1
|
Feng Y, Tang Q, Wang B, Yang Q, Zhang Y, Lei L, Li S. Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. J Nanobiotechnology 2024; 22:737. [PMID: 39605063 PMCID: PMC11603847 DOI: 10.1186/s12951-024-03005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The tumor microenvironment (TME) is a complex system characterized by low oxygen, low pH, high pressure, and numerous growth factors and protein hydrolases that regulate a wide range of biological behaviors in the tumor and have a profound impact on cancer progression. Immunotherapy is an innovative approach to cancer treatment that activates the immune system, resulting in the spontaneous killing of tumor cells. However, the therapeutic efficacy of these clinically approved cancer immunotherapies (e.g., immune checkpoint blocker (ICB) therapies and chimeric antigen receptor (CAR) T-cell therapies) is far from satisfactory due to the presence of immunosuppressive TMEs created in part by tumor hypoxia, acidity, high levels of reactive oxygen species (ROS), and a dense extracellular matrix (ECM). With continuous advances in materials science and drug-delivery technologies, biomaterials hold considerable potential for targeting the TME. This article reviews the advances in biomaterial-based targeting of the TME to advance our current understanding on the role of biomaterials in enhancing tumor immunity. In addition, the strategies for remodeling the TME offer enticing advantages; however, the represent a double-edged sword. In the process of reshaping the TME, the risk of tumor growth, infiltration, and distant metastasis may increase.
Collapse
Affiliation(s)
- Yekai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Matboli M, Diab GI, Saad M, Khaled A, Roushdy M, Ali M, ELsawi HA, Aboughaleb IH. Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101456. [PMID: 39055616 PMCID: PMC11268357 DOI: 10.1016/j.jceh.2024.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third prime cause of malignancy-related mortality worldwide. Early and accurate identification of HCC is crucial for good prognosis, efficacy of therapy, and survival rates of the patients. We aimed to develop a machine-learning model incorporating differentially expressed RNA signatures with laboratory parameters to construct an RNA signature-based diagnostic model for HCC. Methods We have used five classifiers (KNN, RF, SVM, LGBM, and DNNs) to predict the liver disease (HCC). The classifiers were trained on 187 samples and then tested on 80 samples. The model included 22 features (age, sex, smoking, cirrhosis, non-cirrhosis, albumin, ALT, AST bilirubin (total and direct), INR, AFP, HBV Ag, HCV Abs, RQmiR-1298, RQmiR-1262, RQmiR-106b-3p, RQmRNARAB11A, and RQSTAT1, RQmRNAATG12, RQLnc-WRAP53, RQLncRNA- RP11-513I15.6). Results LGBM achieved the highest accuracy of 98.75% in predicting HCC among all models surpassing Random Forest (96.25%), DNN (91.25%), SVC (88.75%), and KNN (87.50%). Conclusion Our machine-learning model incorporating the expression data of RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 signature and clinical data represents a potential novel diagnostic model for HCC.
Collapse
Affiliation(s)
- Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Gouda I. Diab
- Biomedical Engineering Department, Egyptian Armed Forces, Cairo, Egypt
| | - Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Marian Roushdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Marwa Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | | |
Collapse
|
3
|
Fang H, Chen X, Zhong Y, Wu S, Ke Q, Huang Q, Wang L, Zhang K. Integrating anoikis and ErbB signaling insights with machine learning and single-cell analysis for predicting prognosis and immune-targeted therapy outcomes in hepatocellular carcinoma. Front Immunol 2024; 15:1446961. [PMID: 39464883 PMCID: PMC11502379 DOI: 10.3389/fimmu.2024.1446961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) poses a significant global health challenge due to its poor prognosis and limited therapeutic modalities. Anoikis and ErbB signaling pathways are pivotal in cancer cell proliferation and metastasis, but their relevance in HCC remains insufficiently explored. Methods This study evaluates the prognostic significance of anoikis and ErbB signaling pathways in HCC by utilizing data from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), three additional independent validation cohorts, and an in-house cohort. Advanced bioinformatics analyses and 167 machine learning models based on leave-one-out cross-validation (LOOCV) were used to predict HCC prognosis and assess outcomes of immune-targeted therapies. Additionally, key biological processes of the anoikis and ErbB signaling pathways in HCC were further investigated. Results The single sample Gene Set Enrichment Analysis revealed a strong correlation between upregulated ErbB signaling in high anoikis-expressing tumors and poor clinical outcomes. The development of the Anoikis-ErbB Related Signature (AERS) using the LASSO + RSF model demonstrated robust predictive capabilities, as validated across multiple patient cohorts, and proved effective in predicting responses to immune-targeted therapies. Further investigation highlighted activated NOTCH signaling pathways and decreased macrophage infiltration was associated with resistance to sorafenib and immune checkpoint inhibitors, as evidenced by bulk and single-cell RNA sequencing (scRNA-seq). Conclusion AERS provides a novel tool for clinical prognosis and paves the way for immune-targeted therapeutic approaches, underscoring the potential of integrated molecular profiling in enhancing treatment strategies for HCC.
Collapse
Affiliation(s)
- Huipeng Fang
- Department of General Surgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xingte Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yaqi Zhong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shiji Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Qiao Ke
- Department of Hepatopancreatobiliary Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Qizhen Huang
- Department of Radiation Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lei Wang
- Department of Radiation Oncology, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Kun Zhang
- Department of General Surgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Zheng B, Chen K, Liu X, Wan Z, Wu Y, Xu L, Xiao J, Chen J. Transcription factor ETS1‑mediated ECT2 expression promotes the malignant behavior of prostate cancer cells. Oncol Lett 2024; 28:453. [PMID: 39100995 PMCID: PMC11294974 DOI: 10.3892/ol.2024.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/22/2024] [Indexed: 08/06/2024] Open
Abstract
Prostate cancer remains the most prevalent malignancy diagnosed in men worldwide. Epithelial cell transforming sequence 2 (ECT2) is an oncogene involved in the progression of human tumors. The present study aimed to explore the involvement of ECT2 in prostate cancer and its participation in the malignant progression of prostate cancer. ECT2 expression in prostate cancer cell lines was examined via reverse transcription-quantitative PCR and western blotting. The effects of knockdown of ECT2 expression in PC-3 cells on cellular biological behaviors, including proliferation, migration and invasion, were examined using Cell Counting Kit-8, colony formation, wound healing and Transwell assays. The glycolysis level was determined based on the lactate release, glucose uptake, oxygen consumption rate and extracellular acidification rate. The binding relationship between ECT2 and ETS1 was verified using luciferase reporter and chromatin immunoprecipitation assays. The results indicated that ECT2 was highly expressed in prostate cancer cell lines. Knockdown of ECT2 expression could inhibit cell proliferation, migration, invasion and glycolysis. In addition, the transcription factor ETS1 could directly bind to the ECT2 promoter and positively regulate ECT2 expression. These data were combined with the results of rescue experiments and demonstrated that the inhibitory effects of the knockdown of ECT2 expression on the malignant behavior and glycolysis of prostate cancer cells were partially reversed by ETS1 overexpression. In conclusion, ETS1 induced transcriptional upregulation of ECT2 and enhanced the malignant biological behaviors of prostate cancer cells, thereby promoting the progression of prostate cancer. This evidence provides a theoretical basis for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Urology, The Fifth Hospital of Xiamen City, Xiamen, Fujian 361101, P.R. China
| | - Kuifu Chen
- Department of Urology, The Fifth Hospital of Xiamen City, Xiamen, Fujian 361101, P.R. China
| | - Xin Liu
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361000, P.R. China
| | - Zhenghua Wan
- Department of Urology, The Fifth Hospital of Xiamen City, Xiamen, Fujian 361101, P.R. China
| | - Yulong Wu
- Department of Urology, The Fifth Hospital of Xiamen City, Xiamen, Fujian 361101, P.R. China
| | - Liming Xu
- Department of Urology, The Fifth Hospital of Xiamen City, Xiamen, Fujian 361101, P.R. China
| | - Jiguang Xiao
- Department of Urology, The Fifth Hospital of Xiamen City, Xiamen, Fujian 361101, P.R. China
| | - Jinqu Chen
- Department of Urology, The Fifth Hospital of Xiamen City, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
5
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Liang QJ, Long QQ, Tian FQ, Long XD. Progress in research of polo-like kinase 1 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2024; 32:652-659. [DOI: 10.11569/wcjd.v32.i9.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Polo-like kinase 1 (PLK1) is a protein kinase that regulates the cell cycle, and it has been found that PLK1 mediates the regulation of signaling pathways associated with hepatocellular carcinoma (HCC) development, thereby affecting the biological behaviors of hepatic tumor cells such as cell proliferation, migration, and invasion. Therefore, PLK1 may be a very promising target for the treatment of HCC. This article reviews the relevant signaling pathways of PLK1 in HCC development and PLK1 inhibitors in the treatment of HCC.
Collapse
Affiliation(s)
- Qiu-Ju Liang
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qin-Qin Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Feng-Qin Tian
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Akbulut S, Kucukakcali Z, Sahin TT, Colak C, Yilmaz S. Role of Epigenetic Factors in Determining the Biological Behavior and Prognosis of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:1925. [PMID: 39272711 PMCID: PMC11394249 DOI: 10.3390/diagnostics14171925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The current study's objective is to evaluate the molecular genetic mechanisms influencing the biological behavior of hepatocellular carcinoma (HCC) by analyzing the transcriptomic and epigenetic signatures of the tumors. METHODS Transcriptomic data were downloaded from the NCBI GEO database. We investigated the expression differences between the GSE46444 (48 cirrhotic tissues versus 88 HCC tissues) and GSE63898 (168 cirrhotic tissues versus 228 HCC tissues) data sets using GEO2R. Differentially expressed genes were evaluated using GO and KEGG metabolic pathway analysis websites. Whole genome bisulfite sequencing (WGBS) and Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) data sets (26 HCC tissues versus 26 adjacent non-tumoral tissues) were also downloaded from the NCBI SRA database. These data sets were analyzed using Bismark and QSEA, respectively. The methylation differences between the groups were assessed using functional enrichment analysis. RESULTS In the GSE46444 data set, 80 genes were upregulated, and 315 genes were downregulated in the tumor tissue (HCC tissue) compared to the non-tumor cirrhotic tissue. In the GSE63898 data set, 1261 genes were upregulated, and 458 genes were downregulated in the cirrhotic tissue compared to the tumor tissues. WGBS revealed that 20 protein-coding loci were hypermethylated. while the hypomethylated regions were non-protein-coding. The methylated residues of the tumor tissue, non-tumorous cirrhotic tissue, and healthy tissue were comparable. MeDIP-Seq, conducted on tumoral and non-tumoral tissues, identified hypermethylated or hypomethylated areas as protein-coding regions. The functional enrichment analysis indicated that these genes were related to pathways including peroxisome, focal adhesion, mTOR, RAP1, Phospholipase D, Ras, and PI3K/AKT signal transduction. CONCLUSIONS The investigation of transcriptomic and epigenetic mechanisms identified several genes significant in the biological behavior of HCC. These genes present potential targets for the development of targeted therapy.
Collapse
Affiliation(s)
- Sami Akbulut
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Tevfik Tolga Sahin
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
8
|
Anyin Y, Jianping L, Mengru L, Hong Z, Xulei Z, Lianping W. Integrating bioinformatics and machine learning methods to analyze diagnostic biomarkers for HBV-induced hepatocellular carcinoma. Diagn Pathol 2024; 19:105. [PMID: 39095799 PMCID: PMC11295615 DOI: 10.1186/s13000-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor. It is estimated that approximately 50-80% of HCC cases worldwide are caused by hepatitis b virus (HBV) infection, and other pathogenic factors have been shown to promote the development of HCC when coexisting with HBV. Understanding the molecular mechanisms of HBV-induced hepatocellular carcinoma (HBV-HCC) is crucial for the prevention, diagnosis, and treatment of the disease. In this study, we analyzed the molecular mechanisms of HBV-induced HCC by combining bioinformatics and deep learning methods. Firstly, we collected a gene set related to HBV-HCC from the GEO database, performed differential analysis and WGCNA analysis to identify genes with abnormal expression in tumors and high relevance to tumors. We used three deep learning methods, Lasso, random forest, and SVM, to identify key genes RACGAP1, ECT2, and NDC80. By establishing a diagnostic model, we determined the accuracy of key genes in diagnosing HBV-HCC. In the training set, RACGAP1(AUC:0.976), ECT2(AUC:0.969), and NDC80 (AUC: 0.976) showed high accuracy. They also exhibited good accuracy in the validation set: RACGAP1(AUC:0.878), ECT2(AUC:0.731), and NDC80(AUC:0.915). The key genes were found to be highly expressed in liver cancer tissues compared to normal liver tissues, and survival analysis indicated that high expression of key genes was associated with poor prognosis in liver cancer patients. This suggests a close relationship between key genes RACGAP1, ECT2, and NDC80 and the occurrence and progression of HBV-HCC. Molecular docking results showed that the key genes could spontaneously bind to the anti-hepatocellular carcinoma drugs Lenvatinib, Regorafenib, and Sorafenib with strong binding activity. Therefore, ECT2, NDC80, and RACGAP1 may serve as potential biomarkers for the diagnosis of HBV-HCC and as targets for the development of targeted therapeutic drugs.
Collapse
Affiliation(s)
- Yang Anyin
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Liu Jianping
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Li Mengru
- Department of Hospital Infection Management Section, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Zhang Hong
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Zhang Xulei
- Department of Liver Disease, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China.
| | - Wu Lianping
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China.
| |
Collapse
|
9
|
Wang F, Liao W, Li C, Zhu L. Silencing BMAL1 promotes M1/M2 polarization through the LDHA/lactate axis to promote GBM sensitivity to bevacizumab. Int Immunopharmacol 2024; 134:112187. [PMID: 38733825 DOI: 10.1016/j.intimp.2024.112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE Glioblastoma (GBM) has poor clinical prognosis due to limited treatment options. In addition, the current treatment regimens for GBM may only slightly prolong patient survival. The aim of this study was to assess the role of BMAL1 in the immune microenvironment and drug resistance of GBM. METHODS GBM cell lines with stable BMAL1 knockdown or LDHA overexpression were constructed, and functionally characterized by the CCK8, EdU incorporation, and transwell assays. In vivo GBM model was established in C57BL/6J mice. Flow cytometry, ELISA, immunofluorescence, and RT-qPCR were performed to detect macrophage polarization. Lactate production, pathological changes, and the expression of glycolytic proteins were analyzed by HE staining, immunohistochemistry, biochemical assays, and Western blotting. RESULTS BMAL1 silencing inhibited the malignant characteristics, lactate production, and expression of glycolytic proteins in GBM cells, and these changes were abrogated by overexpression of LDHA or exogenous lactate supplementation. Furthermore, BMAL1 knockdown induced M1 polarization of macrophages, and inhibited M2 polarization and angiogenesis in GBM cells in conditioned media. Overexpression of LDHA or presence of exogenous lactate inhibited BMAL1-induced M1 polarization and angiogenesis. Finally, BMAL1 silencing and bevacizumab synergistically inhibited glycolysis, angiogenesis and M2 polarization, and promoted M1 polarization in vivo, thereby suppressing GBM growth. CONCLUSION BMAL1 silencing can sensitize GBM cells to bevacizumab by promoting M1/M2 polarization through the LDHA/lactate axis.
Collapse
Affiliation(s)
- Fan Wang
- Department of Neurosurgery, Jingmen Central Hospital, No. 168 Xiangshan Avenue, Jingmen, 448000, Hubei province, China
| | - Wenjun Liao
- Department of Neurosurgery, Jingmen Central Hospital, No. 168 Xiangshan Avenue, Jingmen, 448000, Hubei province, China
| | - Caiyan Li
- Department of Neurosurgery, Jingmen Central Hospital, No. 168 Xiangshan Avenue, Jingmen, 448000, Hubei province, China
| | - Ling Zhu
- Department of Neurosurgery, Jingmen Central Hospital, No. 168 Xiangshan Avenue, Jingmen, 448000, Hubei province, China.
| |
Collapse
|
10
|
Johnson JR, Martini RN, Yuan YC, Woods-Burnham L, Walker M, Ortiz-Hernandez GL, Kobeissy F, Galloway D, Gaddy A, Oguejiofor C, Allen B, Lewis D, Davis MB, Kimbro KS, Yates CC, Murphy AB, Kittles RA. 1,25-Dihydroxyvitamin D 3 Suppresses Prognostic Survival Biomarkers Associated with Cell Cycle and Actin Organization in a Non-Malignant African American Prostate Cell Line. BIOLOGY 2024; 13:346. [PMID: 38785827 PMCID: PMC11118023 DOI: 10.3390/biology13050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Vitamin D3 is a steroid hormone that confers anti-tumorigenic properties in prostate cells. Serum vitamin D3 deficiency has been associated with advanced prostate cancer (PCa), particularly affecting African American (AA) men. Therefore, elucidating the pleiotropic effects of vitamin D on signaling pathways, essential to maintaining non-malignancy, may provide additional drug targets to mitigate disparate outcomes for men with PCa, especially AA men. We conducted RNA sequencing on an AA non-malignant prostate cell line, RC-77N/E, comparing untreated cells to those treated with 10 nM of vitamin D3 metabolite, 1α,25(OH)2D3, at 24 h. Differential gene expression analysis revealed 1601 significant genes affected by 1α,25(OH)2D3 treatment. Pathway enrichment analysis predicted 1α,25(OH)2D3- mediated repression of prostate cancer, cell proliferation, actin cytoskeletal, and actin-related signaling pathways (p < 0.05). Prioritizing genes with vitamin D response elements and associating expression levels with overall survival (OS) in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) cohort, we identified ANLN (Anillin) and ECT2 (Epithelial Cell Transforming 2) as potential prognostic PCa biomarkers. Both genes were strongly correlated and significantly downregulated by 1α,25(OH)2D3 treatment, where low expression was statistically associated with better overall survival outcomes in the TCGA PRAD public cohort. Increased ANLN and ECT2 mRNA gene expression was significantly associated with PCa, and Gleason scores using both the TCGA cohort (p < 0.05) and an AA non-malignant/tumor-matched cohort. Our findings suggest 1α,25(OH)2D3 regulation of these biomarkers may be significant for PCa prevention. In addition, 1α,25(OH)2D3 could be used as an adjuvant treatment targeting actin cytoskeleton signaling and actin cytoskeleton-related signaling pathways, particularly among AA men.
Collapse
Affiliation(s)
- Jabril R. Johnson
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Rachel N. Martini
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Yate-Ching Yuan
- Department of Computational Quantitative Medicine, Center for Informatics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Leanne Woods-Burnham
- Department of Physiology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Mya Walker
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Greisha L. Ortiz-Hernandez
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| | - Dorothy Galloway
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Amani Gaddy
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Chidinma Oguejiofor
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Blake Allen
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Deyana Lewis
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Melissa B. Davis
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Clayton C. Yates
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adam B. Murphy
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rick A. Kittles
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| |
Collapse
|
11
|
Shen C, Wang T, Li K, Fu C, Yang S, Zhang Z, Wu Z, Li Z, Li Z, Lin Y, Zhang Y, Guo J, Fan Z, Hu H. The prognostic values and immune characteristics of polo-like kinases (PLKs) family: A pan-cancer multi-omics analysis. Heliyon 2024; 10:e28048. [PMID: 38560150 PMCID: PMC10979165 DOI: 10.1016/j.heliyon.2024.e28048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background In the realm of tumor-targeted therapeutics, Polo-like kinases (PLKs) are a significant group of protein kinases that were found recently as being related to tumors. However, the significance of PLKs in pan-cancer remains systematically studied. Methods and materials We integrated multi-omics data to comprehensively investigate the expression patterns of the PLK family across various cancer types. Subsequently, study examined the associations between tumor mutation burden (TMB), microsatellite instability (MSI), immune subtype classification, immune infiltration, tumor microenvironment scores, immune checkpoint gene expression, and the PLKs expression profiles within various tumor types. Furthermore, using our mRNA sequencing data (TRUCE01) and four bladder cancer (BLCA) cohorts (GSE111636, GSE176307, and IMvigor210), We examined the correlation between the expression level of PLK and immunotherapy effectiveness. Next, Gene set enrichment analysis (GSEA) was evaluated to find that potentially enriched PLK signaling pathways. Utilizing TIMER 2.0, we conducted an immune infiltration analysis underlying transcriptome expression, copy number variations (CNV), or somatic mutations of PLKs in BLCA. Finally, mRNA expression validation of PLK1/3/4 by real-time PCR within 10 paired BLCA tissues, protein expression verification through the Human Protein Atlas (HPA), and PLK4 in vitro cytological studies have been employed in BLCA. Results The expression of most of the PLK family members exhibits variation between cancerous tissues and adjacent normal tissues across various cancer species. Furthermore, the expression of PLKs demonstrates a significant association with immunotyping, infiltration of immune cell, tumor mutational burden (TMB), microsatellite instability (MSI), immunological checkpoint gene activity and therapeutic effectiveness in pan-tumor tissues. Additional investigation into the correlation between the PLK family and BLCA has revealed that the expression of the PLK genes holds substantial significance in the biological processes of BLCA. Furthermore, a notable association has been observed between the copy number variation, variant status, and the degree of certain immunological cell infiltration. Of note, the expression validation and in vitro phenotypic experiments have demonstrated that PLK4 has a significant function in promoting the BLCA cell proliferation, migration, and invasion. Conclusion Collectively, based on various databases, our results highlight the involvement of PLK gene family in the formation of different types of tumors and identify PLK-related genes that may be used for therapy.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Tong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kai Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chong Fu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhi Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhuolun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jian Guo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
12
|
Yang Q, Zhuo Z, Qiu X, Luo R, Guo K, Wu H, Jiang R, Li J, Lian Q, Chen P, Sha W, Chen H. Adverse clinical outcomes and immunosuppressive microenvironment of RHO-GTPase activation pattern in hepatocellular carcinoma. J Transl Med 2024; 22:122. [PMID: 38297333 PMCID: PMC10832138 DOI: 10.1186/s12967-024-04926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Emerging evidence suggests that Rho GTPases play a crucial role in tumorigenesis and metastasis, but their involvement in the tumor microenvironment (TME) and prognosis of hepatocellular carcinoma (HCC) is not well understood. METHODS We aim to develop a tumor prognosis prediction system called the Rho GTPases-related gene score (RGPRG score) using Rho GTPase signaling genes and further bioinformatic analyses. RESULTS Our work found that HCC patients with a high RGPRG score had significantly worse survival and increased immunosuppressive cell fractions compared to those with a low RGPRG score. Single-cell cohort analysis revealed an immune-active TME in patients with a low RGPRG score, with strengthened communication from T/NK cells to other cells through MIF signaling networks. Targeting these alterations in TME, the patients with high RGPRG score have worse immunotherapeutic outcomes and decreased survival time in the immunotherapy cohort. Moreover, the RGPRG score was found to be correlated with survival in 27 other cancers. In vitro experiments confirmed that knockdown of the key Rho GTPase-signaling biomarker SFN significantly inhibited HCC cell proliferation, invasion, and migration. CONCLUSIONS This study provides new insight into the TME features and clinical use of Rho GTPase gene pattern at the bulk-seq and single-cell level, which may contribute to guiding personalized treatment and improving clinical outcome in HCC.
Collapse
Affiliation(s)
- Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xinqi Qiu
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518118, Guangdong, China.
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, SAR, China.
| | - Pengfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
13
|
Ma H, Li Z, Chen R, Ren Z. Development of a Combined Oxidative Stress and Endoplasmic Reticulum Stress-Related Prognostic Signature for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2024; 27:2850-2860. [PMID: 37957902 PMCID: PMC11497145 DOI: 10.2174/0113862073257308231026073951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Oxidative stress and endoplasmic reticulum stress are important components of the cellular stress process, which plays a critical role in tumor initiation and progression. METHODS First, the correlation between oxidative stress and endoplasmic reticulum stress was detected in 68 human hepatocellular carcinoma (HCC) tissue microarray samples by immunohistochemistry. Differentially expressed oxidative stress- and endoplasmic reticulum stressrelated genes (OESGs) then were screened in HCC. Next, an OESGs prognostic signature was constructed for HCC in the training cohort (TCGA-LIHC from The Cancer Genome Atlas), by least absolute shrinkage and selection operator Cox and stepwise Cox regression analyses, and was verified in the external cohort (GSE14520 from the Gene Expression Omnibus). The MCP counter was employed to evaluate immune cell infiltration. The C-index was used to evaluate the predictive power of prognostic signature. Finally, a prognostic nomogram model was constructed to predict the survival probability of patients with HCC based on the results of Cox regression analysis. RESULTS We demonstrated a positive correlation between oxidative stress and endoplasmic reticulum stress in human HCC samples. We then identified five OESGs as a prognostic signature consisting of IL18RAP, ECT2, PPARGC1A, STC2, and NQO1 for HCC. Related risk scores correlated with tumor stage, grade, and response to transcatheter arterial chemoembolization therapy, and the higher risk score group had less T cells, CD8+ T cells, cytotoxic lymphocytes and natural killer cell infiltration. The C-index of our OESGs prognostic signature was superior to four previously published signatures. Furthermore, we developed a nomogram based on the OESGs prognostic signature and clinical parameters for patients with HCC that is an effective quantitative analysis tool to predict patient survival. CONCLUSION The OESGs signature showed excellent performance in predicting survival and therapeutic responses for patients with HCC.
Collapse
Affiliation(s)
- Hui Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Zhongchen Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
15
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
16
|
Wei Y, Yang C, Wei J, Li W, Qin Y, Liu G. Identification and verification of microtubule associated genes in lung adenocarcinoma. Sci Rep 2023; 13:16134. [PMID: 37752167 PMCID: PMC10522656 DOI: 10.1038/s41598-023-42985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Associated with high morbidity and mortality, lung adenocarcinoma (LUAD) is lacking in effective prognostic prediction and treatment. As chemotherapy drugs commonly used in clinics, microtubule-targeting agents (MTAs) are limited by high toxicity and drug resistance. This research aimed to analyze the expression profile of microtubule-associated genes (MAGs) in LUAD and explore their therapy efficiency and impact on prognosis. Key MAGs were identified as novel molecular targets for targeting microtubules. The LUAD project in The Cancer Genome Atlas (TCGA) database was used to identify differently expressed MAGs. On the one hand, a microtubule-related prognostic signature was constructed and validated, and its links with clinical characteristics and the immune microenvironment were analyzed. On the other hand, hub MAGs were obtained by a protein-protein interaction (PPI) network. Following the expression of hub MAGs, patients with LUAD were classified into two molecular subtypes. A comparison was made of the differences in half-maximal drug inhibitory concentration (IC50) and tumor mutational burden (TMB) between groups. In addition, the influence of MAGs on the anticancer efficacy of different therapies was explored. MAGs, which were included in both the prognosis signature and hub genes, were considered to have great value in prognosis and targeted therapy. They were identified by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 154 differently expressed MAGs were discovered. For one thing, a microtubule-related prognostic signature based on 14 MAGs was created and identified in an external validation cohort. The prognostic signature was used as an independent prognostic factor. For another, 45 hub MAGs were obtained. In accordance with the expression profile of 45 MAGs, patients with LUAD were divided into two subtypes. Distinct differences were observed in TMB and IC50 values of popular chemotherapy and targeted drugs between subtypes. Finally, five genes were included in both the prognosis signature and hub genes, and identified by qRT-PCR. A microtubule-related prognosis signature that can serve as an independent prognostic factor was constructed. Microtubule subtype influenced the efficacy of different treatments and could be used to guide therapy selection. In this research, five key MAGs, including MYB proto-oncogene like 2 (MYBL2), nucleolar and spindle-associated protein 1 (NUSAP1), kinesin family member 4A (KIF4A), KIF15 and KIF20A, were verified and identified. They are promising biomarkers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- YuHui Wei
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - CaiZhen Yang
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - JinMei Wei
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - WenTao Li
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - YuanWen Qin
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - GuangNan Liu
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
17
|
Yuan Y, Wu D, Li J, Huang D, Zhao Y, Gao T, Zhuang Z, Cui Y, Zheng DY, Tang Y. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma. Front Pharmacol 2023; 14:1217400. [PMID: 37663266 PMCID: PMC10470150 DOI: 10.3389/fphar.2023.1217400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/β-catenin, transforming growth factor-β1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.
Collapse
Affiliation(s)
- Yi Yuan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dailin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianqi Gao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Cui
- Department of Psychiatry, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Da-Yong Zheng
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Hepatopancreatobiliary, Cancer Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Liu S, Xiang Y, Wang B, Gao C, Chen Z, Xie S, Wu J, Liu Y, Zhao X, Yang C, Yue Z, Wang L, Wen X, Zhang R, Zhang F, Xu H, Zhai X, Zheng H, Zhang H, Qian M. USP1 promotes the aerobic glycolysis and progression of T-cell acute lymphoblastic leukemia via PLK1/LDHA axis. Blood Adv 2023; 7:3099-3112. [PMID: 36912760 PMCID: PMC10362547 DOI: 10.1182/bloodadvances.2022008284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
The effect of aerobic glycolysis remains elusive in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Increasing evidence has revealed that dysregulation of deubiquitination is involved in glycolysis, by targeting glycolytic rate-limiting enzymes. Here, we demonstrated that upregulated deubiquitinase ubiquitin-specific peptidase 1 (USP1) expression correlated with poor prognosis in pediatric primary T-ALL samples. USP1 depletion abolished cellular proliferation and attenuated glycolytic metabolism. In vivo experiments showed that USP1 suppression decreased leukemia progression in nude mice. Inhibition of USP1 caused a decrease in both mRNA and protein levels in lactate dehydrogenase A (LDHA), a critical glycolytic enzyme. Moreover, USP1 interacted with and deubiquitinated polo-like kinase 1 (PLK1), a critical regulator of glycolysis. Overexpression of USP1 with upregulated PLK1 was observed in most samples of patients with T-ALL. In addition, PLK1 inhibition reduced LDHA expression and abrogated the USP1-mediated increase of cell proliferation and lactate level. Ectopic expression of LDHA can rescue the suppressive effect of USP1 silencing on cell growth and lactate production. Pharmacological inhibition of USP1 by ML323 exhibited cell cytotoxicity in human T-ALL cells. Taken together, our results demonstrated that USP1 may be a promising therapeutic target in pediatric T-ALL.
Collapse
Affiliation(s)
- Shuguang Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuening Xiang
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhenping Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Shao Xie
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Wu
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiaoxi Zhao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Chao Yang
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhixia Yue
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Linya Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiaojia Wen
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ruidong Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Feng Zhang
- Center for Precision Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Heng Xu
- Division of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Huyong Zheng
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hui Zhang
- Department of Hematology & Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Hematology & Oncology, Fujian Branch of Shanghai Children’s Medical Center, Fujian Children’s Hospital, Fuzhou, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
20
|
Soltan MA, Eldeen MA, Sajer BH, Abdelhameed RFA, Al-Salmi FA, Fayad E, Jafri I, Ahmed HEM, Eid RA, Hassan HM, Al-Shraim M, Negm A, Noreldin AE, Darwish KM. Integration of Chemoinformatics and Multi-Omics Analysis Defines ECT2 as a Potential Target for Cancer Drug Therapy. BIOLOGY 2023; 12:biology12040613. [PMID: 37106813 PMCID: PMC10135641 DOI: 10.3390/biology12040613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Epithelial cell transforming 2 (ECT2) is a potential oncogene and a number of recent studies have correlated it with the progression of several human cancers. Despite this elevated attention for ECT2 in oncology-related reports, there is no collective study to combine and integrate the expression and oncogenic behavior of ECT2 in a panel of human cancers. The current study started with a differential expression analysis of ECT2 in cancerous versus normal tissue. Following that, the study asked for the correlation between ECT2 upregulation and tumor stage, grade, and metastasis, along with its effect on patient survival. Moreover, the methylation and phosphorylation status of ECT2 in tumor versus normal tissue was assessed, in addition to the investigation of the ECT2 effect on the immune cell infiltration in the tumor microenvironment. The current study revealed that ECT2 was upregulated as mRNA and protein levels in a list of human tumors, a feature that allowed for the increased filtration of myeloid-derived suppressor cells (MDSC) and decreased the level of natural killer T (NKT) cells, which ultimately led to a poor prognosis survival. Lastly, we screened for several drugs that could inhibit ECT2 and act as antitumor agents. Collectively, this study nominated ECT2 as a prognostic and immunological biomarker, with reported inhibitors that represent potential antitumor drugs.
Collapse
Affiliation(s)
- Mohamed A Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Bayan H Sajer
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Fawziah A Al-Salmi
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Refaat A Eid
- Pathology Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 61421, Saudi Arabia
| | - Hesham M Hassan
- Pathology Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 61421, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mubarak Al-Shraim
- Pathology Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 61421, Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22516, Egypt
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
21
|
Jin M, Hu J, Tong L, Zhang B, Huang J. The Epitope Basis of Embryonic Stem Cell-Induced Antitumor Immunity against Bladder Cancer. Adv Healthc Mater 2023; 12:e2202691. [PMID: 36510117 PMCID: PMC11468705 DOI: 10.1002/adhm.202202691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) share many cellular and molecular features with cancer cells. Taking advantage of these similarities, stem cells are effective vaccines against cancers in animal models. However, the molecular basis is not well understood, which hinders the development of effective cancer vaccines. Here, prophylactic and therapeutic bladder cancer vaccines composed of allogeneic ESCs and CpG with or without granulocyte macrophage colony stimulating factor are tested. The ESC-based cancer vaccines are able to induce specific antitumor immunity including stimulating cytotoxic CD8+ T cells and memory CD4+ T cells, reducing myeloid-derived suppressor cells, and preventing bladder cancer growth in mouse models. Furthermore, several genes that are overexpressed in both ESCs and tumors are identified. An epitope-based vaccine designed with shared overexpressed proteins induces specific antitumor immunity and reduces bladder cancer growth. Functional epitopes underlying the action of stem cell-based vaccines against bladder cancer are identified and it is confirmed that ESC-based anticancer vaccines have great potential. A systematic approach is provided here to developing novel effective epitope-based cancer vaccines in the future.
Collapse
Affiliation(s)
- Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Jingchu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
| | - Lili Tong
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Bao‐Zhong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Jian‐Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
- Department of Clinical OncologyShenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
- Guangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen UniversityGuangzhou510120China
| |
Collapse
|
22
|
Yang G, Jena PK, Hu Y, Sheng L, Chen SY, Slupsky CM, Davis R, Tepper CG, Wan YJY. The essential roles of FXR in diet and age influenced metabolic changes and liver disease development: a multi-omics study. Biomark Res 2023; 11:20. [PMID: 36803569 PMCID: PMC9938992 DOI: 10.1186/s40364-023-00458-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Aging and diet are risks for metabolic diseases. Bile acid receptor farnesoid X receptor (FXR) knockout (KO) mice develop metabolic liver diseases that progress into cancer as they age, which is accelerated by Western diet (WD) intake. The current study uncovers the molecular signatures for diet and age-linked metabolic liver disease development in an FXR-dependent manner. METHODS Wild-type (WT) and FXR KO male mice, either on a healthy control diet (CD) or a WD, were euthanized at the ages of 5, 10, or 15 months. Hepatic transcriptomics, liver, serum, and urine metabolomics as well as microbiota were profiled. RESULTS WD intake facilitated hepatic aging in WT mice. In an FXR-dependent manner, increased inflammation and reduced oxidative phosphorylation were the primary pathways affected by WD and aging. FXR has a role in modulating inflammation and B cell-mediated humoral immunity which was enhanced by aging. Moreover, FXR dictated neuron differentiation, muscle contraction, and cytoskeleton organization in addition to metabolism. There were 654 transcripts commonly altered by diets, ages, and FXR KO, and 76 of them were differentially expressed in human hepatocellular carcinoma (HCC) and healthy livers. Urine metabolites differentiated dietary effects in both genotypes, and serum metabolites clearly separated ages irrespective of diets. Aging and FXR KO commonly affected amino acid metabolism and TCA cycle. Moreover, FXR is essential for colonization of age-related gut microbes. Integrated analyses uncovered metabolites and bacteria linked with hepatic transcripts affected by WD intake, aging, and FXR KO as well as related to HCC patient survival. CONCLUSION FXR is a target to prevent diet or age-associated metabolic disease. The uncovered metabolites and microbes can be diagnostic markers for metabolic disease.
Collapse
Affiliation(s)
- Guiyan Yang
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Prasant K. Jena
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Ying Hu
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Lili Sheng
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Shin-Yu Chen
- grid.27860.3b0000 0004 1936 9684Department of Nutrition, University of California, Davis, CA USA
| | - Carolyn M. Slupsky
- grid.27860.3b0000 0004 1936 9684Department of Nutrition, University of California, Davis, CA USA
| | - Ryan Davis
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Clifford G. Tepper
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
23
|
Liu L, Hu Q, Zhang Y, Sun X, Sun R, Ren Z. Classification molecular subtypes of hepatocellular carcinoma based on PRMT-related genes. Front Pharmacol 2023; 14:1145408. [PMID: 36909154 PMCID: PMC9992644 DOI: 10.3389/fphar.2023.1145408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Recent studies highlighted the functional role of protein arginine methyltransferases (PRMTs) catalyzing the methylation of protein arginine in malignant progression of various tumors. Stratification the subtypes of hepatocellular carcinoma (HCC) is fundamental for exploring effective treatment strategies. Here, we aim to conduct a comprehensive analysis of PRMTs with bioinformatic tools to identify novel biomarkers for HCC subtypes classification and prognosis prediction, which may be potential ideal targets for therapeutic intervention. Methods: The expression profiling of PRMTs in HCC tissues was evaluated based on the data of TCGA-LIHC cohort, and further validated in HCC TMA cohort and HCC cell lines. HCC was systematically classified based on PRMT family related genes. Subsequently, the differentially expressed genes (DEGs) between molecular subtypes were identified, and prognostic risk model were constructed using least absolute shrinkage and selection operator (LASSO) and Cox regression analysis to evaluate the prognosis, gene mutation, clinical features, immunophenotype, immunotherapeutic effect and antineoplastic drug sensitivity of HCC. Results: PRMTs expression was markedly altered both in HCC tissues and HCC cell lines. Three molecular subtypes with distinct immunophenotype were generated. 11 PRMT-related genes were enrolled to establish prognostic model, which presented with high accuracy in predicting the prognosis of two risk groups in the training, validation, and immunotherapy cohort, respectively. Additionally, the two risk groups showed significant difference in immunotherapeutic efficacy. Further, the sensitivity of 72 anticancer drugs was identified using prognostic risk model. Conclusion: In summary, our findings stratified HCC into three subtypes based on the PRMT-related genes. The prognostic model established in this work provide novel insights into the exploration of related therapeutic approaches in treating HCC.
Collapse
Affiliation(s)
- Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuyue Hu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yize Zhang
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Liu X, Zhang J, Ju S, Liu L, Sun Y, Guo L, Zhen Q, Han S, Lu W, Zhang Y. ECT2 promotes malignant phenotypes through the activation of the AKT/mTOR pathway and cisplatin resistance in cervical cancer. Cancer Gene Ther 2023; 30:62-73. [PMID: 36056253 DOI: 10.1038/s41417-022-00525-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Epithelial cell transforming sequence 2 (ECT2) is expressed at high levels in various malignancies and contributes to malignant phenotypes in cancers. However, ECT2 is still not fully understood regarding its function and carcinogenic mechanism in cervical cancer. This research indicated that ECT2 expression was elevated in cervical cancer based on bioinformatics analysis and clinical specimens. Experiments in vitro and in vivo confirmed that ECT2 knockdown could suppress the proliferation and metastasis of cervical carcinoma cells. In addition, we found that silencing ECT2 could enhance the sensitivity to cisplatin and promote cell apoptosis. Mechanistically, we observed that ECT2 knockdown could inhibit the AKT/mTOR pathway and activate apoptosis, while ECT2 overexpression induced the opposite effect. The relationship between ECT2 and AKT was further confirmed by immunoprecipitation and rescue experiments. We found that the ECT2 and AKT could interact to form a complex, and knockdown AKT could offset all of the effects induced by ECT2. Our study emphasized the key point of ECT2 in the reversal of cisplatin resistance, and ECT2 could become a potential therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang Ju
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Lingyu Guo
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Qianwei Zhen
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China. .,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
25
|
Sucularli C. Identification of BRIP1, NSMCE2, ANAPC7, RAD18 and TTL from chromosome segregation gene set associated with hepatocellular carcinoma. Cancer Genet 2022; 268-269:28-36. [PMID: 36126360 DOI: 10.1016/j.cancergen.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide. METHODS TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed. RESULTS According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients. CONCLUSION Selected genes were upregulated and had prognostic value in HCC.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
26
|
Jiang T, Sun L, Zhu J, Li N, Gu H, Zhang Y, Li M, Xu J. MicroRNA-23a-3p promotes macrophage M1 polarization and aggravates lipopolysaccharide-induced acute lung injury by regulating PLK1/STAT1/STAT3 signalling. Int J Exp Pathol 2022; 103:198-207. [PMID: 35739646 PMCID: PMC9482356 DOI: 10.1111/iep.12445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Macrophage polarization is an important effector process in acute lung injury (ALI) induced by sepsis. MicroRNAs (miRNAs) have emerged as important players in regulating ALI process. Here, we showed that elevated microRNA-23a-3p (miR-23a-3p) promoted LPS-induced macrophage polarization and ALI in mice, while inhibition of miR-23a-3p led to reduced macrophage response and ameliorated ALI inflammation. Mechanically, miR-23a-3p regulated macrophage M1 polarization through targeting polo-like kinase 1 (PLK1). PLK1 was downregulated in LPS-treated macrophages and ALI mouse lung tissues. Knockdown of PLK1 increased macrophage M1 polarization through promoting STAT1/STAT3 activation, while overexpression of PLK1 reduced macrophage immune response. Collectively, our results reveal a key miRNA regulon that regulates macrophage polarization for LPS-induced immune response.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Jun Zhu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Ning Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Haibo Gu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Ying Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Miaomiao Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Jiayao Xu
- Department of EmergencyTiantai Hospital of Hangzhou Medical CollegeTiantaiChina
| |
Collapse
|
27
|
Gao J, Liang Y, Wang L. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Front Immunol 2022; 13:888713. [PMID: 35844605 PMCID: PMC9280632 DOI: 10.3389/fimmu.2022.888713] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Different stimuli can polarize macrophages into two basic types, M1 and M2. Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are composed of heterogeneous subpopulations, which include the M1 anti-tumor and M2 pro-tumor phenotypes. TAMs predominantly play a M2-like tumor-promoting role in the TME and regulate various malignant effects, such as angiogenesis, immune suppression, and tumor metastasis; hence, TAMs have emerged as a hot topic of research in cancer therapy. This review focuses on three main aspects of TAMs. First, we summarize macrophage polarization along with the effects on the TME. Second, recent advances and challenges in cancer treatment and the role of M2-like TAMs in immune checkpoint blockade and CAR-T cell therapy are emphasized. Finally, factors, such as signaling pathways, associated with TAM polarization and potential strategies for targeting TAM repolarization to the M1 pro-inflammatory phenotype for cancer therapy are discussed.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuanzheng Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liang Wang,
| |
Collapse
|
28
|
HMGA1 Promotes Macrophage Recruitment via Activation of NF-κB-CCL2 Signaling in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:4727198. [PMID: 35785026 PMCID: PMC9242763 DOI: 10.1155/2022/4727198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) are known to generate an immune-suppressive tumor microenvironment (TME) and promote tumor progression. Hepatocellular carcinoma (HCC) is a devastating disease that evolves in the background of chronic inflammatory liver damage. In this study, we aimed to uncover the mechanism by which HCC cells recruit macrophages into the TME. Methods Bioinformatic analysis was performed to identify differentially expressed genes related to macrophage infiltration. An orthotopic HCC xenograft model was used to determine the role of macrophages in HCC tumor growth. Clodronate liposomes were used to delete macrophages. Western blotting analysis, quantitative real-time PCR, and enzyme-linked immunosorbent assay were performed to determine the underlying mechanisms. Results The high mobility group A1 (HMGA1) gene was identified as a putative modulator of macrophage infiltration in HCC. Deletion of macrophages with clodronate liposomes significantly abrogated the tumor-promoting effects of HMGA1 on HCC growth. Mechanistically, HMGA1 can regulate the expression of C-C Motif Chemokine Ligand 2 (CCL2), also referred to as monocyte chemoattractant protein 1 (MCP1), which is responsible for macrophage recruitment. Moreover, NF-κB was required for HMGA1-mediated CCL2 expression. Pharmacological or genetic inhibition of NF-κB largely blocked CCL2 levels in HMGA1-overexpressing HCC cells. Conclusions This study reveals HMGA1 as a crucial regulator of macrophage recruitment by activating NF-κB-CCL2 signaling, proves that HMGA1-induced HCC aggressiveness dependents on the macrophage, and provide an attractive target for therapeutic interventions in HCC.
Collapse
|
29
|
Helicobacter pylori promotes gastric cancer progression through the tumor microenvironment. Appl Microbiol Biotechnol 2022; 106:4375-4385. [PMID: 35723694 DOI: 10.1007/s00253-022-12011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer (GC) is a leading type of cancer. Although immunotherapy has yielded important recent progress in the treatment of GC, the prognosis remains poor due to drug resistance and frequent recurrence and metastasis. There are multiple known risk factors for GC, and infection with Helicobacter pylori is one of the most significant. The mechanisms underlying the associations of H. pylori and GC remain unclear, but it is well known that infection can alter the tumor microenvironment (TME). The TME and the tumor itself constitute a complete ecosystem, and the TME plays critical roles in tumor progression, metastasis, and drug resistance. H. pylori infection can act synergistically with the TME to cause DNA damage and abnormal expression of multiple genes and activation of signaling pathways. It also modulates the host immune system in ways that enhance the proliferation and metastasis of tumor cells, promote epithelial-mesenchymal transition, inhibit apoptosis, and provide energy support for tumor growth. This review elaborates myriad ways that H. pylori infections promote the occurrence and progression of GC by influencing the TME, providing new directions for immunotherapy treatments for this important disease. KEY POINTS: • H. pylori infections cause DNA damage and affect the repair of the TME to DNA damage. • H. pylori infections regulate oncogenes or activate the oncogenic signaling pathways. • H. pylori infections modulate the immune system within the TME.
Collapse
|
30
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
31
|
LncRNA MBNL1-AS1 Represses Proliferation and Cancer Stem-Like Properties of Breast Cancer through MBNL1-AS1/ZFP36/CENPA Axis. JOURNAL OF ONCOLOGY 2022; 2022:9999343. [PMID: 35518784 PMCID: PMC9064507 DOI: 10.1155/2022/9999343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022]
Abstract
Background Emerging studies have revealed long noncoding RNAs (lncRNAs) were key regulators of cancer progression. In this research, the expression and roles of MBNL1-AS1 were explored in breast cancer (BC). Methods In this study, the MBNL1-AS1 expression in breast cancer tissue, as well as in cell line, was studied by qRT-PCR assays. The effects of MBNL1-AS1 on proliferation and stemness were evaluated by MTT assays, colony formation assays, orthotopic breast tumor mice models, extreme limiting dilution analysis (ELDA), fluorescence in situ hybridization (FISH), flow cytometry assays, and sphere formation assays. Flexmap 3D assays were performed to show that MBNL1-AS1 downregulated the centromere protein A (CENPA) secretion in BC cells. Western blot, RNA pull-down assays, RNA immunoprecipitation (RIP) assays, and FISH were conducted to detect the mechanism. Results The results showed that the expression levels of MBNL1-AS1 were downregulated in breast cancer tissues and cell lines. In vitro and in vivo studies demonstrated that overexpression of MBNL1-AS1 markedly inhibited BC cells proliferation and stemness. RNA pull-down assay, RIP assay, western blot assay, and qRT-PCR assay showed that MBNL1-AS1 downregulated CENPA mRNA via directly interacting with Zinc Finger Protein 36 (ZFP36) and subsequently decreased the stability of CENPA mRNA. Restoration assays also confirmed that MBNL1-AS1 suppressed the CENPA-mediated proliferation and stemness in breast cancer cells. Conclusions The new mechanism of how MBNL1-AS1 regulates BC phenotype is elucidated, and the MBNL1-AS1/ZFP36/CENPA axis may be served as a therapeutic target for BC patients.
Collapse
|
32
|
Yin J, Zhao X, Chen X, Shen G. Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B. Bioengineered 2022; 13:9548-9563. [PMID: 35387564 PMCID: PMC9208510 DOI: 10.1080/21655979.2022.2061295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence has demonstrated that M2 macrophages contribute to the progression of hepatocellular carcinoma (HCC). Emodin is an anti-tumor agent and potentially regulates macrophage polarization. This study aims to explore the effect of emodin on M2 polarization in HCC and its underlying mechanism. After co-culture systems of M2 macrophages and HCC (HepG2 and Huh7) cells were established, it was shown that co-culture with M2 macrophages could promote both the proliferation and invasion of HepG2 and Huh7 cells. Emodin induces the transformation of M2 to M1 macrophages, thereby inhibiting the proliferation and invasion of HepG2 and Huh7 cells mediated by co-culturing with M2 macrophages. Based on bioinformatics analysis and in vitro validation, it was found that the effect of emodin on M2 polarization was regulated by the microRNA-26a (miR-26)/Transforming growth factor beta 1 (TGF-β1)/Protein kinase B (Akt) axis. In vivo analysis showed that co-culturing with M2 macrophages markedly facilitated the growth of HepG2 cells, which was significantly inhibited by emodin. Western blot analysis on xenografts confirmed that emodin could induce transformation of M2 to M1 macrophages and reverse the up-regulation of PCNA, TGF-β1, and p-Akt induced by M2 macrophages. In summary, our findings uncover a novel mechanism behind the anti-tumor effects of emodin that regulates M2 polarization via miR-26a/TGF-β1/Akt to suppress HCC growth.
Collapse
Affiliation(s)
- Jiao Yin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Zhao
- Department of Hepatology Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xuejiao Chen
- Department of Immunology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Chen J, Zhou C, Liu Y. Establishing a Macrophage Phenotypic Switch-Associated Signature-Based Risk Model for Predicting the Prognoses of Lung Adenocarcinoma. Front Oncol 2022; 11:771988. [PMID: 35284334 PMCID: PMC8905507 DOI: 10.3389/fonc.2021.771988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Tumor-associated macrophages are important components of the tumor microenvironment, and the macrophage phenotypic switch has been shown to correlate with tumor development. However, the use of a macrophage phenotypic switch-related gene (MRG)-based prognosis signature for lung adenocarcinoma (LADC) has not yet been investigated. Methods In total, 1,114 LADC cases from two different databases were collected. The samples from TCGA were used as the training set (N = 490), whereas two independent datasets (GSE31210 and GSE72094) from the GEO database were used as the validation sets (N = 624). A robust MRG signature that predicted clinical outcomes of LADC patients was identified through multivariate COX and Lasso regression analysis. Gene set enrichment analysis was applied to analyze molecular pathways associated with the MRG signature. Moreover, the fractions of 22 immune cells were estimated using CIBERSORT algorithm. Results An eight MRG-based signature comprising CTSL, ECT2, HCFC2, HNRNPK, LRIG1, OSBPL5, P4HA1, and TUBA4A was used to estimate the LADC patients’ overall survival. The MRG model was capable of distinguishing high-risk patients from low-risk patients and accurately predict survival in both the training and validation cohorts. Subsequently, the eight MRG-based signature and other features were used to construct a nomogram to better predict the survival of LADC patients. Calibration plots and decision curve analysis exhibited good consistency between the nomogram predictions and actual observation. ROC curves displayed that the signature had good robustness to predict LADC patients’ prognostic outcome. Conclusions We identified a phenotypic switch-related signature for predicting the survival of patients with LADC.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Upregulation of ECT2 Predicts Adverse Clinical Outcomes and Increases 5-Fluorouracil Resistance in Gastric Cancer Patients. JOURNAL OF ONCOLOGY 2021; 2021:2102890. [PMID: 34367280 PMCID: PMC8337122 DOI: 10.1155/2021/2102890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Background The abnormal expression and prognosis prediction of epithelial cell transforming sequence 2 (ECT2) in gastric cancer (GC) has been reported. However, the effect of ECT2 on 5-fluorouracil (5-Fu) resistance in GC is unclear. This research aims to solve the abovementioned problems. Methods Gene expression was detected by RT-qPCR and Western blot analysis. Cell viability was evaluated by the colony formation assay, MTT assay, and flow cytometric analysis. Transwell and wound healing assays were used to detect cell metastasis. Results Upregulation of ECT2 was found in stomach adenocarcinoma (STAD) and GC tissues. In addition, high ECT2 expression can predict adverse clinical outcomes in GC patients. More importantly, ECT2 knockdown weakened the resistance of 5-FU in GC cells. ECT2 silencing reduced the cell migratory and invasive abilities of GC cells treated with 5-FU. We also found that downregulation of ECT2 increased 5-FU sensitivity in GC cells by downregulating P-gp, MRP1, and Bcl-2. Conclusion Upregulation of ECT2 can predict adverse clinical outcomes and increase 5-FU resistance in GC patients.
Collapse
|
36
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|