggested that stimulation of NGF promoted cell growth and migration and activated YAP in HeLa and C-33A cell lines. The expression of YAP target genes (CTGF and ANKRD1) was upregulated after NGF treatment. The NGF inhibitor Ro 08-2750 and siRNA-mediated NGF receptor gene silencing suppressed HeLa and C-33A cells proliferation and migration, activated large suppressor kinase 1 (LATS1) kinase activity, and suppressed YAP function. In addition, the expression of YAP target genes (CTGF and ANKRD1) was suppressed by Ro 08-2750 treatment in HeLa and C-33A cells. Interestingly, proliferation was significantly higher in NGF-treated cells than in control cells, and this effect was completely reversed by the YAP small molecule inhibitor-verteporfin. Furthermore, the mouse xenograft model shows that NGF regulates YAP oncogenic activity in vivo. Mechanistically, NGF stimulation inactivates LATS1 and activates YAP, and NGF inhibition was found to induce large suppressor kinase 1 (LATS1) phosphorylation. Taken together, these data provide the first direct evidence of crosstalk between the NGF signaling and Hippo cancer pathways, an interaction that affects cervical cancer progression. Our study indicates that combined targeting of the NGF signaling and the Hippo pathway represents a novel therapeutic strategy for treatment of cervical cancer.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - He Chen
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiqi Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Zhou L, Wang J, Liu J, Liang J, Wang Y, Cai Q, Huang Y. YAP activation attenuates toxicarioside G‑induced lethal autophagy arrest in SW480 colorectal cancer cells. Oncol Rep 2021; 46:224. [PMID: 34458926 PMCID: PMC8424488 DOI: 10.3892/or.2021.8175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Toxicarioside G (TCG), a natural product isolated from Calotropis gigantea, has been found to exhibit potent anticancer effects. The present study aimed to investigate the effect of TCG on the SW480 colorectal cancer cell line and the role of autophagy and Yes1 associated transcriptional regulator (YAP) in the TCG-mediated inhibition of cell proliferation and viability. Cell proliferation was detected using MTT, BrdU, colony formation and LDH release assays, while apoptosis was analyzed using flow cytometry and western blot analyses. Immunofluorescence and western blot analysis was used to determine TCG-induced autophagy and YAP activation. Pharmacological inhibition and siRNA was used to investigate the role of autophagy and YAP in TCG-mediated cell growth inhibition. The results revealed that TCG inhibited SW480 cell proliferation and viability, independent of apoptosis, and also induced autophagy. It was further demonstrated that TCG blocks autophagic flux, resulting in autophagy arrest in the SW480 cell line. The inhibition of autophagy restored the TCG-mediated inhibition of cell proliferation and viability, suggesting that TCG may induce lethal autophagy arrest in the SW480 cell line. Furthermore, TCG induced YAP activation in the SW480 cell line. Inhibition of YAP activity enhanced the TCG-mediated inhibition of cell proliferation and viability, suggesting that YAP may play a protective role in the TCG-induced effects. In conclusion, the findings of the present study indicated that TCG may induce lethal autophagy arrest and activate YAP, which serves a protective role in the SW480 cell line. These results suggested that the combined targeting of TCG and YAP may represent a promising strategy for TCG-mediated anticancer therapy.
Collapse
Affiliation(s)
- Limin Zhou
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinyan Wang
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiaqi Liu
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiantang Liang
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yansong Wang
- Hainan Haitai Biomedical Technology Co., Ltd., Haikou, Hainan 571199, P.R. China
| | - Qunfang Cai
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yonghao Huang
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
44
|
Sun T, Peng H, Mao W, Ma L, Liu H, Mai J, Jiao L. Autophagy-mediated negative feedback attenuates the oncogenic activity of YAP in pancreatic cancer. Int J Biol Sci 2021; 17:3634-3645. [PMID: 34512171 PMCID: PMC8416727 DOI: 10.7150/ijbs.61795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy in humans, and new therapeutic targets are urgently needed. Yes-associated protein (YAP) plays a significant role in cancer progression. Autophagy is also closely associated with various human cancers. However, the interplay between YAP and autophagy in PDAC remains poorly understood. In this study, we found that YAP was upregulated and activated in PDAC. Further analysis revealed that there is a YAP-autophagy feedback loop in pancreatic cancer. Mechanistically, YAP activates autophagy by promoting Atg5 transcription via TEAD1-mediated binding, while autophagy negatively regulates YAP through autophagic degradation. The hyperactivation of YAP in PDAC unbalances the YAP-autophagy circuit and promotes cancer progression. Inhibition of autophagy enhances the oncogenic activity of YAP in PDAC. The autophagy activator rapamycin promotes the antitumor effect of verteporfin, a YAP inhibitor. Therefore, our study elucidated the interaction between YAP and autophagy in PDAC and our results suggest that targeting the YAP-autophagy circuit may be a new therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenhao Mao
- Department of Clinical Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
45
|
Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, Dobrowolski A, Ghawali J, Ruhlandt M, Gorrepati KDD, Azizi Z, Lim DS, Maedler K, Ardestani A. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun 2021; 12:4928. [PMID: 34389720 PMCID: PMC8363615 DOI: 10.1038/s41467-021-25145-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes results from a decline in functional pancreatic β-cells, but the molecular mechanisms underlying the pathological β-cell failure are poorly understood. Here we report that large-tumor suppressor 2 (LATS2), a core component of the Hippo signaling pathway, is activated under diabetic conditions and induces β-cell apoptosis and impaired function. LATS2 deficiency in β-cells and primary isolated human islets as well as β-cell specific LATS2 ablation in mice improves β-cell viability, insulin secretion and β-cell mass and ameliorates diabetes development. LATS2 activates mechanistic target of rapamycin complex 1 (mTORC1), a physiological suppressor of autophagy, in β-cells and genetic and pharmacological inhibition of mTORC1 counteracts the pro-apoptotic action of activated LATS2. We further show a direct interplay between Hippo and autophagy, in which LATS2 is an autophagy substrate. On the other hand, LATS2 regulates β-cell apoptosis triggered by impaired autophagy suggesting an existence of a stress-sensitive multicomponent cellular loop coordinating β-cell compensation and survival. Our data reveal an important role for LATS2 in pancreatic β-cell turnover and suggest LATS2 as a potential therapeutic target to improve pancreatic β-cell survival and function in diabetes.
Collapse
Affiliation(s)
- Ting Yuan
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Karthika Annamalai
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shruti Naik
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Anasua Pal
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Jaee Ghawali
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Marina Ruhlandt
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Zahra Azizi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dae-Sik Lim
- Department of Biological Sciences, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Cellular feedback dynamics and multilevel regulation driven by the hippo pathway. Biochem Soc Trans 2021; 49:1515-1527. [PMID: 34374419 PMCID: PMC8421037 DOI: 10.1042/bst20200253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
The Hippo pathway is a dynamic cellular signalling nexus that regulates differentiation and controls cell proliferation and death. If the Hippo pathway is not precisely regulated, the functionality of the upstream kinase module is impaired, which increases nuclear localisation and activity of the central effectors, the transcriptional co-regulators YAP and TAZ. Pathological YAP and TAZ hyperactivity consequently cause cancer, fibrosis and developmental defects. The Hippo pathway controls an array of fundamental cellular processes, including adhesion, migration, mitosis, polarity and secretion of a range of biologically active components. Recent studies highlight that spatio-temporal regulation of Hippo pathway components are central to precisely controlling its context-dependent dynamic activity. Several levels of feedback are integrated into the Hippo pathway, which is further synergized with interactors outside of the pathway that directly regulate specific Hippo pathway components. Likewise, Hippo core kinases also ‘moonlight’ by phosphorylating multiple substrates beyond the Hippo pathway and thereby integrates further flexibility and robustness in the cellular decision-making process. This topic is still in its infancy but promises to reveal new fundamental insights into the cellular regulation of this therapeutically important pathway. We here highlight recent advances emphasising feedback dynamics and multilevel regulation of the Hippo pathway with a focus on mitosis and cell migration, as well as discuss potential productive future research avenues that might reveal novel insights into the overall dynamics of the pathway.
Collapse
|
47
|
Wang D, He J, Dong J, Wu S, Liu S, Zhu H, Xu T. UM-6 induces autophagy and apoptosis via the Hippo-YAP signaling pathway in cervical cancer. Cancer Lett 2021; 519:2-19. [PMID: 34161791 DOI: 10.1016/j.canlet.2021.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022]
Abstract
Melittin's non-specific cytotoxicity and hemolytic activity restrict its clinical use, but polypeptide modification is thoμght to be highly selective and well-tolerated. Here, we synthesized a novel antineoplastic peptide UM-6 based on melittin and explored the mechanism related to its anti-proliferation and metastasis on cervical cancer (CC). In the present study, we demonstrated that UM-6 inhibits viability of CC cell lines Caski and Hela in vitro by inducing apoptosis and autophagy with low toxicity to normal epithelial cells. UM-6 also triggers the Hippo signaling pathway, promoting cytoplasmic retention and phosphorylation-dependent degradation of YAP, as well as inhibiting YAP-TEAD binding and reducing transcriptional activity, suppressing downstream target gene expression. Injection of UM-6 in mice can significantly inhibit the growth of xenograft tumors, and greatly reduce the number, volume, and burden of abdominal tumors in the metastasis models without significant toxicity. These current results suggest that UM-6 has the potential to serve as a new anticancer drug candidate.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, PR China.
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, PR China.
| | - Junxue Dong
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, PR China; Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, 24105, Germany.
| | - Shuying Wu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, PR China.
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, PR China.
| | - He Zhu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, PR China.
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, PR China.
| |
Collapse
|