1
|
Khan W, Zeb A, Malik MFA, Wahid M, Mandal RK, Babegi AS, Mathkor DM, Haque S, Haq F. FGF21 affects the glycolysis process via mTOR-HIF1α axis in hepatocellular carcinoma. Cell Signal 2025; 126:111522. [PMID: 39580062 DOI: 10.1016/j.cellsig.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Metabolic reprogramming, particularly glycolysis, is essential in processes like cancer and immune response. While FGF21's role in hepatocyte glucose metabolism has been linked to glucose transporters and its impact on aerobic glycolysis and cellular growth in HCC remain unclear. In this study, we investigated FGF21-mediated modulation of glucose metabolism in HCC through mTOR and HIF1α axis in HCC. METHODS The study evaluated the dysregulation of FGF21 and its prognostic impact in HCC using various datasets. The literature review was done to identify glycolysis related genes to find significant interaction with FGF21 using stringdb and their correlation in datasets. The regulation of FGF21 was validated in HepG2 cell lines by transfecting FGF21 and measuring its effects on glycolysis, including glucose uptake, lactate levels, and key glycolytic enzymes using rt-PCR. Additionally, the effect of FGF21 transfection on mTOR and HIF1α was also evaluated using rt-PCR. RESULTS The insilico analysis indicates that the FGF21-mTOR-HIF1α signaling axis regulates glucose metabolism, with mTOR as a central integrator of signals from FGF21 and HIF1α. Invitro experiments showed that silencing FGF21 expression via siRNA reduced glycolytic enzyme expression, glucose uptake, lactate levels, and cell proliferation in HepG2 cells. Conversely, recombinant FGF21 treatment has a reverse effect in HepG2 cells. Additionally, FGF21 treatment also affected mTOR and HIF1α expression, highlighting its role in metabolic regulation and disease through the mTOR-HIF1α axis. CONCLUSION The regulation of FGF21 influences glycolysis via the mTOR-HIF1α axis, highlighting its critical role in glucose metabolism and metabolic adaptation in response to energy availability.
Collapse
Affiliation(s)
- Walizeb Khan
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Ahmad Zeb
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | | | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| | - Ashjan Saeed Babegi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| | - Farhan Haq
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan; Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Sweden..
| |
Collapse
|
2
|
Calubag MF, Ademi I, Grunow I, Breuer L, Babygirija R, Lialios P, Le S, Minton D, Sonsalla MM, Illiano J, Knopf BA, Xiao F, Konopka AR, Harris DA, Lamming DW. Tissue-specific effects of dietary protein on cellular senescence are mediated by branched-chain amino acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632607. [PMID: 39868338 PMCID: PMC11761368 DOI: 10.1101/2025.01.13.632607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Dietary protein is a key regulator of healthy aging in both mice and humans. In mice, reducing dietary levels of the branched-chain amino acids (BCAAs) recapitulates many of the benefits of a low protein diet; BCAA-restricted diets extend lifespan, reduce frailty, and improve metabolic health, while BCAA supplementation shortens lifespan, promotes obesity, and impairs glycemic control. Recently, high protein diets have been shown to promote cellular senescence, a hallmark of aging implicated in many age-related diseases, in the liver of mice. Here, we test the hypothesis that the effects of high protein diets on metabolic health and on cell senescence are mediated by BCAAs. We find that reducing dietary levels of BCAAs protects male and female mice from the negative metabolic consequences of both normal and high protein diets. Further, we identify tissue-specific effects of BCAAs on cellular senescence, with restriction of all three BCAAs - but not individual BCAAs - protecting from hepatic cellular senescence while potentiating cell senescence in white adipose tissue. We find that the effects of BCAAs on hepatic cellular senescence are cell-autonomous, with lower levels of BCAAs protecting cultured cells from antimycin-A induced senescence. Our results demonstrate a direct effect of a specific dietary component on a hallmark of aging and suggest that cellular senescence may be highly susceptible to dietary interventions.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ismail Ademi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Lucia Breuer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Penelope Lialios
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Sandra Le
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Dennis Minton
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Illiano
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Wisconsin Laboratory for Surgical Metabolism, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Bailey A Knopf
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Fan Xiao
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David A Harris
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Wisconsin Laboratory for Surgical Metabolism, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Liu Y, Wang Y, Yan P, Cui N, Xu K, Liu D, Tian Y, Cao L. NLRP3 Inflammasome-Mediated Osteoarthritis: The Role of Epigenetics. BIOLOGY 2025; 14:71. [PMID: 39857301 PMCID: PMC11761621 DOI: 10.3390/biology14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of osteoarthritis (OA) notably surges with age and weight gain. The most common clinical therapeutic drugs are painkillers, yet they cannot impede the deteriorating course of OA. Thus, understanding OA's pathogenesis and devising effective therapies is crucial. It is generally recognized that inflammation, pyroptosis, and OA progression are tightly linked. The activation of NLRP3 inflammasome can lead to the discharge of the pro-inflammatory cytokines Interleukin-1β and IL-18, intensifying subsequent inflammatory reactions and promoting OA development. Conversely, the imbalance caused by deacetylase-regulated NLRP3 inflammasome underlies the chronic mild inflammation related to degenerative diseases. Therefore, this article expounds on the mechanism of OA pathogenesis and the role of histone deacetylases (HDACs) in NLRP3 inflammasome-triggered OA, and illustrates the application of HDAC inhibitors in OA, striving to provide more insights into novel OA treatment approaches.
Collapse
Affiliation(s)
- Yuzhou Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ying Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ping Yan
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Ning Cui
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Kejin Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Da Liu
- Public Laboratory Centre, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Yuan Tian
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Lingling Cao
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| |
Collapse
|
4
|
Shan M, Qiu F, Li P, Zhang Y, Shi L. Maternal exercise represses FGF21 via SIRT1 to improve the phenotypic transformation of vascular smooth muscle in hypertensive offspring. Hypertens Res 2025; 48:353-365. [PMID: 39543417 DOI: 10.1038/s41440-024-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Maternal exercise during pregnancy is widely recognized as an effective means of promoting cardiovascular health in offspring. Few studies have explored how maternal exercise impacts vascular function and phenotypic switching in hypertensive offspring, despite the known involvement of vascular structural and functional remodeling in hypertension pathogenesis. Research indicates a significant relationship between elevated blood pressure and fibroblast growth factor 21 (FGF21) levels. It remains unclear whether maternal exercise during pregnancy can improve vascular function in hypertensive offspring by regulating FGF21 and its underlying mechanisms. In this study, pregnant spontaneously hypertensive rats and Wistar-Kyoto rats were randomly assigned to either a sedentary or exercise group. The exercise group underwent weightless swimming exercise from gestation day 1 (GD1) to GD20. The aim was to investigate the epigenetic modifications mediated by histone deacetylase sirtuin 1 (SIRT1) during the fetal period and the phenotypic changes in the mesenteric arteries (MAs) of hypertensive offspring. We found that maternal exercise significantly improved vascular remodeling in hypertensive offspring. Specifically, maternal exercise upregulated SIRT1 expression, which led to decreased H3K9ac (histone H3 lysine 9 acetylation) in the promoter region of the FGF21 gene. This epigenetic modification resulted in the transcriptional downregulation of FGF21 in the MAs of hypertensive fetuses. These results suggest that maternal exercise may lower blood pressure in hypertensive offspring by regulating deacetylation of the FGF21 gene promoter region through SIRT1, thereby reversing phenotypic switching and vascular structural remodeling.
Collapse
Affiliation(s)
- Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
- School of Physical Education, Hubei University, 430062, Wuhan, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Peng Li
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing University, Beijing, 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, 100084, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China.
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing University, Beijing, 100084, China.
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, 100084, Beijing, China.
| |
Collapse
|
5
|
Qiu LL, Tan XX, Yang JJ, Zhang H, Xu N, Zhao C, Sun J. Lactate improves postoperative cognitive function through attenuating oxidative stress and neuroinflammation in aged mice via activating the SIRT1 pathway. Exp Neurol 2024; 385:115136. [PMID: 39746462 DOI: 10.1016/j.expneurol.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a recognized clinical phenomenon characterized by cognitive impairment in patients following anesthesia and surgery, especially in the elderly. However, the pathogenesis of POCD remains unclear. In the last decades, lactate's neuroprotective properties have been increasingly mentioned. The study tested the hypothesis that lactate may attenuate the cognitive impairment induced by anesthesia and surgery in aged mice through SIRT1-dependent antioxidant and anti-inflammatory effects. We used 18-month-old C57BL/6 mice to establish the POCD animal model by exploratory laparotomy with isoflurane anesthesia. For the interventional study, mice were administered lactate, with or without the potent and selective SIRT1 inhibitor EX-527. Behavioral tests including open field (OF), Y maze and fear conditioning (FC) tests were performed from 4 to 7 days after anesthesia and surgery. Immunofluorescence staining and Western blot were employed to assess oxidative damage, activation of microglia and astrocytes, levels of proinflammatory cytokines, and the expression of plasticity-related proteins. Lactate treatment can ameliorate oxidative stress, neuroinflammation, and the decreased levels of plasticity-related proteins induced by anesthesia and surgery, ultimately improving cognitive impairment in aged mice. However, co-treatment with lactate and EX-527 diminished the beneficial effects. Our study indicates that the mechanisms underlying neuroprotective properties of lactate might be related to its antioxidant and anti-inflammatory effects, and improvement of hippocampal synaptic plasticity through activation of SIRT1 pathway.
Collapse
Affiliation(s)
- Li-Li Qiu
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Xiang Tan
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiao-Jiao Yang
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ning Xu
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Chen J, Li H, Zhuo J, Lin Z, Hu Z, He C, Wu X, Jin Y, Lin Z, Su R, Sun Y, Wang R, Sun J, Wei X, Zheng S, Lu D, Xu X. Impact of immunosuppressants on tumor pulmonary metastasis: new insight into transplantation for hepatocellular carcinoma. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0267. [PMID: 39718153 PMCID: PMC11667780 DOI: 10.20892/j.issn.2095-3941.2024.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Pulmonary metastasis is a life-threatening complication for patients with hepatocellular carcinoma (HCC) undergoing liver transplantation (LT). In addition to the common mechanisms underlying tumor metastasis, another inevitable factor is that the application of immunosuppressive agents, including calcineurin inhibitors (CNIs) and rapamycin inhibitors (mTORis), after transplantation could influence tumor recurrence and metastasis. In recent years, several studies have reported that mTORis, unlike CNIs, have the capacity to modulate the tumorigenic landscape post-liver transplantation by targeting metastasis-initiating cells and reshaping the pulmonary microenvironment. Therefore, we focused on the effects of immunosuppressive agents on the lung metastatic microenvironment and how mTORis impact tumor growth in distant organs. This revelation has provided profound insights into transplant oncology, leading to a renewed understanding of the use of immunosuppressants after LT for HCC.
Collapse
Affiliation(s)
- Jinyan Chen
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Zuyuan Lin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiang Wu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiru Jin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhanyi Lin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyang Sun
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310063, China
| | - Rongsen Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiancai Sun
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310022, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| |
Collapse
|
7
|
Yingfei S, Feng Y, Haoning M. Environmental high temperature (heat stroke) causes articular cartilage damage in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117535. [PMID: 39700773 DOI: 10.1016/j.ecoenv.2024.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Heatstroke (HS) is gradually becoming a major challenge in the field of global public health with the trend of global warming. In recent years, extreme high-temperature weather events have occurred frequently in the world, which directly led to a significant increase in heatstroke. However, up to now, the potential pathological effects of HS on articular cartilage have not been revealed. Therefore, in our current work, we studied the damage of heat toxicity on chondrocytes in vitro. The results showed that heatstroke reduced the cell activity of chondrocytes and triggered a decrease in mitochondrial membrane potential and oxidative stress response. Further biochemical analysis showed that heatstroke caused chondrocyte PANoptosis. On this basis, we further analyzed the molecular mechanism of HS-induced cartilage damage. The results showed that HS activated ZBP-1-mediated PAN-apoptosis. In vivo, our group further evaluated the impact of HS on articular cartilage. The results showed that heatstroke caused damage to articular cartilage, and immunohistochemistry showed that heatstroke caused damage and programmed necrosis of cartilage tissue. On this basis, we evaluated the alleviating effect of FGF21 on HS-induced chondrocyte damage. The results showed that FGF21 could effectively alleviate the PANoptosis of chondrocytes caused by heatstroke via activating the AMPK signaling (at least partially). In summary, the current research lays a foundation for further exploring the cartilage damage caused by heatstroke.
Collapse
Affiliation(s)
- Sun Yingfei
- Spinal surgery, China-Japan Friendship Hospital, East Ying Hua Yuan Street, Chaoyang District, Beijing, China.
| | - Yang Feng
- Spinal surgery, China-Japan Friendship Hospital, East Ying Hua Yuan Street, Chaoyang District, Beijing, China
| | - Ma Haoning
- Spinal surgery, China-Japan Friendship Hospital, East Ying Hua Yuan Street, Chaoyang District, Beijing, China
| |
Collapse
|
8
|
Timofte DV, Tudor RC, Mocanu V, Labusca L. Obesity, Osteoarthritis, and Myokines: Balancing Weight Management Strategies, Myokine Regulation, and Muscle Health. Nutrients 2024; 16:4231. [PMID: 39683624 DOI: 10.3390/nu16234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity and osteoarthritis (OA) are increasingly prevalent conditions that are intricately linked, with each exacerbating the other's pathogenesis and worsening patient outcomes. This review explores the dual impact of obesity on OA, highlighting the role of excessive weight in aggravating joint degeneration and the limitations OA imposes on physical activity, which further perpetuates obesity. The role of muscle tissue, particularly the release of myokines during physical activity, is examined in the context of OA and obesity. Myokines such as irisin, IL-6, and myostatin are discussed for their roles in metabolic regulation, inflammation, and tissue repair, offering insights into their potential therapeutic targets. This review emphasizes the importance of supervised weight management methods in parallel with muscle rehabilitation in improving joint health and metabolic balance. The potential for myokine modulation through targeted exercise and weight loss interventions to mitigate the adverse effects of obesity and OA is also discussed, suggesting avenues for future research and therapy development to reduce the burden of these chronic conditions.
Collapse
Affiliation(s)
- Daniel Vasile Timofte
- Department of Surgery, "Grigore T. Popa" University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Razvan Cosmin Tudor
- Department of Surgery, "Grigore T. Popa" University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
- Dr. Iacob Czihac Military Emergency Hospital Iasi, General Henri Mathias Berthelot Str. 7-9, 700483 Iași, Romania
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences II (Pathophysiology), Center for Obesity BioBehavioral Experimental Research, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luminita Labusca
- Department of Orthopedics and Traumatology, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania
| |
Collapse
|
9
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
10
|
Nanjaiah H, Moudgil KD. Pristimerin inhibits the progression of antibody-induced autoimmune arthritis. Scand J Rheumatol 2024:1-6. [PMID: 39530865 DOI: 10.1080/03009742.2024.2421618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune disease of the synovial joints. Pro-inflammatory cytokines produced by various immune cells drive the chronic inflammatory processes that lead to joint damage. Many drugs are available for the treatment of RA, but a significant proportion of patients do not respond adequately to them and/or have severe adverse effects. Accordingly, there is an urgent need for new therapeutics for RA. Therefore, we tested pristimerin, a natural triterpenoid, for its anti-arthritic activity in experimental RA. METHOD Collagen antibody-induced arthritis (CAIA) was induced in DBA/1 mice. After the onset of arthritis, mice were injected daily intraperitoneally with pristimerin or vehicle for 9 days. The severity of clinical arthritis was graded and further validated by micro-computed tomography and histological examination of the hind paws. Defined mediators of arthritogenic processes were quantified by gene expression in the spleen and further validated by immunohistochemistry of paws. RESULTS We observed that pristimerin can effectively control arthritis progression in CAIA mice. A preliminary exploration of the mechanisms showed that pristimerin targeted key pro-inflammatory cytokines and chemokines, along with specific mediators of angiogenesis, bone remodelling, and cellular signalling, including the Notch signalling pathway. CONCLUSIONS This is the first report on pristimerin for its use in the treatment of antibody-induced arthritis and for the targeting of Notch pathway in arthritis by this triterpenoid. As pristimerin can control the effector phase of arthritis, our results are promising for the translation of this experimental therapy to RA patients.
Collapse
Affiliation(s)
- H Nanjaiah
- Research and Development, Baltimore VA Medical Center, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K D Moudgil
- Research and Development, Baltimore VA Medical Center, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Liu Y, Zhang Z, Fang Y, Liu C, Zhang H. Ferroptosis in Osteoarthritis: Current Understanding. J Inflamm Res 2024; 17:8471-8486. [PMID: 39529997 PMCID: PMC11552513 DOI: 10.2147/jir.s493001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease in elderly people that is characterized by cartilage loss and abrasion, leading to joint pain and dysfunction. The aetiology of OA is complicated and includes abnormal mechanical stress, a mild inflammatory environment, chondrocyte senescence and apoptosis, and changes in chondrocyte metabolism. Ferroptosis is a regulated cell death modality characterized by the excessive accumulation of lipid peroxidation and mitochondrial dysfunction. The role of ferroptosis in OA pathogenesis has aroused researchers' attention in the past two years, and there is mounting evidence indicating that ferroptosis is destructive. However, the impact of ferroptosis on OA and how the regulators of ferroptosis affect OA development are unclear. Here, we reviewed the current understanding of ferroptosis in OA pathogenesis and summarized several drugs and compounds targeting ferroptosis in OA treatment. The accumulation of intracellular iron, the trigger of Fenton reaction, the excessive production of ROS, the peroxidation of PUFA-PLs, and mitochondrial and membrane damage are involved in chondrocyte ferroptosis. System Xc - and GPX4 are the most important regulators that control ferroptosis. Several compounds, such as DFO and Fer-1, have been proven effective in preventing ferroptosis and slowing OA progression on animal models. Collectively, targeting ferroptosis shows great potential in treating OA.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People’s Republic of China
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chang Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
12
|
Wang J, Li L, Li L, Shen Y, Qiu F. Lycopene alleviates age-related cognitive deficit via activating liver-brain fibroblast growth factor-21 signalling. Redox Biol 2024; 77:103363. [PMID: 39307046 PMCID: PMC11447408 DOI: 10.1016/j.redox.2024.103363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Brain function is linked with many peripheral tissues, including the liver, where hepatic fibroblast growth factor 21 (FGF21) mediates communication between the liver and brain. Lycopene (LYC), a naturally occurring carotenoid, posses multiple health-promoting properties, including neuroprotective function. Here, we investigated the effects of LYC on age-related memory impairment and the relative contribution of liver-brain FGF21 signaling in these process. The results showed that after treatment with LYC for 3 months, brain aging and age-related cognitive deficits were effectively managed. In addition, LYC ameliorated neuronal degeneration, mitochondrial dysfunction and synaptic damage, and promoted synaptic vesicle fusion in 18-month-old mice. Notably, LYC activated liver-brain FGF21 signalling in aging mice. Whereas all these central effects of LYC were negated by blocking FGF21 via i. v. injection of adeno-associated virus in aging mice. Furthermore, recombinant FGF21 elevated mitochondrial ATP levels and enhanced synaptic vesicle fusion in mouse hippocampal HT-22 cells, which promoted neurotransmitter release. Additionally, we co-cultured hepatocytes and neurons in Transwell and found that LYC enhanced hepatocytes' support for neurons. This support included improved cell senescence, enhanced mitochondrial function, and increased axon length in co-cultured neurons. In conclusion, LYC protects against age-related cognitive deficit, partly explained by activating liver-brain FGF21 signalling, hence promoting neurotransmitters release via increasing mitochondrial ATP levels and enhancing synaptic vesicle fusion. These findings revealed that FGF21 could be a potential therapeutical target in nutritional intervention strategies to improve cognitive damage caused by aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Wang
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| | - Lu Li
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Li
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuqi Shen
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Fubin Qiu
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
13
|
Guo Z, Lin Y, Liu H, Guo J, Hou L, Zhang X, Xu J, Ruan Z, Li M, Sun K, Guo F. Deferoxamine alleviates chondrocyte senescence and osteoarthritis progression by maintaining iron homeostasis. Int Immunopharmacol 2024; 139:112619. [PMID: 39024748 DOI: 10.1016/j.intimp.2024.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent age-related disease characterized by the gradual deterioration of cartilage. The involvement of chondrocyte senescence is crucial in the pathogenesis of OA. Desferoxamine (DFO) is an iron chelator with therapeutic potential in various diseases. However, the relationship of chondrocyte senescence and iron homeostasis is largely unknown. METHODS Chondrocyte senescence was induced using tert-butyl hydroperoxide (TBHP), and the impact of DFO on chondrocyte senescence and iron metabolism was assessed through techniques such as western blotting, qRT-PCR, and β-Galactosidase staining. To assess the impact of DFO on chondrocyte senescence and the progression of osteoarthritis (OA), the surgical destabilization of the medial meniscus model was established. RESULTS In chondrocytes, TBHP administration resulted in elevated expression of P16, P21, and P53, as well as alterations in SA-β-gal staining. Nevertheless, DFO effectively mitigated chondrocyte senescence induced by TBHP, and reversed the decrease in collagen II expression and increase in MMP13 expression caused by TBHP. Mechanismly, TBHP induced NCOA4 expression and iron release in chondrocytes. Excessive iron could induce chondrocyte senescence, whereas, DFO could inhibit NCOA4 expression and restore ferritin level, and chelate excessive iron. Importantly, intra-articular injection of DFO enhanced collagen II expression and reduced expression of P16, P21, and MMP13 of cartilage in OA mice, and delayed cartilage degeneration. CONCLUSIONS Overall, this study provides evidence that DFO has the potential to alleviate chondrocyte senescence induced by TBHP and slow down the progression of osteoarthritis (OA) by effectively chelating excessive iron. These findings suggest that iron chelation could be a promising therapeutic strategy for treating OA.
Collapse
Affiliation(s)
- Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yang Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
14
|
Wang L, Shao T, Liu C, Han Z, Zhang S, Dong Y, Han T, Cheng B, Ren W. Liensinine inhibits IL-1β-stimulated inflammatory response in chondrocytes and attenuates papain-induced osteoarthritis in rats. Int Immunopharmacol 2024; 138:112601. [PMID: 38971106 DOI: 10.1016/j.intimp.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease caused by inflammation of cartilage and synovial tissue. Suppressing the process of inflammatory reaction and the generation of oxidative stress is an effective strategy to alleviate the progression of OA. Liensinine is one of the main components of lotus seeds, which has anti-hypertensive and anti-arrhythmia activities. In this study, we aimed to determine the anti-inflammatory effect of liensinine in an OA. Here, we found that liensinine significantly inhibited the inflammatory response of SW1353 cells and primary chondrocytes by inhibiting the release of inflammatory cytokines and oxidative stress. Moreover, we showed that liensinine was able to inhibit the activation of the NF-κB signaling pathway in IL-1β-induced SW1353 cells. Lastly, we found that liensinine significantly ameliorated cartilage damage and inflammatory response in papain-induced rats. Our study demonstrated a significant protective effect of liensinine against OA, which might be by inhibiting the activation of the NF-κB signaling pathway, and provide a new insight for the treatment of OA using liensinine.
Collapse
Affiliation(s)
- Lei Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tianci Shao
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chen Liu
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Ziyu Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shenghui Zhang
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuqian Dong
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Binfeng Cheng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
15
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
16
|
Wu J, Huang S, Yu Y, Lian Q, Liu Y, Dai W, Liu Q, Pan Y, Liu GA, Li K, Liu C, Li G. Human adipose and synovial-derived MSCs synergistically attenuate osteoarthritis by promoting chondrocyte autophagy through FoxO1 signaling. Stem Cell Res Ther 2024; 15:261. [PMID: 39148121 PMCID: PMC11328463 DOI: 10.1186/s13287-024-03870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Human adipose-derived stem cells (ADSCs) exert a strong anti-inflammatory effect, and synovium-derived stem cells (SDSCs) have high chondrogenic potential. Thus, this study aims to investigate whether a combination of human ADSCs and SDSCs will have a synergistic effect that will increase the chondrogenic potential of osteoarthritis (OA) chondrocytes in vitro and attenuate the cartilage degeneration of early and advanced OA in vitro. METHODS ADSCs, SDSCs, and chondrocytes were isolated from OA patients who underwent total knee arthroplasty. The ADSCs-SDSCs mixed cell ratios were 1:0 (ADSCs only), 8:2, 5:5 (5A5S), 2:8, and 0:1 (SDSCs only). The chondrogenic potential of the OA chondrocytes was evaluated in vitro with a transwell assay or pellet culture with various mixed cell groups. The mixed cell group with the highest chondrogenic potential was then selected and injected into the knee joints of nude rats of early and advanced OA stages in vivo. The animals were then evaluated 12 and 20 weeks after surgery through gait analysis, von frey test, microcomputed tomography, MRI, and immunohistochemical and histological analyses. Finally, the mechanisms underlying these findings were investigated through the RNA sequencing of tissue samples in vivo and Western blot of the OA chondrocyte autophagy pathway. RESULTS Among the MSCs treatment groups, 5A5S had the greatest synergistic effect that increased the chondrogenic potential of OA chondrocytes in vitro and inhibited early and advanced OA in vivo. The 5A5S group significantly reduced cartilage degeneration, synovial inflammation, pain sensation, and nerve invasion in subchondral nude rat OA, outperforming both single-cell treatments. The underlying mechanism was the activation of chondrocyte autophagy via the FoxO1 signaling pathway. CONCLUSION A combination of human ADSCs and SDSCs demonstrated higher potential than a single type of stem cell, demonstrating potential as a novel treatment for OA.
Collapse
Affiliation(s)
- Jianqun Wu
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital (Shenzhen People's Hospital),, School of Medicine, Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen People's Hospital, Guangdong, China
| | - Songqiang Huang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan, China
| | - Yangyi Yu
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital (Shenzhen People's Hospital),, School of Medicine, Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen People's Hospital, Guangdong, China
| | - Qiang Lian
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital (Shenzhen People's Hospital),, School of Medicine, Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen People's Hospital, Guangdong, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wenfeng Dai
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital (Shenzhen People's Hospital),, School of Medicine, Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen People's Hospital, Guangdong, China
| | - Qisong Liu
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital (Shenzhen People's Hospital),, School of Medicine, Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen People's Hospital, Guangdong, China
| | - Yonghao Pan
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Gui-Ang Liu
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital (Shenzhen People's Hospital),, School of Medicine, Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen People's Hospital, Guangdong, China
| | - Kai Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Guangheng Li
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital (Shenzhen People's Hospital),, School of Medicine, Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen People's Hospital, Guangdong, China.
| |
Collapse
|
17
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
18
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Nishizawa H, Matsumoto M, Yamanaka M, Irikura R, Nakajima K, Tada K, Nakayama Y, Konishi M, Itoh N, Funayama R, Nakayama K, Igarashi K. BACH1 inhibits senescence, obesity, and short lifespan by ferroptotic FGF21 secretion. Cell Rep 2024; 43:114403. [PMID: 38943639 DOI: 10.1016/j.celrep.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Gladstone Institute of Neurological Disease, Gladstone Institute, San Francisco, CA 94158, USA
| | - Riko Irikura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuma Nakajima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Tada
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
20
|
Liang Q, Cheng Z, Qin L. Advanced nanoparticles in osteoarthritis treatment. BIOMATERIALS TRANSLATIONAL 2024; 5:95-113. [PMID: 39351157 PMCID: PMC11438607 DOI: 10.12336/biomatertransl.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 10/04/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disorder, affecting hundreds of millions of people globally. Current clinical approaches are confined to providing only symptomatic relief. Research over the past two decades has established that OA is not merely a process of wear and tear of the articular cartilage but involves abnormal remodelling of all joint tissues. Although many new mechanisms of disease have been identified in the past several decades, the efficient and sustainable delivery of drugs targeting these mechanisms in joint tissues remains a major challenge. Nanoparticles recently emerged as favoured delivery vehicles in OA treatment, offering extended drug retention, enhanced drug targeting, and improved drug stability and solubility. In this review, we consider OA as a disease affecting the entire joint and initially explore the pathophysiology of OA across multiple joint tissues, including the articular cartilage, synovium, fat pad, bone, and meniscus. We then classify nanoparticles based on their composition and structure, such as lipids, polymers, inorganic materials, peptides/proteins, and extracellular vesicles. We summarise the recent advances in their use for treatment and diagnosis of OA. Finally, we discuss the current challenges and future directions in this field. In conclusion, nanoparticle-based nanosystems are promising carriers that advance OA treatment and diagnosis.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Heng Y, Wei W, Cheng L, Wu F, Dong H, Li J, Fu J, Yang B, Liang X, Liu C, Li H, Liu H, Zhang P. FGF21 overexpression alleviates VSMC senescence in diabetic mice by modulating the SYK-NLRP3 inflammasome-PPARγ-catalase pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:892-904. [PMID: 38733164 PMCID: PMC11214975 DOI: 10.3724/abbs.2024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/16/2024] [Indexed: 05/13/2024] Open
Abstract
Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with progressive senescence in vascular smooth muscle cells (VSMCs). The vascular protective effect of FGF21 has gradually gained increasing attention, but its role in diabetes-induced vascular senescence needs further investigation. In this study, diabetic mice and primary VSMCs are transfected with an FGF21 activation plasmid and treated with a peroxisome proliferator-activated receptor γ (PPARγ) agonist (rosiglitazone), an NLRP3 inhibitor (MCC950), and a spleen tyrosine kinase (SYK)-specific inhibitor, R406, to detect senescence-associated markers. We find that FGF21 overexpression significantly restores the level of catalase (CAT), vascular relaxation, inhibits the intensity of ROSgreen fluorescence and p21 immunofluorescence, and reduces the area of SA-β-gal staining and collagen deposition in the aortas of diabetic mice. FGF21 overexpression restores CAT, inhibits the expression of p21, and limits the area of SA-β-gal staining in VSMCs under high glucose conditions. Mechanistically, FGF21 inhibits SYK phosphorylation, the production of the NLRP3 dimer, the expression of NLRP3, and the colocalization of NLRP3 with PYCARD (ASC), as well as NLRP3 with caspase-1, to reverse the cleavage of PPARγ, preserve CAT levels, suppress ROSgreen density, and reduce the expression of p21 in VSMCs under high glucose conditions. Our results suggest that FGF21 alleviates vascular senescence by regulating the SYK-NLRP3 inflammasome-PPARγ-catalase pathway in diabetic mice.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Syk Kinase/metabolism
- Syk Kinase/genetics
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Inflammasomes/metabolism
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Cellular Senescence
- Male
- Signal Transduction
- Mice, Inbred C57BL
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Yanyan Heng
- Department of NephrologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Wei Wei
- Department of PharmacologyChangzhi Medical CollegeChangzhi046000China
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
- Department of Clinical Central LaboratoryHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Linzhong Cheng
- Department of National Institute for Clinical Trials of Drugs and Phase I Clinical Trial LaboratoryHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Feifei Wu
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Haoyu Dong
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Jingxia Li
- Department of AnesthesiaChangzhi Medical CollegeChangzhi046000China
| | - Jianing Fu
- Department of StomatologyChangzhi Medical CollegeChangzhi046000China
| | - Bingjie Yang
- Department of StomatologyChangzhi Medical CollegeChangzhi046000China
| | - Xinyue Liang
- Department of Medical ImageologyChangzhi Medical CollegeChangzhi046000China
| | - Chunyan Liu
- Department of AnesthesiaChangzhi Medical CollegeChangzhi046000China
| | - Haiju Li
- Department of PharmacologyChangzhi Medical CollegeChangzhi046000China
- Department of National Institute for Clinical Trials of Drugs and Phase I Clinical Trial LaboratoryHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Haihua Liu
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Pengfei Zhang
- Department of NephrologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| |
Collapse
|
22
|
Zhou H, Zou L, Ren H, Shen Z, Lin Y, Cai H, Zhang J. Cathelicidin-BF regulates the AMPK/SIRT1/NF-κB pathway to ameliorate murine osteoarthritis: In vitro and in vivo studie. Int Immunopharmacol 2024; 134:112201. [PMID: 38718660 DOI: 10.1016/j.intimp.2024.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease with a significant prevalence that causes cartilage damage and can lead to disability. The main factors contributing to the onset and progression of OA include inflammation and degeneration of the extracellular matrix. Cathelicidin-BF (BF-30), a natural peptide derived from Bungarus fasciatus venom, has shown multiple important pharmacological effects. However, the action mechanism of BF-30 in OA treatment remains to be elucidated. In this research, X-ray and Safranin O staining were employed to evaluate the imageology and histomorphology differences in the knee joints of mice in vivo. Techniques such as Western blot analysis, RT-qPCR, ELISA, and immunofluorescence staining were applied to examine gene and protein level changes in in vitro experiments. It was found that BF-30 significantly decreased inflammation and enhanced extracellular matrix metabolism. For the first time, it was demonstrated that the positive effects of BF-30 are mediated through the activation of the AMPK/SIRT1/NF-κB pathway. Moreover, when BF-30 was co-administered with Compound C, an AMPK inhibitor, the therapeutic benefits of BF-30 were reversed in both in vivo and in vitro settings. In conclusion, the findings suggest that BF-30 could be a novel therapeutic agent for OA improvement.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Hui Ren
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhenyu Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Haikang Cai
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
23
|
Li R, Liu X. FGF21 Inhibits Hypoxia/Reoxygenation-induced Renal Tubular Epithelial Cell Injury by Regulating the PPARγ/NF-κB Signaling Pathway. Cell Biochem Biophys 2024; 82:909-918. [PMID: 38459267 DOI: 10.1007/s12013-024-01242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
As a predominant trigger of acute kidney injury, renal ischemia-reperfusion injury can cause permanent renal impairment, and the effective therapies are lacking. Fibroblast growth factor 21 (FGF21) plays a critical regulatory role in a variety of biological activities. This study was conducted to explore the functional of FGF21 in renal ischemia-reperfusion injury and to discuss the hidden reaction mechanism. To simulate renal ischemia-reperfusion injury in vitro, HK2 cells were induced by hypoxia/reoxygenation (H/R). The effects of FGF21 on H/R-induced HK2 cell viability were evaluated utilizing cell counting kit-8 (CCK-8). The levels of lactate dehydrogenase (LDH) and inflammatory cytokines in H/R-induced HK2 cells were assessed by means of LDH assay and enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress markers were appraised with corresponding assay kits and western blot was applied to estimate the expressions of oxidative stress-related proteins. The apoptosis of H/R-induced HK2 cells was assessed by virtue of flow cytometry. The expressions of apoptosis- and PPARγ/NF-κB signaling pathway-related proteins were evaluated with western blot. To discuss the reaction mechanism of PPARγ/NF-κB pathway in H/R-induced HK2 cells, PPARγ inhibitor GW9662 was employed to treat cells and the above experiments were then conducted again. This study found that FGF21 treatment inhibited the inflammatory response, oxidative stress and apoptosis in H/R-induced HK2 cells. Moreover, FGF21 regulated PPARγ/NF-κB signaling pathway and GW9662 partially reversed the impacts of FGF21 on the inflammatory response, oxidative stress and apoptosis in H/R-exposed HK2 cells. Collectively, FGF21 protected against H/R-induced renal tubular epithelial cell injury by regulating the PPARγ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruixue Li
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China.
| | - Xi Liu
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China
| |
Collapse
|
24
|
Ye H, Cai T, Shen Y, Zhao L, Zhang H, Yang J, Li F, Chen J, Shui X. MST1 knockdown inhibits osteoarthritis progression through Parkin-mediated mitophagy and Nrf2/NF-κB signalling pathway. J Cell Mol Med 2024; 28:e18476. [PMID: 38842136 PMCID: PMC11154837 DOI: 10.1111/jcmm.18476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Osteoarthritis (OA) is a complicated disease that involves apoptosis and mitophagy. MST1 is a pro-apoptotic factor. Hence, decreasing its expression plays an anti-apoptotic effect. This study aims to investigate the protective effect of MST1 inhibition on OA and the underlying processes. Immunofluorescence (IF) was used to detect MST1 expression in cartilage tissue. Western Blot, ELISA and IF were used to analyse the expression of inflammation, extracellular matrix (ECM) degradation, apoptosis and mitophagy-associated proteins. MST1 expression in chondrocytes was inhibited using siRNA and shRNA in vitro and in vivo. Haematoxylin-Eosin, Safranin O-Fast Green and alcian blue staining were used to evaluate the therapeutic effect of inhibiting MST1. This study discovered that the expression of MST1 was higher in OA patients. Inhibition of MST1 reduced inflammation, ECM degradation and apoptosis and enhanced mitophagy in vitro. MST1 inhibition slows OA progression in vivo. Inhibiting MST1 suppressed apoptosis, inflammation and ECM degradation via promoting Parkin-mediated mitophagy and the Nrf2-NF-κB axis. The results suggest that MST1 is a possible therapeutic target for the treatment of osteoarthritis as its inhibition delays the progression of OA through the Nrf2-NF-κB axis and mitophagy.
Collapse
Affiliation(s)
- Hantao Ye
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Tingwen Cai
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Yang Shen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Lin Zhao
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haojie Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Jianxin Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Feida Li
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Jiaoxiang Chen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Xiaolong Shui
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
25
|
Zhang G, Huang C, Wang R, Guo J, Qin Y, Lv S. Chondroprotective effects of Apolipoprotein D in knee osteoarthritis mice through the PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2024; 133:112005. [PMID: 38626543 DOI: 10.1016/j.intimp.2024.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Because the pathophysiology of osteoarthritis (OA) has not been fully elucidated, targeted treatments are lacking. In this study, we assessed the role and underlying mechanism apolipoprotein D (APOD) on the development of OA. METHODS To establish an in vitro OA model, we extracted primary chondrocytes from the cartilage of C57BL/6 mice and stimulated the chondrocytes with IL-1β. After APOD intervention or incubation with an overexpressing plasmid, we detected inflammatory-related markers using RT-qPCR, Western blotting, and ELISA. To detect apoptosis and autophagy-related markers, we used flow cytometry, immunofluorescence, and transmission electron microscopy (TEM). Finally, we measured the level of oxidative stress. We also used RNA-seq to identify the APOD-regulated downstream signaling pathways. We used an in vivo mice OA model of the anterior cruciate ligament transection (ACLT) and administered intra-articular adenovirus overexpressing APOD. To examine cartilage damage severity, we used immunohistochemical analysis (IHC), micro-CT, scanning electron microscopy (SEM), and Safranin O-fast green staining. RESULTS Our results showed that APOD inhibited chondrocyte inflammation, degeneration, and apoptosis induced by IL-1β. Additionally, APOD reversed autophagy inhibition and oxidative stress and also blocked activation of the PI3K/AKT/mTOR signaling pathway induced by IL-1β. Finally, overexpression of the APOD gene through adenovirus was sufficient to mitigate OA progression. CONCLUSIONS Our findings revealed that APOD had a chondroprotective role in OA progression by the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Orthopedics, Harbin First Hospital, Harbin, Heilongjiang Province, China; Future Medical Laboratory of the Second Affiliated Hospital of Harbin Medical University, China
| | - Chao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ren Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiangrong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Songcen Lv
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
26
|
Kong P, Ahmad RE, Zulkifli A, Krishnan S, Nam HY, Kamarul T. The role of autophagy in mitigating osteoarthritis progression via regulation of chondrocyte apoptosis: A review. Joint Bone Spine 2024; 91:105642. [PMID: 37739213 DOI: 10.1016/j.jbspin.2023.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease with an immense socioeconomic burden; however, no treatment has achieved complete success in effectively halting or reversing cartilage degradation, which is the central pathophysiological feature of OA. Chondrocytes loss or dysfunction is a significant contributing factor to the progressive cartilage deterioration as these sole resident cells have a crucial role to produce extracellular matrix proteins, thus maintaining cartilage structure and homeostasis. It has been previously suggested that death of chondrocytes occurring through apoptosis substantially contributes to cartilage degeneration. Although the occurrence of apoptosis in osteoarthritic cartilage and its correlation with cartilage degradation is evident, the causes of chondrocyte apoptosis leading to matrix loss are still not well-understood. Autophagy, an intracellular degradative mechanism that eliminates dysfunctional cytoplasmic components to aid cell survival in unfavourable conditions, is a potential therapeutic target to inhibit chondrocyte apoptosis and reduce OA severity. Despite accumulating evidence indicating significant cytoprotective effects of autophagy against chondrocyte apoptosis, the mechanistic link between autophagy and apoptosis in chondrocytes remains to be further explored. In this review, we summarize the relevant mechanistic events that perpetuate chondrocyte apoptosis and highlight the prominent role of autophagy in modulating these events to mitigate OA progression.
Collapse
Affiliation(s)
- Peggy Kong
- Department of Orthopaedic Surgery, Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Raja Elina Ahmad
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Amirah Zulkifli
- Department of Orthopaedic Surgery, Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Shaliny Krishnan
- Department of Orthopaedic Surgery, Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Hui Yin Nam
- Department of Orthopaedic Surgery, Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia; Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Department of Orthopaedic Surgery, Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia; Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas Pulau Pinang, Malaysia
| |
Collapse
|
27
|
Shen W, Yang M, Chen H, He C, Li H, Yang X, Zhuo J, Lin Z, Hu Z, Lu D, Xu X. FGF21-mediated autophagy: Remodeling the homeostasis in response to stress in liver diseases. Genes Dis 2024; 11:101027. [PMID: 38292187 PMCID: PMC10825283 DOI: 10.1016/j.gendis.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 02/01/2024] Open
Abstract
Liver diseases are worldwide problems closely associated with various stresses, such as endoplasmic reticulum stress. The exact interplay between stress and liver diseases remains unclear. Autophagy plays an essential role in maintaining homeostasis, and recent studies indicate tight crosstalk between stress and autophagy in liver diseases. Once the balance between damage and autophagy is broken, autophagy can no longer resist injury or maintain homeostasis. In recent years, FGF21 (fibroblast growth factor 21)-induced autophagy has attracted much attention. FGF21 is regarded as a stress hormone and can be up-regulated by an abundance of signaling pathways in response to stress. Also, increased FGF21 activates autophagy by a complicated signaling network in which mTOR plays a pivotal role. This review summarizes the mechanism of FGF21-mediated autophagy and its derived application in the defense of stress in liver diseases and offers a glimpse into its promising prospect in future clinical practice.
Collapse
Affiliation(s)
- Wei Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Modan Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianyong Zhuo
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
28
|
Yang S, Wang F, Sun L, Liu X, Li S, Chen Y, Chen L, Pan Z, Kang Y, Chen YH, Wang W, Chen L, Li X, Tang C, Liu Y. The effects of BDNF rs6265 and FGF21 rs11665896 polymorphisms on alcohol use disorder-related impulsivity in Han Chinese adults. Front Psychiatry 2024; 15:1339558. [PMID: 38721616 PMCID: PMC11078301 DOI: 10.3389/fpsyt.2024.1339558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Patients with alcohol use disorder (AUD) often experience repeated withdrawal. Impulsivity is the most relevant factor influencing successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the differential effects of BDNF or FGF21 on impulsivity have focused on single-gene effects and have inconsistent results. We aim to investigate the effects of BDNF rs6265 and FGF21 rs11665896, individually and together, on impulsivity during alcohol withdrawal in patients with AUD. METHODS We recruited 482 adult Han Chinese males with AUD and assessed their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted and genotyped from peripheral blood samples. Statistical analysis was conducted on the data. RESULTS The T-test and 2 × 2 analysis of variance were used to investigate the effects of the genes on impulsivity. There was a significant BDNF × FGF21 interaction on no-planning impulsiveness (F = 9.15, p = 0.003, η2p = 0.03). Simple main effects analyses and planned comparisons showed that BDNF rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-planning impulsiveness. Finally, hierarchical regression analyses revealed that only the interaction of BDNF and FGF21 accounted for a significant portion of the variance in no-planning impulsiveness. CONCLUSION AND SIGNIFICANCE The combination of BDNF rs6265 A allele and FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol withdrawal. Our study provides a possible genetic explanation for the effects of associated impulsivity in patients with AUD from the perspective of gene-gene interactions.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Lanrong Sun
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xinqian Liu
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Lingling Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zeheng Pan
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Hohhot, China
| | - Yu-Hsin Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Li Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chonghui Tang
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Yanlong Liu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Fang Z, Wang C, Zhu J, Gou Y. Iron overload promotes hemochromatosis-associated osteoarthritis via the mTORC1-p70S6K/4E-BP1 pathway. Int Immunopharmacol 2024; 131:111848. [PMID: 38479156 DOI: 10.1016/j.intimp.2024.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUNDS Joint iron overload in hemochromatosis induces M1 polarization in synovial macrophages, releasing pro-inflammatory factors and leading to osteoarthritis development. However, the mechanism by which iron overload regulates M1 polarization remains unclear. This study aims to elucidate the mechanism by which synovial iron overload promotes macrophage M1 polarization. METHODS In vitro, RAW264.7 macrophages were treated with iron and divided into five groups based on the concentration of the iron chelator, desferrioxamine (DFO): Ctrl, Fe, DFO1, DFO2, and DFO3. In vivo, rats were categorized into five groups based on iron overload and intra-articular DFO injection: A-Ctrl, A-Fe, A-DFO1, A-DFO2, and A-DFO3. Osteoarthritis was induced by transecting the left knee anterior cruciate ligament. Macrophage morphology was observed; Prussian Blue staining quantified iron deposition in macrophages, synovium, and liver; serum iron concentration was measured using the ferrozine method; cartilage damage was assessed using H&E and Safranin O-Fast Green staining; qPCR detected iNOS and Arg-1 expression; Western Blot analyzed the protein expression of iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K; ELISA measured TNF-α and IL-6 concentrations in supernatants; and immunohistochemistry examined the protein expression of F4/80, iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K in the synovium. RESULTS In vitro, iron-treated macrophages exhibited Prussian Blue staining indicative of iron overload and morphological changes towards M1 polarization. qPCR and Western Blot revealed increased expression of the M1 polarization markers iNOS and its protein. ELISA showed elevated TNF-α and IL-6 levels in supernatants. In vivo, ferrozine assay indicated significantly increased serum iron concentrations in all groups except A-Ctrl; Prussian Blue staining showed increased liver iron deposition in all groups except A-Ctrl. Iron deposition in rat synovium decreased in a DFO concentration-dependent manner; immunohistochemistry showed a corresponding decrease in iNOS and phosphorylated 4E-BP1 expression, and an increase in Arg-1 expression. CONCLUSION Intracellular iron overload may exacerbate joint cartilage damage by promoting synovial macrophage M1 polarization through phosphorylation of 4E-BP1 in the mTORC1-p70S6K/4E-BP1 pathway.
Collapse
Affiliation(s)
- Zhiyuan Fang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi 830000, China.
| | - Chengwei Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi 830000, China.
| | - Jiang Zhu
- General Surgery department, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Teaching Hospital of Xinjiang Medical University, Urumqi 830011, China.
| | - Yangyang Gou
- The Sixth Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
30
|
Xu M, Qian Z, Zhang Y, Gao X, Ma Z, Jin X, Wu S. Sirt1 alleviates osteoarthritis via promoting FoxO1 nucleo-cytoplasm shuttling to facilitate autophagy. Int Immunopharmacol 2024; 131:111893. [PMID: 38513577 DOI: 10.1016/j.intimp.2024.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
This study aims to investigate the role and underlying mechanisms of Sirt1 in the pathophysiological process of OA. Safranine O and HE staining were utilized to identify pathological changes in the cartilage tissue. Immunohistochemistry was employed to evaluate the expression levels of proteins. IL-1β treatment and TamCartSirt1flox/flox mice were utilized to induce OA model both in vitro and in vivo. Key autophagy-related transcription factors, autophagy-related genes, and chondrocyte extracellular matrix (ECM) breakdown enzyme markers were examined using multi assays. Immunofluorescence staining revealed subcellular localization and gene expression patterns. ChIP assay and Co-immunoprecipitation assay were conducted to investigate the interactions between FoxO1 and the promoter regions of Atg7 and Sirt1. Our results demonstrate that Sirt1 deficiency exhibited inhibitory effects on ECM synthesis and autophagy, as well as exacerbated angiogenesis. Moreover, Atg7, Foxo1, and Sirt1 could form a protein complex. Sirt1 was observed to facilitate nuclear translocation of FoxO1, enhancing its transcriptional activity. Furthermore, FoxO1 was found to bind to the promoter regions of Atg7 and Sirt1, potentially regulating their expression. This study provides valuable insights into the involvement of Sirt1-Atg7-FoxO1 loop in OA, opening new avenues for targeted therapeutic interventions aiming to mitigate cartilage degradation and restore joint function.
Collapse
Affiliation(s)
- Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhengmin Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Zhu J, Jin Z, Wang J, Wu Z, Xu T, Tong G, Shen E, Fan J, Jiang C, Wang J, Li X, Cong W, Lin L. FGF21 ameliorates septic liver injury by restraining proinflammatory macrophages activation through the autophagy/HIF-1α axis. J Adv Res 2024:S2090-1232(24)00134-6. [PMID: 38599281 DOI: 10.1016/j.jare.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Sepsis, a systemic immune syndrome caused by severe trauma or infection, poses a substantial threat to the health of patients worldwide. The progression of sepsis is heavily influenced by septic liver injury, which is triggered by infection and cytokine storms, and has a significant impact on the tolerance and prognosis of septic patients. The objective of our study is to elucidate the biological role and molecular mechanism of fibroblast growth factor 21 (FGF21) in the process of sepsis. OBJECTIVES This study was undertaken in an attempt to elucidate the function and molecular mechanism of FGF21 in therapy of sepsis. METHODS Serum concentrations of FGF21 were measured in sepsis patients and septic mice. Liver injury was compared between mice FGF21 knockout (KO) mice and wildtype (WT) mice. To assess the therapeutic potential, recombinant human FGF21 was administered to septic mice. Furthermore, the molecular mechanism of FGF21 was investigated in mice with myeloid-cell specific HIF-1α overexpression mice (LyzM-CreDIO-HIF-1α) and myeloid-cell specific Atg7 knockout mice (Atg7△mye). RESULTS Serum level of FGF21 was significantly increased in sepsis patients and septic mice. Through the use of recombinant human FGF21 (rhFGF21) and FGF21 KO mice, we found that FGF21 mitigated septic liver injury by inhibiting the initiation and propagation of inflammation. Treatment with rhFGF21 effectively suppressed the activation of proinflammatory macrophages by promoting macroautophagy/autophagy degradation of hypoxia-inducible factor-1α (HIF-1α). Importantly, the therapeutic effect of rhFGF21 against septic liver injury was nullified in LyzM-CreDIO-HIF-1α mice and Atg7△mye mice. CONCLUSIONS Our findings demonstrate that FGF21 considerably suppresses inflammation upon septic liver injury through the autophagy/ HIF-1α axis.
Collapse
Affiliation(s)
- Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jie Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Chunhui Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Haihe Laboratory of Cell Ecosystem, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Li Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
32
|
Li X, Zhao C, Mao C, Sun G, Yang F, Wang L, Wang X. Oleic and linoleic acids promote chondrocyte apoptosis by inhibiting autophagy via downregulation of SIRT1/FOXO1 signaling. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167090. [PMID: 38378085 DOI: 10.1016/j.bbadis.2024.167090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Osteoarthritis (OA) is a complex joint disease that currently has no cure. OA involves metabolic disorders in chondrocytes and an imbalance between autophagy and apoptosis. As a common risk factor for OA, obesity induces changes in the fatty acid composition of synovial fluid, thereby disturbing chondrocyte homeostasis. However, whether unsaturated fatty acids affect the development of OA by regulating chondrocyte autophagy remains unclear. This study aimed to determine the effects of oleic and linoleic acids on chondrocyte autophagy and related mechanisms. Based on the mass spectrometry results, the levels of multiple unsaturated fatty acids, including oleic and linoleic acids, in the synovial fluid of patients with OA and obesity were significantly higher than those in patients with OA only. Moreover, we found that FOXO1 and SIRT1 were downregulated after oleic and linoleic acids treatment of chondrocytes, which inhibited chondrocyte autophagy. Importantly, the upregulation of SIRT1 and FOXO1 expression not only increased the level of autophagy but also improved the expression of chondrocyte extracellular matrix proteins. Furthermore, upregulated SIRT1 and FOXO1 expression alleviated the destruction of the articular cartilage in an OA rat model. Our results suggest that SIRT1/FOXO1 signaling can alleviate oleic acid- and linoleic acid-induced cartilage degradation both in vitro and in vivo and that the SIRT1/FOXO1 pathway may serve as an effective treatment target for inhibiting OA progression.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chuanyuan Mao
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guantong Sun
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Yang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Xiaoqing Wang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
33
|
Cho I, Chung KH, Kim Y, Choi CH, Koh JT. Baicalein inhibits IL-1β-induced extracellular matrix degradation with decreased MCP-1 expression in primary rat chondrocytes. Toxicol Res 2024; 40:237-246. [PMID: 38525128 PMCID: PMC10959879 DOI: 10.1007/s43188-024-00225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 03/26/2024] Open
Abstract
Baicalein is a flavonoid extracted from the roots of Scutellaria baicalensis and Scutellaria lateriflora. This compound exerts various biochemical activities, including antioxidant and anti-inflammatory effects. The study aimed to investigate the effect of baicalein on articular cartilage cells and elucidate its underlying mechanism. In primary rat chondrocyte cultures, treatment with baicalein demonstrated a reduction in the loss of proteoglycan and extracellular matrix degradation induced by interleukin (IL)-1β. Baicalein suppressed IL-1β-induced catabolic responses, including the expression and activation of matrix metalloproteinase (MMP)-13, MMP-3, and MMP-1. In addition, baicalein effectively reduced nitric oxide and prostaglandin E2 production, and it downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in primary rat chondrocytes. Furthermore, baicalein downregulated IL-1β-induced inflammatory chemokines and cytokines, such as GM-CSF and MCP-1. These findings suggest that baicalein could potentially mitigate the catabolic responses of IL-1β in chondrocytes, making it a promising candidate for both the prevention and treatment of osteoarthritis. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00225-4.
Collapse
Affiliation(s)
- InA Cho
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ki-Ho Chung
- Department of Preventive and Public Health Dentistry, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Young Kim
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Choong-Ho Choi
- Department of Preventive and Public Health Dentistry, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
34
|
Liao Z, Cai X, Zheng Y, Lin J, Yang X, Lin W, Zhang Y, He X, Liu C. Sirtuin 1 in osteoarthritis: Perspectives on regulating glucose metabolism. Pharmacol Res 2024; 202:107141. [PMID: 38490314 DOI: 10.1016/j.phrs.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease characterised by articular cartilage destruction, and its complex aetiology contributes to suboptimal clinical treatment outcomes. A close association exists between glucose metabolism dysregulation and OA pathogenesis. Owing to the unique environment of low oxygen and glucose concentrations, chondrocytes rely heavily on their glycolytic capacity, exhibiting distinct spatiotemporal differences. However, under pathological stimulation, chondrocytes undergo excessive glycolytic activity while mitochondrial respiration and other branches of glucose metabolism are compromised. This metabolic change induces cartilage degeneration by reprogramming the inflammatory responses. Sirtuins, a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, regulate glucose metabolism in response to energy fluctuations in different cellular compartments,alleviating metabolic stress. SIRT1, the most extensively studied sirtuin, participates in maintaining glucose homeostasis in almost all key metabolic tissues. While actively contributing to the OA progression and displaying diverse biological effects in cartilage protection, SIRT1's role in regulating glucose metabolism in chondrocytes has not received sufficient attention. This review focuses on discussing the beneficial role of SIRT1 in OA progression from a metabolic regulation perspective based on elucidating the primary characteristics of chondrocyte glucose metabolism. We also summarise the potential mechanisms and therapeutic strategies targeting SIRT1 in chondrocytes to guide clinical practice and explore novel therapeutic directions.
Collapse
Affiliation(s)
- Zhihao Liao
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Xuepei Cai
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yifan Zheng
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Xia Yang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Weiyin Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Ying Zhang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China.
| |
Collapse
|
35
|
Shen J, Lan Y, Ji Z, Liu H. Sirtuins in intervertebral disc degeneration: current understanding. Mol Med 2024; 30:44. [PMID: 38553713 PMCID: PMC10981339 DOI: 10.1186/s10020-024-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is one of the etiologic factors of degenerative spinal diseases, which can lead to a variety of pathological spinal conditions such as disc herniation, spinal stenosis, and scoliosis. IVDD is a leading cause of lower back pain, the prevalence of which increases with age. Recently, Sirtuins/SIRTs and their related activators have received attention for their activity in the treatment of IVDD. In this paper, a comprehensive systematic review of the literature on the role of SIRTs and their activators on IVDD in recent years is presented. The molecular pathways involved in the regulation of IVDD by SIRTs are summarized, and the effects of SIRTs on senescence, inflammatory responses, oxidative stress, and mitochondrial dysfunction in myeloid cells are discussed with a view to suggesting possible solutions for the current treatment of IVDD. PURPOSE This paper focuses on the molecular mechanisms by which SIRTs and their activators act on IVDD. METHODS A literature search was conducted in Pubmed and Web of Science databases over a 13-year period from 2011 to 2024 for the terms "SIRT", "Sirtuin", "IVDD", "IDD", "IVD", "NP", "Intervertebral disc degeneration", "Intervertebral disc" and "Nucleus pulposus". RESULTS According to the results, SIRTs and a large number of activators showed positive effects against IVDD.SIRTs modulate autophagy, myeloid apoptosis, oxidative stress and extracellular matrix degradation. In addition, they attenuate inflammatory factor-induced disc damage and maintain homeostasis during disc degeneration. Several clinical studies have reported the protective effects of some SIRTs activators (e.g., resveratrol, melatonin, honokiol, and 1,4-dihydropyridine) against IVDD. CONCLUSION The fact that SIRTs and their activators play a hundred different roles in IVDD helps to better understand their potential to develop further treatments for IVDD. NOVELTY This review summarizes current information on the mechanisms of action of SIRTs in IVDD and the challenges and limitations of translating their basic research into therapy.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ziyu Ji
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Third People's Hospital of Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
36
|
Kong H, Han JJ, Dmitrii G, Zhang XA. Phytochemicals against Osteoarthritis by Inhibiting Apoptosis. Molecules 2024; 29:1487. [PMID: 38611766 PMCID: PMC11013217 DOI: 10.3390/molecules29071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| |
Collapse
|
37
|
Zhou X, Li WK, Zhuang C, Zhou XC, Zhao XF, Pan Y, Guo WX, Yang YW, Sheng CZ, Xie ZF, Yu JS, Chen YX, Wang LK, Ma TY, Zhu KX, Xiang KM, Zhuang RJ. Lei's formula attenuates osteoarthritis mediated by suppression of chondrocyte senescence via the mTOR axis: in vitro and in vivo experiments. Aging (Albany NY) 2024; 16:4250-4269. [PMID: 38407978 PMCID: PMC10968702 DOI: 10.18632/aging.205582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.
Collapse
Affiliation(s)
- Xing Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wen-Kai Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen Zhuang
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing-Chen Zhou
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Pan
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wen-Xuan Guo
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yi-Wen Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cen-Zhuo Sheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhe-Fei Xie
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin-Sheng Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi-Xuan Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li-Kang Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tian-You Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kang-Xiang Zhu
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
- Quzhou TCM Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| | - Ke-Meng Xiang
- Taizhou Traditional Chinese Medicine Hospital, Taizhou, Zhejiang, China
| | - Ru-Jie Zhuang
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
- Quzhou TCM Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| |
Collapse
|
38
|
Lu W, Zhao J, Cai X, Wang Y, Lin W, Fang Y, Wang Y, Ao J, Shou J, Xu J, Zhu S. Cadherin-responsive hydrogel combined with dental pulp stem cells and fibroblast growth factor 21 promotes diabetic scald repair via regulating epithelial-mesenchymal transition and necroptosis. Mater Today Bio 2024; 24:100919. [PMID: 38298888 PMCID: PMC10829787 DOI: 10.1016/j.mtbio.2023.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Diabetes causes a loss of sensation in the skin, so diabetics are prone to burns when using heating devices. Diabetic scalded skin is often difficult to heal due to the microenvironment of high glucose, high oxidation, and low blood perfusion. The treatment of diabetic scald mainly focuses on three aspects: 1) promote the formation of the epithelium; 2) promote angiogenesis; and 3) maintain intracellular homeostasis. In response to these three major repair factors, we developed a cadherin-responsive hydrogel combined with FGF21 and dental pulp stem cells (DPSCs) to accelerate epithelial formation by recruiting cadherin to the epidermis and promoting the transformation of N cadherin to E cadherin; promoting angiogenesis to increase wound blood perfusion; regulating the stability of lysosomal and activating autophagy to maintain intracellular homeostasis in order to comprehensively advance the recovery of diabetic scald.
Collapse
Affiliation(s)
- Wenjie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Juan Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiong Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yutian Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenwei Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yaoping Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yunyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jinglei Ao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiahui Shou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
39
|
Lin S, Wu B, Hu X, Lu H. Sirtuin 4 (Sirt4) downregulation contributes to chondrocyte senescence and osteoarthritis via mediating mitochondrial dysfunction. Int J Biol Sci 2024; 20:1256-1278. [PMID: 38385071 PMCID: PMC10878156 DOI: 10.7150/ijbs.85585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
Chondrocyte senescence has recently been proposed as a key pathogenic mechanism in the etiology of osteoarthritis (OA). Nevertheless, the precise molecular mechanisms underlying chondrocyte senescence remain poorly understood. To address this knowledge gap, we conducted an investigation into the involvement of Sirtuin 4 (Sirt4) in chondrocyte senescence. Our experimental findings revealed a downregulation of Sirt4 expression in TBHP-induced senescent chondrocytes in vitro, as well as in mouse OA cartilage. Additionally, we observed that the knockdown of Sirt4 in chondrocytes promoted cellular senescence and cartilage degradation, while the overexpression of Sirt4 protected the cells against TBHP-mediated senescence of chondrocytes and cartilage degradation. Moreover, our findings revealed elevated levels of reactive oxygen species (ROS), abnormal mitochondrial morphology, compromised mitochondrial membrane potential, and reduced ATP production in Sirt4 knockdown chondrocytes, indicative of mitochondrial dysfunction. Conversely, Sirt4 overexpression successfully mitigated TBHP-induced mitochondrial dysfunction. Further analysis revealed that Sirt4 downregulation impaired the cellular capacity to eliminate damaged mitochondria by inhibiting Pink1 in chondrocytes, thereby enhancing the accumulation of ROS and facilitating chondrocyte senescence. Notably, the overexpression of Pink1 counteracted the effects of Sirt4 knockdown on mitochondrial dysfunction. Importantly, our study demonstrated the promise of gene therapy employing a lentiviral vector encoding mouse Sirt4, as it successfully preserved the integrity of articular cartilage in mouse models of OA. In conclusion, our findings provide compelling evidence that the overexpression of Sirt4 enhances mitophagy, restores mitochondrial function, and protects against chondrocyte senescence, thereby offering a novel therapeutic target and potential strategy for the treatment of OA.
Collapse
Affiliation(s)
- Shiyuan Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
- Department of Trauma Orthopedic, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University and The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518035, Guangdong, China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Xinjia Hu
- Department of Trauma Orthopedic, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University and The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518035, Guangdong, China
| | - Huading Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
40
|
Chen S, Kang P, Zhao Z, Zhang H, Li J, Xu K, Gong D, Jiao F, Wang H, Zhang M. Danggui-Shaoyao-San (DSS) ameliorates the progression of osteoarthritis via suppressing the NF-κB signaling pathway: an in vitro and in vivo study combined with bioinformatics analysis. Aging (Albany NY) 2024; 16:648-664. [PMID: 38194722 PMCID: PMC10817397 DOI: 10.18632/aging.205410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.
Collapse
Affiliation(s)
- Shuai Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhuanglin Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Hongyi Zhang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Jianliang Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kun Xu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Dawei Gong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Feng Jiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Meng Zhang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, Henan, China
| |
Collapse
|
41
|
Fu L, Duan H, Cai Y, Chen X, Zou B, Yuan L, Liu G. Moxibustion ameliorates osteoarthritis by regulating gut microbiota via impacting cAMP-related signaling pathway. Biomed Pharmacother 2024; 170:116031. [PMID: 38113621 DOI: 10.1016/j.biopha.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent progressive disorder. Moxibustion has found widespread use in clinical practice for OA, while its underlying mechanism remains elusive. OBJECTIVE To investigate whether moxibustion can ameliorate OA by influencing the metabolic processes in OA and to elucidate the specific metabolic mechanisms involved. METHODS C57BL/6J WT mice were randomly assigned to one of three groups: the SHAM group, the ACLT group, and the ACLT+M group. In the ACLT+M group, mice underwent moxibustion treatment at acupoints Shenshu (BL23) and Zusanli (ST36) for a continuous period of 28 days, with each session lasting 20 min. We conducted a comprehensive analysis to assess the impact of moxibustion on OA, focusing on pathological changes, intestinal flora composition, and serum metabolites. RESULTS Moxibustion treatment effectively mitigated OA-related pathological changes. Specifically, moxibustion treatment resulted in the amelioration of articular cartilage damage, synovial inflammation, subchondral bone sclerosis when compared to the ACLT group. Moreover, 16S rDNA sequencing analysis revealed that moxibustion treatment positively influenced the composition of the flora, making it more similar to that of the SHAM group. Notably, moxibustion treatment led to a reduction in the abundance of Ruminococcus and Proteobacteria in the intestine. In addition, non-targeted metabolomics analysis identified 254 significantly different metabolites between the groups. Based on KEGG pathway analysis and the observed impact of moxibustion on OA-related inflammation, moxibustion therapy is closely associated with the cAMP-related signaling pathway. CONCLUSION Moxibustion can relieve OA by regulating intestinal flora and via impacting cAMP-related signaling pathway.
Collapse
Affiliation(s)
- Liping Fu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Duan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yisi Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuelan Chen
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Binhua Zou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
42
|
Pei X, Tang S, Jiang H, Zhang W, Xu G, Zuo Z, Ren Z, Chen C, Shen Y, Li C, Li D. Paeoniflorin recued hepatotoxicity under zinc oxide nanoparticles exposure via regulation on gut-liver axis and reversal of pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166885. [PMID: 37678520 DOI: 10.1016/j.scitotenv.2023.166885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The risks of Zinc oxide nanoparticles (ZnO NPs) applications in biological medicine, food processing industry, agricultural production and the biotoxicity brought by environmental invasion of ZnO NPs both gradually troubled the public due to the lack of research on detoxification strategies. TFEB-regulated autophagy-pyroptosis pathways were found as the crux of the hepatotoxicity induced by ZnO NPs in our latest study. Here, our study served as a connecting link between preceding toxic target and the following protection mechanism of Paeoniflorin (PF). According to a combined analysis of network pharmacology/molecular docking-intestinal microbiota-metabolomics first developed in our study, PF alleviated the hepatotoxicity of ZnO NPs from multiple aspects. The hepatic inflammatory injury and hepatocyte pyroptosis in mice liver exposed to ZnO NPs was significantly inhibited by PF. And the intestinal microbiota disorder and liver metabolic disturbance were rescued. The targets predicted by bioinformatics and the signal trend in subacute toxicological model exhibited the protectiveness of PF related to the SIRT1-mTOR-TFEB pathway. These evidences clarified multiple protective mechanisms of PF which provided a novel detoxification approach against ZnO NPs, and further provided a strategy for the medicinal value development of PF.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zhenhui Ren
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Chun Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Yao Shen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China.
| |
Collapse
|
43
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
44
|
Horváth E, Sólyom Á, Székely J, Nagy EE, Popoviciu H. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int J Mol Sci 2023; 24:16468. [PMID: 38003658 PMCID: PMC10671750 DOI: 10.3390/ijms242216468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is a complex disease of whole joints with progressive cartilage matrix degradation and chondrocyte transformation. The inflammatory features of OA are reflected in increased synovial levels of IL-1β, IL-6 and VEGF, higher levels of TLR-4 binding plasma proteins and increased expression of IL-15, IL-18, IL-10 and Cox2, in cartilage. Chondrocytes in OA undergo hypertrophic and senescent transition; in these states, the expression of Sox-9, Acan and Col2a1 is suppressed, whereas the expression of RunX2, HIF-2α and MMP-13 is significantly increased. NF-kB, which triggers many pro-inflammatory cytokines, works with BMP, Wnt and HIF-2α to link hypertrophy and inflammation. Altered carbohydrate metabolism and the upregulation of GLUT-1 contribute to the formation of end-glycation products that trigger inflammation via the RAGE pathway. In addition, a glycolytic shift, increased rates of oxidative phosphorylation and mitochondrial dysfunction generate reactive oxygen species with deleterious effects. An important surveyor mechanism, the YAP/TAZ signaling system, controls chondrocyte differentiation, inhibits ageing by protecting the nuclear envelope and suppressing NF-kB, MMP-13 and aggrecanases. The inflammatory microenvironment and synthesis of key matrix components are also controlled by SIRT1 and mTORc. Senescent chondrocytes represent the functional end stage of hypertrophic differentiation and characteristically upregulate p16 and p21, but also a variety of inflammatory cytokines, chemokines and metalloproteinases, developing the senescence-associated secretory phenotype. Senolysis with dendrobin, miR29b-5p and other agents has been shown to be efficient under experimental conditions, and appears to be a promising tool for the treatment of OA, as it restores COL2A1 and aggrecan synthesis, suppressing NF-kB and destructive metalloproteinases.
Collapse
Affiliation(s)
- Emőke Horváth
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania;
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania
| | - Árpád Sólyom
- Department of Orthopedics-Traumatology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu Street, 540142 Targu Mures, Romania;
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - János Székely
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 6 Bernády György Square, 540394 Targu Mures, Romania
| | - Horațiu Popoviciu
- Department of Rheumatology, Physical and Medical Rehabilitation, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
| |
Collapse
|
45
|
Aid M, Sciacca M, McMahan K, Hope D, Liu J, Jacob-Dolan C, Powers O, Barrett J, Wu C, Mutoni A, Murdza T, Richter H, Velasco J, Teow E, Boursiquot M, Cook A, Orekov T, Hamilton M, Pessaint L, Ryan A, Hayes T, Martinot AJ, Seaman MS, Lewis MG, Andersen H, Barouch DH. Mpox infection protects against re-challenge in rhesus macaques. Cell 2023; 186:4652-4661.e13. [PMID: 37734373 PMCID: PMC10591870 DOI: 10.1016/j.cell.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
The mpox outbreak of 2022-2023 involved rapid global spread in men who have sex with men. We infected 18 rhesus macaques with mpox by the intravenous, intradermal, and intrarectal routes and observed robust antibody and T cell responses following all three routes of infection. Numerous skin lesions and high plasma viral loads were observed following intravenous and intradermal infection. Skin lesions peaked on day 10 and resolved by day 28 following infection. On day 28, we re-challenged all convalescent and 3 naive animals with mpox. All convalescent animals were protected against re-challenge. Transcriptomic studies showed upregulation of innate and inflammatory responses and downregulation of collagen formation and extracellular matrix organization following challenge, as well as rapid activation of T cell and plasma cell responses following re-challenge. These data suggest key mechanistic insights into mpox pathogenesis and immunity. This macaque model should prove useful for evaluating mpox vaccines and therapeutics.
Collapse
Affiliation(s)
- Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michaela Sciacca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cindy Wu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Audrey Mutoni
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tetyana Murdza
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | - Alaina Ryan
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Tammy Hayes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Amanda J Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Liu Z, Huang J, Wang X, Deng S, Zhou J, Gong Z, Li X, Wang Y, Yang J, Hu Y. Dapagliflozin suppress endoplasmic reticulum stress mediated apoptosis of chondrocytes by activating Sirt1. Chem Biol Interact 2023; 384:110724. [PMID: 37741535 DOI: 10.1016/j.cbi.2023.110724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a common joint disease characterized by inflammation and cartilage degeneration. Accumulating evidences support that endoplasmic reticulum (ER) stress induced OA chondrocytes apoptosis. The hypoglycemic and anti-inflammatory properties render Dapagliflozin (DAPA) effective in reducing ER stress on cells. However, its impact and potential mechanisms on the OA pathology are still obscure. The present study aimed to investigate whether DAPA attenuates ER stress in chondrocytes by activating sirt1 and delays the progression of OA. METHODS In vitro, we first investigated the effect of DAPA on chondrocytes viability with IL-1β or not for 24 or 48 h. Then, chondrocytes were treated with 10 ng/ml IL-1β and 10 μM dapagliflozin with10 μM thapsigargin, 5 μM SRT1460 or not. Chondrocytes apoptosis in each group were detected by Tunel staining and flow cytometric. Immunofluorescence staining was applied to quantify the expression levels of cleaved caspase-3, Sirt1 and CHOP in chondrocytes. Inhibition of ER stress in chondrocytes associated with sirt1 activation were verified by PCR and western blotting. In addition, the effects of DAPA on cartilage were validated by a series of experiments in OA rat model, such as micro-CT, histological and immunohistochemical assay. RESULTS The data demonstrated that DAPA alleviates IL-1β induced ER stress related chondrocytes apoptosis, and PCR and western blotting data confirmed that DAPA inhibits the PERK-eIF2α-CHOP pathway by activating Sirt1. Besides, immunohistochemical results showed that DAPA enhanced the expression of Sirt1 and Collagen II in OA rats, and inhibited the expression of CHOP and cleaved caspase-3. Meanwhile, histological staining and micro-CT photography also confirmed that DAPA alleviated inflammation and cartilage degeneration in OA rat. CONCLUSIONS The study demonstrated the relationship of ER stress and inflammation in the progression of OA, and verified that DAPA could inhibit PERK-eIF2α-CHOP axis of the ER stress response by activating Sirt1 in IL-1β treated rat chondrocytes and potentially prevent the OA development.
Collapse
Affiliation(s)
- Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Ziheng Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Yanjie Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| |
Collapse
|
47
|
Aguilera SB, McCarthy A, Khalifian S, Lorenc ZP, Goldie K, Chernoff WG. The Role of Calcium Hydroxylapatite (Radiesse) as a Regenerative Aesthetic Treatment: A Narrative Review. Aesthet Surg J 2023; 43:1063-1090. [PMID: 37635437 PMCID: PMC11025388 DOI: 10.1093/asj/sjad173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
For decades, a wide variety of natural and synthetic materials have been used to augment human tissue to improve aesthetic outcomes. Dermal fillers are some of the most widely used aesthetic treatments throughout the body. Initially, the primary function of dermal fillers was to restore depleted volume. As biomaterial research has advanced, however, a variety of biostimulatory fillers have become staples in aesthetic medicine. Such fillers often contain a carrying vehicle and a biostimulatory material that induces de novo synthesis of major structural components of the extracellular matrix. One such filler, Radiesse (Merz Aesthetics, Raleigh, NC), is composed of calcium hydroxylapatite microspheres suspended in a carboxymethylcellulose gel. In addition to immediate volumization, Radiesse treatment results in increases of collagen, elastin, vasculature, proteoglycans, and fibroblast populations via a cell-biomaterial-mediated interaction. When injected, Radiesse acts as a cell scaffold and clinically manifests as immediate restoration of depleted volume, improvements in skin quality and appearance, and regeneration of endogenous extracellular matrices. This narrative review contextualizes Radiesse as a regenerative aesthetic treatment, summarizes its unique use cases, reviews its rheological, material, and regenerative properties, and hypothesizes future combination treatments in the age of regenerative aesthetics. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
| | - Alec McCarthy
- Corresponding Author: Dr Alec McCarthy, Medical Affairs North America, Merz Aesthetics, 6501 Six Forks Road, Raleigh, NC 27615, USA. E-mail:
| | | | | | | | | |
Collapse
|
48
|
Wu J, Yu H, Jin Y, Wang J, Zhou L, Cheng T, Zhang Z, Lin B, Miao J, Lin Z. Ajugol's upregulation of TFEB-mediated autophagy alleviates endoplasmic reticulum stress in chondrocytes and retards osteoarthritis progression in a mouse model. Chin Med 2023; 18:113. [PMID: 37679844 PMCID: PMC10483732 DOI: 10.1186/s13020-023-00824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), a degenerative disease with a high global prevalence, is characterized by the degradation of the extracellular matrix (ECM) and the apoptosis of chondrocytes. Ajugol, a extract derived from the herb Rehmannia glutinosa, has not yet been investigated for its potential in modulating the development of OA. METHODS We employed techniques such as western blotting, immunofluorescence, immunohistochemistry, X-ray imaging, HE staining, and SO staining to provide biological evidence supporting the role of Ajugol as a potential therapeutic agent for modulating OA. Furthermore, in an in vivo experiment, intra-peritoneal injection of 50 mg/kg Ajugol effectively mitigated the progression of OA following destabilization of the medial meniscus (DMM) surgery. RESULTS Our findings revealed that treatment with 50 μM Ajugol activated TFEB-mediated autophagy, alleviating ER stress-induced chondrocyte apoptosis and ECM degradation caused by TBHP. Furthermore, in an in vivo experiment, intra-peritoneal injection of 50 mg/kg Ajugol effectively mitigated the progression of OA following destabilization of the medial meniscus (DMM) surgery. CONCLUSION These results provide compelling biological evidence supporting the role of Ajugol as a potential therapeutic agent for modulating OA by activating autophagy and attenuating ER stress-induced cell death and ECM degradation. The promising in vivo results further suggest the potential of Ajugol as a treatment strategy for OA progression.
Collapse
Affiliation(s)
- Jingtao Wu
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Heng Yu
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yangcan Jin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jingquan Wang
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Liwen Zhou
- The First School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Teng Cheng
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhao Zhang
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Binghao Lin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jiansen Miao
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongke Lin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
49
|
Li Y, Zhu Y, Hu F, Liu L, Shen G, Tu Q. Procyanidin B2 regulates the Sirt1/Nrf2 signaling pathway to improve random-pattern skin flap survival. Phytother Res 2023; 37:3913-3925. [PMID: 37128130 DOI: 10.1002/ptr.7847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Random-pattern skin flaps have been widely used in the reconstruction of damaged tissues. Ischemia-reperfusion injury occurring in the distal regions of the flap is a common issue, which often leads to flap necrosis and restricts its clinical applications. Procyanidin B2 (PB2), a naturally occurring flavonoid in large quantities in various fruits, has been demonstrated to exhibit several significant pharmacological properties. However, the effect of PB2 on flap viability is not clearly known. Here, using Western blot analysis, immunohistochemistry, and immunofluorescence staining, we observed that PB2 significantly reduced oxidative stress and inflammation and enhanced angiogenesis. Mechanically, we provided evidence for the first time that the beneficial effects of PB2 occur through the activation of the Sirt1/Nrf2 signaling pathway. Moreover, co-administration of PB2 and EX527, a selective inhibitor of Sirt1, resulted in down-regulation of the expression of Sirt1, Nrf2, and downstream antioxidants. In summary, our study showed that PB2 might be a novel therapeutic strategy for improving the survival of random-pattern skin flaps.
Collapse
Affiliation(s)
- Yao Li
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Yurun Zhu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Fei Hu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lue Liu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Guangjie Shen
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Qiming Tu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| |
Collapse
|
50
|
Tang Y, Zhang M. Fibroblast growth factor 21 and bone homeostasis. Biomed J 2023; 46:100548. [PMID: 35850479 PMCID: PMC10345222 DOI: 10.1016/j.bj.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a member of the FGF subfamily, is produced primarily in the liver and adipose tissue. The main function of FGF21 is to regulate energy metabolism of carbohydrates and lipids in the body through endocrine and other means, making FGF21 have potential clinical value in the treatment of metabolic disorders. Although FGF21 and its receptors play a role in the regulation of bone homeostasis through a variety of signaling pathways, a large number of studies have reported that the abuse of FGF21 and its analogues and the abnormal expression of FGF21 in vivo may be associated with bone abnormalities. Due to limited research information on the effect of FGF21 on bone metabolism regulation, the role of FGF21 in the process of bone homeostasis regulation and the mechanism of its occurrence and development have not been fully clarified. Certainly, the various roles played by FGF21 in the regulation of bone homeostasis deserve increasing attention. In this review, we summarize the basic physiological knowledge of FGF21 and the effects of FGF21 on metabolic homeostasis of the skeletal system in animal and human studies. The information provided in this review may prove beneficial for the intervention of bone diseases.
Collapse
Affiliation(s)
- Yan Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|