1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Ouyang J, Xiao W, Wu D, Bai M, Zhao Q, Li Y. Esketamine alleviated cardiomyocyte ferroptosis induced by oxygen-glucose deprivation/reoxygenation (OGD/R) via cyclic GMP-AMP synthase interactor. Cytotechnology 2025; 77:57. [PMID: 39931675 PMCID: PMC11807036 DOI: 10.1007/s10616-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Background The use of tourniquets (TQ) during the total knee arthroplasty (TKA) induced ischemia-reperfusion (I/R) injury in the limb, resulting in the release of inflammatory cytokines and reactive oxygen species (ROS), therefore leading to myocardial damage. This study aimed to investigate the effects and molecular mechanism of Esketamine on myocardial injury (MI) caused by TQ-induced I/R injury. Methods A randomized numerical table method was used to divide 23 patients into the C group (11 cases, ACB + conventional anesthesia) and M group (12 cases, ACB + conventional anesthesia + 0.5 mg/kg Esketamine). The levels of lactate dehydrogenase (LDH), Malondialdehyde (MDA), Fe2+, Glutathione Peroxidase (GSH-Px), glutathione (GSH), IL-6, TNF-α, Creatine Kinase (CK) and CreatineKinase-MB (CKMB) were determined by reagent kits. The expression of CGAMP interaction factor (STING), Glutathione Peroxidase 4 (GPX4), and Ferritin Heavy Chain 1 (FTH1) was examined by Western blot. The ROS level was tested by flow cytometry. The expression of STING was validated by immunofluorescence. Results Compared with the C group, the levels of GSH-Px and GSH were increased while the levels of IL-6, TNF-α, MDA, Fe2+, CK, CKMB, and LDH were decreased in the M group. Furthermore, esketamine relieved the OGD/R-induced increase of MDA, Fe2+, and ROS and the decrease of GSH-Px, GSH, GPX4, and FTH1, which were reversed by STING overexpression. Conclusion Esketamine alleviated cardiomyocyte ferroptosis via STING, which might be the molecular mechanism of Esketamine to ameliorate the MI caused by TQ-induced I/R injury. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00723-9.
Collapse
Affiliation(s)
- Jianjun Ouyang
- Department of Anesthesia and Surgery, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, 410006 China
| | - Weiqiang Xiao
- Department of Anesthesia and Surgery, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, 410006 China
| | - Di Wu
- Department of Anesthesia and Surgery, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, 410006 China
| | - Manyun Bai
- Department of Anesthesia and Surgery, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, 410006 China
| | - Qian Zhao
- Department of Anesthesia and Surgery, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, 410006 China
| | - Yufang Li
- Department of Anesthesia and Surgery, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, 410006 China
| |
Collapse
|
3
|
Jiang GY, Yang HR, Li C, Liu N, Ma SJ, Jin BX, Yan C, Gong HD, Li JY, Yan HC, Ye GX, Wang WY, Gao C. Ginsenoside Rd alleviates early brain injury by inhibiting ferroptosis through cGAS/STING/DHODH pathway after subarachnoid hemorrhage. Free Radic Biol Med 2025; 228:299-318. [PMID: 39746578 DOI: 10.1016/j.freeradbiomed.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ferroptosis, a recently identified form of regulated cell death, is characterized by lipid peroxidation and iron accumulation, plays a critical role in early brain injury after subarachnoid hemorrhage. Ginsenoside Rd, an active compound isolated from ginseng, is known for its neuroprotective properties. However, its influence on SAH-induced ferroptosis remains unclear. In this study, we constructed an SAH model using intravascular perforation in vivo and treated HT22 cells with oxyhemoglobin to simulate the condition in vitro. We observed significant changes in ferroptosis markers, including GPX4 and ACSL4, following SAH. Administration of ginsenoside Rd to both rats and HT22 cells effectively inhibited neuronal ferroptosis induced by SAH, alleviating neurological deficits and cognitive dysfunction in rats. Notably, the neuroprotective properties of ginsenoside Rd were countered by the STING pathway agonist 2'3'-cGAMP. Experiments conducted in vitro and in vivo illustrated that the impacts of ginsenoside Rd were counteracted by the BQR inhibitor. Our findings suggest that ginsenoside Rd mitigates EBI after SAH by suppressing neuronal ferroptosis through the cGAS/STING pathway while upregulating DHODH levels. These outcomes emphasize the potential of ginsenoside Rd as a therapeutic candidate for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Guang-You Jiang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen Li
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Liu
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng-Ji Ma
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing-Xuan Jin
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cong Yan
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Dong Gong
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guang-Xi Ye
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Yu Wang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cheng Gao
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Xu WX, Wen X, Fu YT, Yang J, Cui H, Fan RF. Nuclear receptor coactive 4-mediated ferritinophagy: a key role of heavy metals toxicity. Arch Toxicol 2025:10.1007/s00204-025-03963-y. [PMID: 39928088 DOI: 10.1007/s00204-025-03963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Nuclear receptor coactive 4 (NCOA4) is a specific receptor for ferritinophagy, transporting ferritin to lysosomal degradation, releasing free iron, and excessive iron levels may lead to cellular redox imbalance, contributing to cell death, predominantly ferroptosis. NCOA4 is regulated by a variety of transcriptional, post-transcriptional, translational, and post-translational modifications. Targeted modulation of NCOA4-mediated ferritinophagy has been successfully used as a therapeutic strategy in several disease models. Recent evidences have elucidated that ferritinophagy and ferroptosis played a major role in heavy metals toxicity. In this review, we explored the regulatory mechanism of NCOA4 as the sole receptor for ferritinophagy from multiple perspectives based on previous studies. The significant role of ferritinophagy-mediated ferroptosis in heavy metals toxicity was discussed in detail, emphasizing the great potential of NCOA4 as a target for heavy metals toxicity.
Collapse
Affiliation(s)
- Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Xue Wen
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Yi-Tong Fu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Jie Yang
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
| |
Collapse
|
5
|
Wang Y, Bian Z. Development of a ferroptosis-related gene prognostic model and molecular subgroups characterization in sepsis. Mol Immunol 2025; 178:1-11. [PMID: 39764891 DOI: 10.1016/j.molimm.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 02/12/2025]
Abstract
Sepsis, a common and life-threatening condition often leading to multiple organ dysfunction, currently lacks a prognostic model based on ferroptosis-related genes (FRGs) for predicting clinical outcomes. In this study, we utilized the FerrDb database and GSE65682 dataset to evaluate the prognostic significance of FRGs in sepsis. Differential expression analysis identified 27 DE-FRGs, and Consensus clustering revealed three distinct FRG molecular subtypes in sepsis with notable differences in immune infiltration landscapes. Univariate and multivariate Cox regression, along with LASSO analysis, were employed to construct an FRG-based prognostic model, which indicated significantly better clinical outcomes for the low FRG score subgroup compared to the high FRG score subgroup. Validation through nomogram prediction models and independent prognostic analysis confirmed the accuracy of FRGs in assessing sepsis prognosis. Single-cell sequencing further demonstrated the distribution of the FRG prognostic signature across cellular subpopulations in sepsis samples. Functional experiments, including siRNA transfection, malondialdehyde (MDA) assays, Western blot, and reactive oxygen species (ROS) assays, revealed that TFRC plays a critical role in sepsis by inhibiting ferroptosis. These findings suggest that the FRG prognostic scoring model is a reliable predictor of sepsis prognosis, with TFRC identified as a key regulatory factor inhibiting ferroptosis in sepsis.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhongzheng Bian
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
6
|
Yang J, Wang M, Shi L, Fang X, Gao C, Ma L, Wang Y, Ying S, Yang Y. The Stimulator of Interferon Genes Deficiency Attenuates Diabetic Myopathy Through Inhibiting NLRP3-Mediated Pyroptosis. J Cachexia Sarcopenia Muscle 2025; 16:e13649. [PMID: 39602084 DOI: 10.1002/jcsm.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetic myopathy is characterized by the loss of skeletal muscle mass and function. NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis is a type of proinflammatory cell death, which can exacerbate significant muscle cell loss and adverse remodelling. The stimulator of interferon genes (STING) is an essential molecule involved in the regulation of inflammation and immune responses across various diseases. The regulatory mechanism by which STING affects muscle pyroptosis in diabetic myopathy remains unclear. METHODS STING-knockout and wild-type (WT) mice underwent intraperitoneal injection of streptozotocin (STZ). STING small interfering RNA (siRNA) was transfected into fully differentiated C2C12 myotubes prior to glucose treatment. Muscle function tests, body composition analysis, transmission electron microscopy, scanning electron microscopy, western blotting, immunofluorescence, immunohistochemistry, histology, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction were performed. Co-immunoprecipitation assays were employed to investigate the interaction between STING and NLRP3. RESULTS STING expression was elevated in the gastrocnemius muscle (GM) tissues of WT diabetic mice. STING-deficient diabetic mice exhibited pronounced hyperglycaemia accompanied by hypoinsulinaemia, with no significant difference compared with WT diabetic mice. However, STING-deficient diabetic mice demonstrated a significantly increased body weight and lean mass. A significant decrease in muscle weight, myofibrillar diameter and area, muscle function, and the expression of genes related to muscle atrophy (MuRF1, Atrogin1) were observed in WT diabetic mice, which was mitigated in STING-deficient diabetic mice. STING deficiency reduced the number of GSDMD-N formed pores and pyroptosis-related components (NLRP3, caspase-1, cle-caspase-1, GSDMD, and GSDMD-N) in the GM tissues and was associated with a reduction in inflammatory chemokines. Similar changes were observed in vitro with glucose-induced myotube atrophy and pyroptosis as seen in vivo. Activation of STING by the agonist diABZI exacerbated muscle atrophy and pyroptosis in C2C12 myotubes. Co-localization of STING and NLRP3 was observed, and the interaction between STING and NLRP3 was enhanced in GM tissues from WT diabetic mice. We also found that STING could activate NLRP3 dependent on its channel activity, which can be attenuated by treated with C53 (an inhibitor of STING's ion-channel function). CONCLUSIONS In conclusion, our results indicate that STING-induced activation of the NLRP3 inflammasome leads to pyroptosis, resulting in muscle atrophy and dysfunction. These findings not only elucidate the mechanism of STING-induced pyroptosis but also identify STING as a potential therapeutic target for diabetic myopathy.
Collapse
Affiliation(s)
- Jingjuan Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| | - Mengqiong Wang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| | - Lingling Shi
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| | - Xin Fang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| | - Cui Gao
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| | - Lin Ma
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| | - Yongfei Wang
- School of Medicine and Warshel Institute for Computational Biology, Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Songmin Ying
- Department of Pharmacy, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
7
|
Sui H, Sun Z, Liu C, Xi H. Ferritinophagy promotes microglia ferroptosis to aggravate neuroinflammation induced by cerebral ischemia-reperfusion injury via activation of the cGAS-STING signaling pathway. Neurochem Int 2025; 183:105920. [PMID: 39732341 DOI: 10.1016/j.neuint.2024.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a common and serious complication of reperfusion therapy in patients with ischemic stroke (IS). The regulation of microglia-mediated neuroinflammation to control CIRI has garnered considerable attention. The balance of iron metabolism is key to maintaining the physiological functions of microglia. Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy, an important pathway in regulating iron metabolism, is a promising intervention target. However, studies on the impacts of ferritinophagy on microglia-mediated neuroinflammation are lacking. This study aimed to identify potential treatments for CIRI-induced neuroinflammation by focusing on ferritinophagy and the specific mechanisms whereby iron metabolism regulates microglia-mediated neuroinflammation. CIRI induced the activation of ferritinophagy in microglia, characterized by the upregulation of NCOA4, downregulation of Ferritin Heavy Chain 1 (FTH1), and increased intracellular iron levels. This activation contributes to increased ferroptosis, oxidative stress, and the release of inflammatory factors. Silencing NCOA4 or application of the ferroptosis-specific inhibitor Ferrostatin-1 (Fer-1) effectively suppressed the CIRI-induced damage in vivo and in vitro. While Fer-1 addition did not inhibit the CIRI-activated ferritinophagy, it did partially reverse the alleviation of NCOA4 depletion-induced neuroinflammation, suggesting that ferroptosis is an essential intermediate step in ferritinophagy-induced neuroinflammatory damage. Furthermore, using IS-related transcriptomic data, the cGAS-STING pathway was identified as a crucial mechanism connecting ferritinophagy and ferroptosis. Specific inhibition of the cGAS-STING pathway reduced ferritinophagy-induced ferroptosis and neuroinflammation. In summary, our results indicated that ferritinophagy activates the cGAS-STING signaling pathway, which promotes the inflammatory response and oxidative stress in microglia in a ferroptosis-dependent manner, thereby exacerbating CIRI-induced neuroinflammation. These findings provide theoretical support for the clinical treatment of CIRI.
Collapse
Affiliation(s)
- Haijing Sui
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, 150001, China
| | - Zhenyu Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, 150001, China
| | - Chang Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Hongjie Xi
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, 150001, China.
| |
Collapse
|
8
|
Zhao P, Yin S, Qiu Y, Sun C, Yu H. Ferroptosis and pyroptosis are connected through autophagy: a new perspective of overcoming drug resistance. Mol Cancer 2025; 24:23. [PMID: 39825385 PMCID: PMC11740669 DOI: 10.1186/s12943-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear. Ferroptosis and pyroptosis can be affected by various types of autophagy. Therefore, ferroptosis and pyroptosis have crosstalk via autophagy, potentially leading to a switch in cell death types under certain conditions. As two forms of inflammatory programmed cell death, ferroptosis and pyroptosis have different effects on inflammation, and the cGAS-STING signaling pathway is also involved. Therefore, it also plays an important role in the progression of some chronic inflammatory diseases. This review discusses the relationship between autophagy, ferroptosis and pyroptosis, and attempts to uncover the reasons behind the evasion of tumor cell death and the nature of drug resistance.
Collapse
Affiliation(s)
- Peng Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, China.
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Liu Y, Wang Y, Yan P, Cui N, Xu K, Liu D, Tian Y, Cao L. NLRP3 Inflammasome-Mediated Osteoarthritis: The Role of Epigenetics. BIOLOGY 2025; 14:71. [PMID: 39857301 PMCID: PMC11761621 DOI: 10.3390/biology14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of osteoarthritis (OA) notably surges with age and weight gain. The most common clinical therapeutic drugs are painkillers, yet they cannot impede the deteriorating course of OA. Thus, understanding OA's pathogenesis and devising effective therapies is crucial. It is generally recognized that inflammation, pyroptosis, and OA progression are tightly linked. The activation of NLRP3 inflammasome can lead to the discharge of the pro-inflammatory cytokines Interleukin-1β and IL-18, intensifying subsequent inflammatory reactions and promoting OA development. Conversely, the imbalance caused by deacetylase-regulated NLRP3 inflammasome underlies the chronic mild inflammation related to degenerative diseases. Therefore, this article expounds on the mechanism of OA pathogenesis and the role of histone deacetylases (HDACs) in NLRP3 inflammasome-triggered OA, and illustrates the application of HDAC inhibitors in OA, striving to provide more insights into novel OA treatment approaches.
Collapse
Affiliation(s)
- Yuzhou Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ying Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ping Yan
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Ning Cui
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Kejin Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Da Liu
- Public Laboratory Centre, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Yuan Tian
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Lingling Cao
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| |
Collapse
|
10
|
Wang Y, Li W, Mu W, Seyam A, Guan Y, Tang Y, Wang M, Xin Y, Guo X, Hou T, Guan X. Identification of JNK-JUN-NCOA axis as a therapeutic target for macrophage ferroptosis in chronic apical periodontitis. Int J Med Sci 2025; 22:53-70. [PMID: 39744165 PMCID: PMC11659826 DOI: 10.7150/ijms.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 02/01/2025] Open
Abstract
Objectives: This study aimed to investigate the involvement of macrophage ferroptosis in chronic apical periodontitis (CAP) and determine if blocking JNK/JUN/NCOA4 axis could alleviate CAP by regulating macrophage ferroptosis. Materials and Methods: Firstly, the in vitro models of apical periodontitis (AP) and in vivo models of CAP, including clinical specimens and rats' periapical lesions, were utilized to investigate the role of macrophage ferroptosis in CAP by detecting the ferroptosis related factors. The activation of the JNK/JUN/NCOA4 axis was observed in CAP in vivo models. Pearson's correlation and linear tendency tests were employed to analyze the correlation between the JNK/JUN/NCOA4 axis and macrophage ferroptosis during CAP progression. Subsequently, the JNK/JUN/NCOA4 axis was blocked by SP600125, and the alterations in ferroptosis associated variables and inflammation levels in macrophages were evaluated. Results: The in vitro AP model demonstrated that macrophage ferroptosis mainly occurred during the late phase of inflammatory conditions, with the reduction of GPX4, SLC7A11 and the increase of TFR1 in macrophages. Additionally, a higher accumulation of iron was observed in the periapical lesions derived from clinic samples and animal model. Furthermore, we found that differences in macrophage ferroptosis levels within periapical lesions corresponded altered activation of JNK/JUN/NCOA4 axis. Significantly, the inhibition of JNK/JUN/NCOA4 axis reduced the aforementioned changes and inflammation levels induced by E. coli LPS in macrophages. Conclusions: The occurrence of ferroptosis in macrophages contributes to the development of CAP. Targeting the JNK/JUN/NCOA4 axis is an effective therapeutic strategy to rescue the periapical lesions from inflammation due to its anti-macrophage ferroptosis function. Consequently, the current study provides support for further investigation on the JNK/JUN/NCOA4 axis as a targeted signaling pathway for CAP treatment.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Abdelrahman Seyam
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Guan
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yifei Tang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mingfei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Xin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaomei Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
He S, Ye H, Wang Q, He Y, Liu X, Song J, Zhao C, Hu Y, Luo L, Guo Y, Liu Q. Ginsenoside Rb1 targets to HO-1 to improve sepsis by inhibiting ferroptosis. Free Radic Biol Med 2025; 226:13-28. [PMID: 39510452 DOI: 10.1016/j.freeradbiomed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Sepsis remains the leading cause of mortality among Intensive Care Unit (ICU) patients, with its pathogenesis and treatment not yet fully elucidated. Ferroptosis plays a critical role in sepsis, suggesting that ferroptosis-related genes may serve as potential therapeutic targets. This study aims to identify key ferroptosis-related genes in sepsis and explore targeted therapeutics. Through differential expression analysis of the GSE13940 and GSE26440 datasets, heme oxygenase-1 (HO-1) was identified as a hub gene associated with ferroptosis. Additionally, single-cell analysis of the GSE175453 dataset revealed a significant upregulation of HO-1 expression in monocyte lineages during sepsis. The cecal ligation and puncture (CLP) method was employed to induce sepsis in a mouse model, lung and intestinal tissues exhibited typical ferroptosis characteristics, with a significant increase in HO-1 expression. However, treatment with the HO-1 inhibitor zinc protoporphyrin (ZNPP) significantly ameliorated ferroptosis in CLP-induced lung and intestinal tissues, as well as in lipopolysaccharide (LPS)-induced THP-1 cells. Subsequently, molecular docking, surface plasmon resonance (SPR), and microscale thermophoresis (MST) experiments demonstrated that ginsenoside Rb1 specifically targets HO-1, identifying K18A as the key binding residue. Finally, experiments conducted both in vitro and in vivo verified that ginsenoside Rb1 significantly reduces HO-1 expression, inhibits ferroptosis in sepsis-induced lung, and intestinal tissues and THP-1 cells, and improves sepsis-induced pulmonary and intestinal damage. In conclusion, this study identifies HO-1 as a key ferroptosis target in sepsis and suggests ginsenoside Rb1 as a potential novel HO-1 inhibitor for the therapeutic approach of sepsis-induced organ dysfunction.
Collapse
Affiliation(s)
- Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yidong He
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Yahui Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| |
Collapse
|
12
|
Xu W, Hou H, Yang W, Tang W, Sun L. Immunologic role of macrophages in sepsis-induced acute liver injury. Int Immunopharmacol 2024; 143:113492. [PMID: 39471696 DOI: 10.1016/j.intimp.2024.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Sepsis-induced acute liver injury (SALI), a manifestation of sepsis multi-organ dysfunction syndrome, is associated with poor prognosis and high mortality. The diversity and plasticity of liver macrophage subpopulations explain their different functional responses in different liver diseases. Kupffer macrophages, liver capsular macrophages, and monocyte-derived macrophages are involved in pathogen recognition and clearance and in the regulation of inflammatory responses, exacerbating the progression of SALI through different pathways of pyroptosis, ferroptosis, and autophagy. Concurrently, they play an important role in maintaining hepatic homeostasis and in the injury and repair processes of SALI. Other macrophages are recruited to diseased tissues under pathological conditions and are polarized into various phenotypes (mainly M1 and M2 types) under the influence of signaling molecules, transcription factors, and metabolic reprogramming, thereby exerting different roles and functions. This review provides an overview of the immune role of macrophages in SALI and discusses the multiple roles of macrophages in liver injury and repair to provide a reference for future studies.
Collapse
Affiliation(s)
- Wanling Xu
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Hailong Hou
- Emergency Department, Meihekou Central Hospital, 2668 Aimin Street, Tonghua 135000, Jilin, China
| | - Weiying Yang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Wenjing Tang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Lichao Sun
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China.
| |
Collapse
|
13
|
Ding L, Zhang R, Du W, Wang Q, Pei D. The role of cGAS-STING signaling pathway in ferroptosis. J Adv Res 2024:S2090-1232(24)00606-4. [PMID: 39710299 DOI: 10.1016/j.jare.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a crucial mechanism in antiviral defense and innate immunity pathway. Ferroptosis, characterized by iron dependence and lipid peroxidation, represents a specialized form of cell death. A burgeoning collection of studies has demonstrated that the cGAS-STING signaling pathway participates in the homeostatic regulation of the organism by modulating ferroptosis-associated enzyme activity or gene expression. Consequently, elucidating the specific roles of the STING signaling pathway and ferroptosis in vivo is vital for targeted disease intervention. This review systematically examines the interactions between the cGAS-STING signaling pathway and ferroptosis, highlighting their influence on disease progression in the contexts of inflammation, injury, and cancerous cell dynamics. Understanding these interactions may provide novel therapeutic strategies. The STING pathway has been implicated in the regulation of various cell death mechanisms, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Our focus primarily addresses the role and mechanism of the cGAS-STING signaling pathway and ferroptosis in diseases, limiting discussion of other cell death modalities and precluding a comprehensive overview of the pathway's additional functions.
Collapse
Affiliation(s)
- Lina Ding
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Wenqi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China.
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
14
|
Ferretti S, Zanella I. The Underestimated Role of Iron in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:12987. [PMID: 39684697 DOI: 10.3390/ijms252312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties. Such a feature may be harmful under aerobic conditions, since it may lead to the generation of highly reactive hydroxyl radicals. Dysfunctions of iron homeostasis in the CNS are indeed involved in several neurodegenerative disorders, although it is still challenging to determine whether the dyshomeostasis of this essential but harmful metal is a direct cause of neurodegeneration, a contributor factor or simply a consequence of other neurodegenerative mechanisms. Unlike many other neurodegenerative disorders, evidence of the dysfunction in brain iron homeostasis in FTD is still scarce; nonetheless, the recent literature intriguingly suggests its possible involvement. The present review aims to summarize what is currently known about the contribution of iron dyshomeostasis in FTD based on clinical, imaging, histological, biochemical and molecular studies, further suggesting new perspectives and offering new insights for future investigations on this underexplored field of research.
Collapse
Affiliation(s)
- Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Medical Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
15
|
Liu Y, Bao D, She H, Zhang Z, Shao S, Wu Z, Wu Y, Li Q, Wang L, Li T, Liu L. Role of Hippo/ACSL4 axis in ferroptosis-induced pericyte loss and vascular dysfunction in sepsis. Redox Biol 2024; 78:103353. [PMID: 39566164 PMCID: PMC11617880 DOI: 10.1016/j.redox.2024.103353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024] Open
Abstract
Sepsis is a critical condition characterized by a systemic inflammatory response to infection, often leading to severe vascular dysfunction and high mortality. One of the hallmarks of vascular dysfunction in sepsis is increased vascular permeability and the loss of pericytes, which are essential for maintaining vascular integrity. Despite the significance of pericyte loss in sepsis, the primary type of cell death responsible and the underlying molecular mechanisms remain incompletely understood. This study aims to elucidate these mechanisms by focusing on ferroptosis, a form of programmed cell death, and its regulation through the Hippo/ACSL4 axis. Our research confirmed significant pericyte loss in patients with sepsis. Through advanced single-cell analysis and proteomics, ferroptosis was identified as a key differentiating cell death type between sepsis and sham samples. Further metabolomics analysis revealed that Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) plays a pivotal role in the ferroptosis of pericytes during sepsis. In vitro experiments demonstrated that downregulation of ACSL4 effectively reduced lipopolysaccharide (LPS)-induced lipid peroxidation, restored pericyte viability, and improved endothelial permeability. In vivo studies with pericyte-specific ACSL4 knockout mice showed a marked decrease in pericyte loss and enhanced vascular barrier function following sepsis induction. To translate these findings into potential therapeutic strategies, we developed pericyte-targeting liposomes encapsulating ACSL4 shRNA adenovirus. These liposomes successfully restored pulmonary vascular barrier function and significantly reduced pericyte loss in septic conditions. The results of this study underscore the crucial role of ACSL4 in mediating ferroptosis in pericytes and highlight the therapeutic potential of targeting ACSL4 to mitigate vascular dysfunction in sepsis.
Collapse
Affiliation(s)
- Yiyan Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zisen Zhang
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shifeng Shao
- Department of Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhengbin Wu
- Department of Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yue Wu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qinghui Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Li Wang
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Tao Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Liangming Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
16
|
Won JP, Lee HG, Yoon HJ, Seo HG. Biochanin A-mediated anti-ferroptosis is associated with reduction of septic kidney injury. Life Sci 2024; 358:123124. [PMID: 39396639 DOI: 10.1016/j.lfs.2024.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
AIMS This study aimed to investigate the therapeutic potential of biochanin A in a sepsis associated- acute kidney injury (SA-AKI) mouse model induced by lipopolysaccharide (LPS). MAIN METHODS Male BALB/C mice (n = 7 per group) were injected with biochanin A (40 mg/kg, i.p.) or ferrostatin-1 (5 mg/kg, i.p.) in the presence or absence of LPS (10 mg/kg, i.p.). Survival rates were monitored twice a day for up to 2 weeks. Morphologic and functional changes in kidney tissue were assessed by H&E staining and by analyzing of levels of blood-urea nitrogen (BUN) and creatinine (CR) in serum, respectively. Kidney epithelial cell death was analyzed by TUNEL staining, Prussian blue staining, iron quantification, lipid peroxide quantification, and glutathione quantification. Anti-ferroptosis mechanism of biochanin A was analyzed by RNA sequencing in mouse embryonic fibroblast cells. KEY FINDINGS Biochanin A increased the survival rate of septic mice and inhibited the secretion of high mobility group box 1, an important inflammatory mediator in sepsis. Biochanin A inhibited LPS-induced kidney damage by suppressing dilatation and kidney tubular epithelial cell death. Furthermore, serum levels of BUN and CR were reduced in biochanin A-treated endotoxemic mice. Biochanin A inhibited the accumulation of iron and lipid peroxide and prevented glutathione depletion in the kidney tissue. Also, nine genes associated with the anti-ferroptosis effects of biochanin A were identified by RNA sequencing analysis. SIGNIFICANCE The present study suggests that biochanin A is an effective inhibitor of ferroptosis, representing a potential treatment or prophylactic for sepsis-related disorders such as SA-AKI.
Collapse
Affiliation(s)
- Jun Pil Won
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Jun Yoon
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Ding H, Qin J, Liu Z, Shi X, Guan W, Sang J. Mesenchymal stem cells alleviate autoimmune thyroiditis by modulating macrophage phenotypes and through influencing the STING pathway. Tissue Cell 2024; 91:102596. [PMID: 39490249 DOI: 10.1016/j.tice.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Hashimoto's thyroiditis is a chronic autoimmune inflammatory disease with a high prevalence and currently lacks effective treatment options. Previous preclinical and clinical trials have established mesenchymal stem cells (MSCs) as a promising therapeutic approach; however, there is limited research on MSC treatment for Hashimoto's thyroiditis, and the underlying molecular mechanisms remain unclear. METHODS MSCs isolated from 4 to 6-week-old Lewis rats were employed for thyroiditis treatment. The efficacy of MSCs was assessed through histological and serological parameters. Molecular mechanisms of MSC therapy for Hashimoto's thyroiditis were explored by examining macrophage presence within thyroid tissue and relevant pathways. RESULTS In this study, we observed elevated oxidative stress and endoplasmic reticulum stress within the thyroid tissue of Hashimoto's thyroiditis patients, and MSC therapy effectively mitigated this process. Furthermore, we found that the therapeutic potential of MSCs in the EAT model depended on the STING pathway. MSCs reduced endoplasmic reticulum stress and inflammasome levels within the thyroid tissue by modulating the STING pathway. Additionally, MSCs inhibited the expression of IRE1α in thyroid tissue macrophages, thereby reducing the polarization of M1-type macrophages CONCLUSIONS: The STING pathway appears to be a crucial mechanism by which MSCs modulate macrophage polarization in thyroid tissue, offering a potential treatment for thyroiditis.
Collapse
Affiliation(s)
- Haoran Ding
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jiabo Qin
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhijian Liu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xianbiao Shi
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxian Guan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Jianfeng Sang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
18
|
Zhu J, Yuan A, Le Y, Chen X, Guo J, Liu J, Chen H, Wang CY, Lu D, Lu K. Yi-Qi-Jian-Pi-Xiao-Yu formula inhibits cisplatin-induced acute kidney injury through suppressing ferroptosis via STING-NCOA4-mediated ferritinophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156189. [PMID: 39515100 DOI: 10.1016/j.phymed.2024.156189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The kidneys are the primary excretory organs for platinum drugs, making them susceptible to damage from these drugs. Cisplatin-induced acute kidney injury (CIAKI) is the most common side effect observed in patients undergoing clinical cisplatin treatment. A traditional Chinese medicinal preparation, the Yi-Qi-Jian-Pi-Xiao-Yu formula (YQJPXY), which is a modified formulation of the classical Chinese medicine formula Buyang Huanwu Decoction, has long been used in the treatment of clinical kidney diseases. It is expected to be used to ameliorate cisplatin-induced acute kidney injury. However, the mechanism of this YQJPXY for the treatment of cisplatin-induced acute kidney injury remains unclear. PURPOSE The objective of this study is to examine the impact of the YQJPXY on the inhibition of ferroptosis in cisplatin-induced acute kidney injury and to elucidate the underlying mechanisms. METHODS The active components of YQJPXY were analysed using UPLC-MS/MS. A comprehensive investigation was conducted to elucidate the effects and regulatory mechanisms of YQJPXY on CIAKI and ferroptosis in mice subjected to acute cisplatin treatment and in mice receiving cisplatin treatment after STING expression was inhibited using the STING inhibitor C176. The renoprotective effect of YQJPXY on cisplatin-treated mice was evaluated by measuring tissue damage, inflammation and pro-fibrosis. In addition, we employed network pharmacology and molecular docking methodologies to analyse the principal regulatory targets of YQJPXY. Furthermore, the expression of key proteins and markers of ferroptosis and iron metabolism, as well as the levels of key indicators related to STING-associated ferritinophagy, were examined by immunoblotting, immunohistochemistry, immunoprecipitation, quantitative real-time PCR (qPCR) and specific probes. RESULTS The results demonstrated that YQJPXY reduced the levels of indicators of injury, inflammation and pro-fibrosis in CIAKI mice, with renoprotective effects. Network pharmacological analyses revealed that ferroptosis might be the main biological process regulated by YQJPXY. Furthermore, molecular docking results indicated that STING might be a potential regulatory target of YQJPXY. Furthermore, YQJPXY treatment resulted in a significant reduction in MDA and 4-HNE levels, as well as the inhibition of ferroptosis and improvement in iron metabolic processes. Concomitantly, YQJPXY exhibited a robust protective effect on ferroptosis and iron metabolism homeostasis, as evidenced by its inhibitory action on ferritinophagy. Validation experiments utilising the cisplatin inhibitor C176 demonstrated that YQJPXY inhibits cisplatin-induced ferroptosis in kidney via STING-mediated ferritinophagy. CONCLUSION These suggest that YQJPXY alleviates cisplatin-induced acute kidney injury through suppressing ferroptosis via STING-NCOA4-mediated Ferritinophagy.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 330061, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Aini Yuan
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifei Le
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohui Chen
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jianan Guo
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hang Chen
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cai-Yi Wang
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Dezhao Lu
- Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 330061, China.
| |
Collapse
|
19
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
20
|
Wang HF, He YQ, Ke Z, Liang ZW, Zhou JH, Ni K, Zhang Y, Li RF, Xue JF, Zhou CC, Xu JS. STING signaling contributes to methotrexate-induced liver injury by regulating ferroptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117306. [PMID: 39547058 DOI: 10.1016/j.ecoenv.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Methotrexate (MTX), an anti-metabolite agent, is a widely used chemotherapeutic anticancer drug, but its hepatotoxicity severely limits its clinical application. Nevertheless, the precise mechanisms of MTX-caused liver damage are extremely intricate and still need to be fully clarified. In the current study, we investigated the role of the STING-ERS-ferroptosis axis in MTX-triggered hepatic toxicity in vivo and in vitro models. Male C57BL/6 J mice exposed to a single dose of MTX (0, 2, 5, and 20 mg/kg) for 3 days exhibited severe liver damage and overactivated STING signaling. Moreover, we found that ferroptosis was also involved in MTX-mediated liver damage. Interestingly, STING deficiency alleviated liver damage, inhibited liver inflammation, as well as suppressed hepatic lipid peroxidation and ferroptosis in MTX-treated mice. Consistently, STING inhibitor (C-176) pretreatment also alleviated MTX-induced STING signaling activation, ROS overproduction and ferroptosis in AML12 cells. Finally, we verified that ER stress was responsible for the MTX-induced liver injury and ferroptosis caused by STING activation. Taken together, our study uncovered a novel link between STING signaling and ferroptosis in MTX-triggered hepatic damages, and suggested that targeting the STING-ER stress-ferroptosis axis might be a promising and effective therapeutic approach against MTX-induced liver damage.
Collapse
Affiliation(s)
- Hong-Fei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu-Qiong He
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zong Ke
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Wei Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia-Hao Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ren-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Feng Xue
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| | - Jia-Shuang Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Veglia Tranchese R, Battista S, Cerchia L, Fedele M. Ferroptosis in Cancer: Epigenetic Control and Therapeutic Opportunities. Biomolecules 2024; 14:1443. [PMID: 39595619 PMCID: PMC11592303 DOI: 10.3390/biom14111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical pathway in cancer biology. This review delves into the epigenetic mechanisms that modulate ferroptosis in cancer cells, focusing on how DNA methylation, histone modifications, and non-coding RNAs influence the expression and function of essential genes involved in this process. By unraveling the complex interplay between these epigenetic mechanisms and ferroptosis, the article sheds light on novel gene targets and functional insights that could pave the way for innovative cancer treatments to enhance therapeutic efficacy and overcome resistance in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council—CNR, 80131 Naples, Italy; (R.V.T.); (S.B.); (L.C.)
| |
Collapse
|
22
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
23
|
Feng J, Deng X, Hao P, Zhu Z, Li T, Yuan X, Hu J, Wang Y. Intra-articular injection of platinum nanozyme-loaded silk fibroin/pullulan hydrogels relieves osteoarthritis through ROS scavenging and ferroptosis suppression. Int J Biol Macromol 2024; 280:135863. [PMID: 39307511 DOI: 10.1016/j.ijbiomac.2024.135863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Reactive oxygen species (ROS)-mediated ferroptosis plays a critical role in the development of osteoarthritis (OA). Consequently, it is speculated that anti-ferroptosis agents could represent a novel therapeutic strategy for managing OA. In this study, a hydrogel incorporating platinum (Pt) nanozyme was synthesized by dispersing Pt nanoparticles (NPs) within a matrix of silk fibroin (SF) and oxidized pullulan (oxPL). This hydrogel allows for a substantial and sustained release of up to 30 days. The gelation time (from 140.3 ± 42.3 s to 460.0 ± 40.0 s), swelling capacity (from 57.7 ± 3.8 % to 24.0 ± 7.0 %), and degradation rate (from 60.3 ± 4.7 % to 32.0 ± 4.6 %) of the hydrogels can be modulated by adjusting the Pt NP content. The Pt@SF/oxPL hydrogel effectively eliminates ROS due to its catalase-like and superoxide dismutase-like enzymatic properties. In vitro studies demonstrated that Pt@SF/oxPL efficiently mitigated the process of ferroptotic cell death in chondrocytes. More critically, intra-articular administration of Pt@SF/oxPL showcased therapeutic advantages by both protecting and stimulating the regeneration of cartilage throughout the progression of OA. Collectively, this study suggests that Pt@SF/oxPL hydrogels could potentially serve as an effective treatment for OA, presenting a novel nanozyme-based therapeutic approach for this condition.
Collapse
Affiliation(s)
- JunWei Feng
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Xia Deng
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Peng Hao
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - ZongDong Zhu
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China
| | - XinWei Yuan
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiang Hu
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Yue Wang
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
24
|
Yu P, Su L, Li B, Su J, Yuan G. Selenomethionine alleviates Aeromonas hydrophila-induced oxidative stress and ferroptosis via the Nrf2/HO1/GPX4 pathway in grass carp. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109927. [PMID: 39349229 DOI: 10.1016/j.fsi.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Aeromonas hydrophila infection is a severe, acute, and life-threatening disease affecting grass carp (Ctenopharyngodon idella) in aquaculture. Ferroptosis is a novel form of cell death characterized by the accumulation of free iron and harmful lipid peroxides within cells. While selenomethionine (Se-Met) is known to effectively inhibit ferroptosis and alleviate cell damage, its ability to counteract oxidative stress and ferroptosis induced by A. hydrophila remains unclear. The objective of this study is to reveal the possible mechanism behind the ferroptosis phenomenon during A. hydrophila infection. We established a macrophage model of A. hydrophila invasion to monitor the dynamic changes in iron metabolism markers to evaluate the correlation between ferroptotic stress and A. hydrophila infection. A. hydrophila infection induces cytotoxicity and mitochondrial membrane damage via ferroptosis. This damage is attributed to the accumulation of lipid peroxides due to intracellular ferrous ion overload and glutathione depletion. Supplementation of Se-Met reduced mitochondrial damage, enhanced antioxidant enzyme activity and reduced ferroptosis by activating the Nrf2/HO1/GPX4 axis. These findings provide new insights into the regulatory mechanisms of A. hydrophila-induced ferroptosis in teleosts and suggest that targeted inhibition of ferroptosis may offer a novel therapeutic strategy for managing A. hydrophila infections.
Collapse
Affiliation(s)
- Penghui Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China
| | - Lei Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China.
| |
Collapse
|
25
|
Zhao Y, Zhou Z, Cui X, Yu Y, Yan P, Zhao W. Enhancing insight into ferroptosis mechanisms in sepsis: A genomic and pharmacological approach integrating single-cell sequencing and Mendelian randomization. Int Immunopharmacol 2024; 140:112910. [PMID: 39121604 DOI: 10.1016/j.intimp.2024.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
This research investigated the intricate relationship between ferroptosis and sepsis by utilizing advanced genomic and pharmacological methodologies. Specifically, we obtained expression quantitative trait loci (eQTLs) for 435 genes associated with ferroptosis from the eQTLGen Consortium and detected notable cis-eQTLs for 281 of these genes. Next, we conducted a detailed analysis to assess the impact of these eQTLs on susceptibility to sepsis using Mendelian randomization (MR) with data from a cohort of 10,154 sepsis patients and 452,764 controls sourced from the UK Biobank. MR analysis revealed 16 ferroptosis-related genes that exhibited significant associations with sepsis outcomes. To bolster the robustness of these findings, sensitivity analyses were performed to assess pleiotropy and heterogeneity, thus confirming the reliability of the causal inferences. Furthermore, single-cell RNA sequencing data from sepsis patients offered a detailed examination of gene expression profiles, demonstrating varying levels of ferroptosis marker expression across different cell types. Pathway enrichment analysis utilizing gene set enrichment analysis (GSEA) further revealed the key biological pathways involved in the progression of sepsis. Additionally, the use of computational molecular docking facilitated the prediction of interactions between identified genes and potential therapeutic compounds, highlighting novel drug targets. In conclusion, our integrated approach combining genomics and pharmacology offers valuable insights into the involvement of ferroptosis in sepsis, laying the groundwork for potential therapeutic strategies targeting this cell death pathway to enhance sepsis management.
Collapse
Affiliation(s)
- Yuanqi Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Zijian Zhou
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Xiuyu Cui
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Yiwei Yu
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Ping Yan
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali, China.
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China; Department of Clinical Laboratory, Second Infectious Disease Hospital of Yunnan Province, Dali, China; Immunology Discipline Team, School of Basic Medicine, Dali University, Dali, China.
| |
Collapse
|
26
|
Kumari D, Kaur S, Dandekar MP. Intricate Role of the Cyclic Guanosine Monophosphate Adenosine Monophosphate Synthase-Stimulator of Interferon Genes (cGAS-STING) Pathway in Traumatic Brain Injury-Generated Neuroinflammation and Neuronal Death. ACS Pharmacol Transl Sci 2024; 7:2936-2950. [PMID: 39416963 PMCID: PMC11475349 DOI: 10.1021/acsptsci.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
The secondary insult in the aftermath of traumatic brain injury (TBI) causes detrimental and self-perpetuating alteration in cells, resulting in aberrant function and the death of neuronal cells. The secondary insult is mainly driven by activation of the neuroinflammatory pathway. Among several classical pathways, the cGAS-STING pathway, a primary neuroinflammatory route, encompasses the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptor. Recently, the cGAS-STING research domain has gained exponential attention. The aberrant stimulation of cGAS-STING machinery and corresponding neuroinflammation have also been reported after TBI. In addition to the critical contribution to neuroinflammation, the cGAS-STING signaling also provokes neuronal cell death through various cell death mechanisms. This review highlights the structural and molecular mechanisms of the cGAS-STING machinery associated with TBI. We also focus on the intricate relationship and framework between cGAS-STING signaling and cell death mechanisms (autophagy, apoptosis, pyroptosis, ferroptosis, and necroptosis) in the aftermath of TBI. We suggest that the targeting of cGAS-STING signaling may open new therapeutic strategies to combat neuroinflammation and neurodegeneration in TBI.
Collapse
Affiliation(s)
- Deepali Kumari
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Simranjit Kaur
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Manoj P. Dandekar
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
27
|
Zhao Y, Ding W, Cai Y, Li Q, Zhang W, Bai Y, Zhang Y, Xu Q, Feng Z. The m 6A eraser FTO suppresses ferroptosis via mediating ACSL4 in LPS-induced macrophage inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167354. [PMID: 39004378 DOI: 10.1016/j.bbadis.2024.167354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Acute lung injury (ALI) is a serious disorder characterized by the release of pro-inflammatory cytokines and cascade activation of macrophages. Ferroptosis, a form of iron-dependent cell death triggered by intracellular phospholipid peroxidation, has been implicated as an internal mechanism underlying ALI. In this study, we investigated the effects of m6A demethylase fat mass and obesity-associated protein (FTO) on the inhibition of macrophage ferroptosis in ALI. Using a mouse model of lipopolysaccharide (LPS)-induced ALI, we observed the induction of ferroptosis and its co-localization with the macrophage marker F4/80, suggesting that ferroptosis might be induced in macrophages. Ferroptosis was promoted during LPS-induced inflammation in macrophages in vitro, and the inflammation was counteracted by the ferroptosis inhibitor ferrostatin-1 (fer-1). Given that FTO showed lower expression levels in the lung tissue of mice with ALI and inflammatory macrophages, we further dissected the regulatory capacity of FTO in ferroptosis. The results demonstrated that FTO alleviated macrophage inflammation by inhibiting ferroptosis. Mechanistically, FTO decreased the stability of ACSL4 mRNA via YTHDF1, subsequently inhibiting ferroptosis and inflammation by interrupting polyunsaturated fatty acid consumption. Moreover, FTO downregulated the synthesis and secretion of prostaglandin E2, thereby reducing ferroptosis and inflammation. In vivo, the FTO inhibitor FB23-2 aggravated lung injury, the inflammatory response, and ferroptosis in mice with ALI; however, fer-1 therapy mitigated these effects. Overall, our findings revealed that FTO may function as an inhibitor of the inflammatory response driven by ferroptosis, emphasizing its potential as a target for ALI treatment.
Collapse
Affiliation(s)
- Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Wenqian Ding
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yongjie Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qimeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiwen Zhang
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhihui Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
28
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Zhu Q, Zhai J, Chen Z, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. Ferritinophagy: Molecular mechanisms and role in disease. Pathol Res Pract 2024; 262:155553. [PMID: 39180800 DOI: 10.1016/j.prp.2024.155553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Ferritinophagy is a regulatory pathway of iron homeostasis. It is a process in which nuclear receptor coactivator 4 (NCOA4) carries ferritin to autophagolysosomes for degradation. After ferritin is degraded by autophagy, iron ions are released, which promotes the labile iron pool (LIP) to drive the Fenton reaction to cause lipid peroxidation. Furthermore, ferroptosis promoted by the accumulation of lipid reactive oxygen species (ROS) induced by ferritinophagy can cause a variety of systemic diseases. In clinical studies, targeting the genes regulating ferritinophagy can prevent and treat such diseases. This article describes the key regulatory factors of ferritinophagy and the mechanism of ferritinophagy involved in ferroptosis. It also reviews the damage of ferritinophagy to the body, providing a theoretical basis for further finding clinical treatment methods.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
30
|
Kang J, Wu J, Liu Q, Jiang H, Li W, Li Y, Li X, Ni C, Wu L, Liu M, Liu H, Deng L, Lin Z, Wu X, Zhao Y, Ren J. FASN regulates STING palmitoylation via malonyl-CoA in macrophages to alleviate sepsis-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167299. [PMID: 38878833 DOI: 10.1016/j.bbadis.2024.167299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
STING (stimulator of interferon genes) is a critical immunoregulatory protein in sepsis and is regulated by various mechanisms, especially palmitoylation. FASN (fatty acid synthase) is the rate-limiting enzyme to generate cellular palmitic acid (PA) via acetyl-CoA and malonyl-CoA and participates in protein palmitoylation. However, the mechanisms underlying the interaction between STING and FASN have not been completely understood. In this study, STING-knockout mice were used to confirm the pivotal role of STING in sepsis-induced liver injury. Metabolomics confirmed the dyslipidemia in septic mice and patients. The compounds library was screened, revealing that FASN inhibitors exerted a significant inhibitory effect on the STING pathway. Mechanically, the regulatory effect of FASN on the STING pathway was dependent on palmitoylation. Further experiments indicated that the upstream of FASN, malonyl-CoA inhibited STING pathway possibly due to C91 (palmitoylated residue) of STING. Overall, this study reveals a novel paradigm of STING regulation and provides a new perspective on immunity and metabolism.
Collapse
Affiliation(s)
- Jiaqi Kang
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Jie Wu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, PR China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, PR China
| | - Qinjie Liu
- Department of General Surgery, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, PR China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, PR China
| | - Weizhen Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, PR China
| | - Yangguang Li
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Xuanheng Li
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Chujun Ni
- Surgical Research Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, PR China
| | - Mingda Liu
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, PR China
| | - Haiqing Liu
- Surgical Research Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, PR China
| | - Liting Deng
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zexing Lin
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xiuwen Wu
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Jianan Ren
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| |
Collapse
|
31
|
Shi P, Du Y, Zhang Y, Yang B, Guan Q, Jing Y, Tang H, Tang J, Yang C, Ge X, Shen S, Li L, Wu C. Ubiquitin-independent degradation of Bim blocks macrophage pyroptosis in sepsis-related tissue injury. Cell Death Dis 2024; 15:703. [PMID: 39349939 PMCID: PMC11442472 DOI: 10.1038/s41419-024-07072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Pyroptosis, a typical inflammatory cell death mode, has been increasingly demonstrated to have therapeutic value in inflammatory diseases such as sepsis. However, the mechanisms and therapeutic targets of sepsis remain elusive. Here, we reported that REGγ inhibition promoted pyroptosis by regulating members of the gasdermin family in macrophages. Mechanistically, REGγ directly degraded Bim, a factor of the Bcl-2 family that can inhibit the cleavage of GSDMD/E, ultimately preventing the occurrence of pyroptosis. Furthermore, cecal ligation and puncture (CLP)-induced sepsis model mice showed downregulation of REGγ at both the RNA and protein levels. Gasdermin-mediated pyroptosis was augmented in REGγ-knockout mice, and these mice exhibited more severe sepsis-related tissue injury. More importantly, we found that REGγ expression was downregulated in clinical sepsis samples, such as those from patients with Pseudomonas aeruginosa (PA) infection. Finally, PA-infected mice showed decreased REGγ levels in the lung. In summary, our study reveals that the REGγ-Bim-GSDMD/E pathway is a novel regulatory mechanism of pyroptosis in sepsis-related tissue injury.
Collapse
Affiliation(s)
- Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunyan Zhang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Bo Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiujing Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiming Jing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Jianguo Tang
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Chunhui Yang
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Xiaoli Ge
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shihui Shen
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
| | - Lei Li
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
| | - Chunrong Wu
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
- Department of Emergency Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
32
|
Wickert A, Schwantes A, Fuhrmann DC, Brüne B. Inflammation in a ferroptotic environment. Front Pharmacol 2024; 15:1474285. [PMID: 39372215 PMCID: PMC11449703 DOI: 10.3389/fphar.2024.1474285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which finally culminates in lipid peroxidation and membrane damage. During the past decade, the interest in ferroptosis increased substantially and various regulatory components were discovered. The role of ferroptosis during inflammation and its impact on different immune cell populations is still under debate. Activation of inflammatory pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and hypoxia inducible factors (HIFs) are known to alter the ability of cells to undergo ferroptosis and are closely connected to iron metabolism. During inflammation, iron regulatory systems fundamentally change and cells such as macrophages and neutrophils adapt their metabolism towards iron sequestering phenotypes. In this review, we discuss how ferroptosis alters inflammatory pathways and how iron metabolism under inflammatory conditions affects immune cell ferroptosis.
Collapse
Affiliation(s)
- Anja Wickert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna Schwantes
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
33
|
Huangfu S, Zheng J, He J, Liao J, Jiang H, Zhou H, Pan J. Protective role of seleno-amino acid against IBD via ferroptosis inhibition in enteral nutrition therapy. iScience 2024; 27:110494. [PMID: 39290833 PMCID: PMC11407031 DOI: 10.1016/j.isci.2024.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024] Open
Abstract
The interplay between intestinal barrier degradation and trace element insufficiency worsens inflammatory bowel disease (IBD). Selenium (se) is essential for glutathione peroxidase 4 (GPX4) synthesis, which protects against intestinal epithelial cell injury in IBD. However, malnutrition and malabsorption limit the availability of dietary selenium. This study investigated the protective effects of naturally occurring seleno-amino acids on the intestinal barrier in an IBD animal model by promoting GPX4 synthesis. L-se-methylselenocystine (seMc) supplementation reversed decreased GPX4 expression levels, alleviated glutathione depletion and scavenged reactive oxygen species in vitro. In vivo, enteral nutrition combined with seMc protected the intestinal barrier and alleviated IBD-related symptoms by inhibiting ferroptosis and reversing lipid peroxidation in epithelial cells while reducing immune cell infiltration. Our findings suggest that seleno-amino acid-based nutritional formulations may provide a basis for nutritional support to alleviate complex cycles between intestinal barrier damage and malnutrition in IBD patients.
Collapse
Affiliation(s)
- Shuchen Huangfu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiashuai He
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jin Liao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Haiping Jiang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jinghua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
34
|
Xu Y, Qu X, Liang M, Huang D, Jin M, Sun L, Chen X, Liu F, Qiu Z. Focus on the role of calcium signaling in ferroptosis: a potential therapeutic strategy for sepsis-induced acute lung injury. Front Med (Lausanne) 2024; 11:1457882. [PMID: 39355841 PMCID: PMC11442327 DOI: 10.3389/fmed.2024.1457882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
By engaging in redox processes, ferroptosis plays a crucial role in sepsis-induced acute lung injury (ALI). Although iron stimulates calcium signaling through the stimulation of redox-sensitive calcium pathways, the function of calcium signals in the physiological process of ferroptosis in septic ALI remains unidentified. Iron homeostasis disequilibrium in ferroptosis is frequently accompanied by aberrant calcium signaling. Intracellular calcium overflow can be a symptom of dysregulation of the cellular redox state, which is characterized by iron overload during the early phase of ferroptosis. This can lead to disruptions in calcium homeostasis and calcium signaling. The mechanisms controlling iron homeostasis and ferroptosis are reviewed here, along with their significance in sepsis-induced acute lung injury, and the potential role of calcium signaling in these processes is clarified. We propose that the development of septic acute lung injury is a combined process involving the bidirectional interaction between iron homeostasis and calcium signaling. Our goal is to raise awareness about the pathophysiology of sepsis-induced acute lung injury and investigate the relationship between these mechanisms and ferroptosis. We also aimed to develop calcium-antagonistic therapies that target ferroptosis in septic ALI and improve the quality of survival for patients suffering from acute lung injury.
Collapse
Affiliation(s)
- Yifei Xu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintian Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minyan Jin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianhai Chen
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fen Liu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhanjun Qiu
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Zhu H, Wang J, Miao J, Shen M, Wang H, Huang X, Ni A, Wu H, Chen J, Xiao L, Xie S, Lin W, Han F. SNORD3A Regulates STING Transcription to Promote Ferroptosis in Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400305. [PMID: 38962954 PMCID: PMC11434033 DOI: 10.1002/advs.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Acute kidney injury (AKI) signifies a sudden and prolonged decline in kidney function characterized by tubular cell death and interstitial inflammation. Small nucleolar RNAs (snoRNAs) play pivotal roles in oxidative stress and inflammation, and may play an important role in the AKI process, which remains elusive. an elevated expression of Snord3a is revealed in renal tubules in response to AKI and demonstrates that Snord3a deficiency alleviates renal injury in AKI mouse models. Notably, the deficiency of Snord3a exhibits a mitigating effect on the stimulator of interferon genes (STING)-associated ferroptosis phenotypes and the progression of tubular injury. Mechanistically, Snord3a is shown to regulate the STING signaling axis via promoting STING gene transcription; administration of Snord3a antisense oligonucleotides establishes a significant therapeutic advantage in AKI mouse models. Together, the findings elucidate the transcription regulation mechanism of STING and the crucial roles of the Snord3a-STING axis in ferroptosis during AKI, underscoring Snord3a as a potential prognostic and therapeutic target for AKI.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Junni Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Jin Miao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Mingdi Shen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Xiaohan Huang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Anqi Ni
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Liang Xiao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China
| | - Weiqiang Lin
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, China
| |
Collapse
|
36
|
Liu Z, Ting Y, Li M, Li Y, Tan Y, Long Y. From immune dysregulation to organ dysfunction: understanding the enigma of Sepsis. Front Microbiol 2024; 15:1415274. [PMID: 39252831 PMCID: PMC11381394 DOI: 10.3389/fmicb.2024.1415274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Sepsis is a syndrome precipitated by immune dysregulation in response to infection, and represents a pivotal factor in global mortality attributed to diseases. The recent consensus delineates sepsis as a perilous state of organ dysfunction arising from the host's maladaptive reaction to infection. It masks the complexity and breadth of the immune mechanisms involved in sepsis, which is characterized by simultaneous hyperinflammation and immunosuppression. Sepsis is highly correlated with the dysregulation of immune response, which is mainly mediated by various immune cells and their interactions. This syndrome can lead to a plethora of complications, encompassing systemic inflammatory response, metabolic disturbances, infectious shock, MODS, and DIC. Furthermore, more research studies have been conducted on sepsis in the past few years. The pathological characteristics of sepsis have been improved or treated by targeting signaling pathways like NF-B, JAK-STAT, PI3K-Akt, and p38-MAPK. Combined drug therapy is better than single drug therapy for sepsis. This article will review the latest progress in the pathogenesis and treatment of sepsis.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yuan Ting
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Miao Li
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, China
- Medical College, Jishou University, Xiangxi Tujia and Miao Autonomous Prefecture, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| |
Collapse
|
37
|
Shi R, Bai C, Sun S, Wang F, Li C, Wang C, Hu L, Zhao Z, Guo Q, Du G, Xu D, Chen AF, Yang W. Identification of ferroptosis-related key genes associated with immune infiltration in sepsis by bioinformatics analysis and in vivo validation. Gene 2024; 918:148482. [PMID: 38649061 DOI: 10.1016/j.gene.2024.148482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES Sepsis is a life-threatening infectious disease in which an immune inflammatory response is triggered. The potential effect of ferroptosis-related genes (FRGs) in inflammation of sepsis remained unclear. We focused on identifying and validating core FRGs and their association with immune infiltration in blood from currently all patients with sepsis. METHODS All current raw data of septic blood were obtained from Gene Expression Omnibus. After removing the batch effect merging into a complete dataset and obtaining Diferentially expressed genes (DEGs). Common cross-talk genes were identified from DEGs and FRGs. WGCNA, GO, KEGG, PPI, GESA, ROC curves, and LASSO regression analysis were performed to indentify and validate key genes based on external septic datasets. Infiltrated immune cells in 2 hub genes (MAPK14 and ACSL4) were conducted using CIBERSORT algorithm and Spearman correlation analysis. Further, the expressions of 2 core FRGs were verified in the LPS-induced ALI and cardiac injury sepsis mice. RESULTS MAPK14 and ACSL4 were identified, mostly enriched in T cell infiltration through NOD-like receptor signaling pathway according to the high or low 2 hub genes expression. The upregulated 2 ferroptosis-related genes were validated in LPS-induced ALI and cardiac injury mice, accompanied by upregulation of the NLRP3 pathway. CONCLUSION MAPK14 and ACSL4 could become robustly reliable and promising biomarkers for sepsis by regulating ferroptosis through the NLRP3 pathway, which is mainly associated with T-cell infiltration.
Collapse
Affiliation(s)
- Rui Shi
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
| | - Chunyun Bai
- Yunnan Institute for Food and Drug Control, Kunming, China.
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China.
| | - Fang Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Chaozhong Li
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Chongyu Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
| | - Lidan Hu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Ziwen Zhao
- Department of Cardiac Surgery, Yunnan Fuwai Cardiovascular Hospital, Kunming Medical University, Kunming, China.
| | - Qiuzhe Guo
- Department of Cardiac Surgery, Yunnan Fuwai Cardiovascular Hospital, Kunming Medical University, Kunming, China.
| | - Guanhua Du
- Institute of Materia Medica Chinese Academy of Medical Sciences, Beijing, China.
| | - Dan Xu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weimin Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
| |
Collapse
|
38
|
Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol 2024; 15:1434688. [PMID: 39040114 PMCID: PMC11260823 DOI: 10.3389/fimmu.2024.1434688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Sepsis is described as a life-threatening organ dysfunction and a heterogeneous syndrome that is a leading cause of morbidity and mortality in intensive care settings. Severe sepsis could incite an uncontrollable surge of inflammatory cytokines, and the host immune system's immunosuppression could respond to counter excessive inflammatory responses, characterized by the accumulated anti-inflammatory cytokines, impaired function of immune cells, over-proliferation of myeloid-derived suppressor cells and regulatory T cells, depletion of immune effector cells by different means of death, etc. In this review, we delve into the underlying pathological mechanisms of sepsis, emphasizing both the hyperinflammatory phase and the associated immunosuppression. We offer an in-depth exploration of the critical mechanisms underlying sepsis, spanning from individual immune cells to a holistic organ perspective, and further down to the epigenetic and metabolic reprogramming. Furthermore, we outline the strengths of artificial intelligence in analyzing extensive datasets pertaining to septic patients, showcasing how classifiers trained on various clinical data sources can identify distinct sepsis phenotypes and thus to guide personalized therapy strategies for the management of sepsis. Additionally, we provide a comprehensive summary of recent, reliable biomarkers for hyperinflammatory and immunosuppressive states, facilitating more precise and expedited diagnosis of sepsis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
40
|
Le Y, Liu Q, Yang Y, Wu J. The emerging role of nuclear receptor coactivator 4 in health and disease: a novel bridge between iron metabolism and immunity. Cell Death Discov 2024; 10:312. [PMID: 38961066 PMCID: PMC11222541 DOI: 10.1038/s41420-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) has recently been recognized as a selective cargo receptor of ferritinophagy participating in ferroptosis. However, NCOA4 is also a coactivator that modulates the transcriptional activity of many vital nuclear receptors. Recent novel studies have documented the role of NCOA4 in healthy and pathogenic conditions via its modulation of iron- and non-iron-dependent metabolic pathways. NCOA4 exhibits non-ferritinophagic and iron-independent features such as promoting tumorigenesis and erythropoiesis, immunomodulation, regulating autophagy, and participating in DNA replication and mitosis. Full-length human-NCOA4 is composed of 614 amino acids, of which the N-terminal (1-237) contains nuclear-receptor-binding domains, while the C-terminal (238-614) principally contains a ferritin-binding domain. The exploration of the protein structure of NCOA4 suggests that NCOA4 possesses additional significant and complex functions based on its structural domains. Intriguingly, another three isoforms of NCOA4 that are produced by alternative splicing have been identified, which may also display disparate activities in physiological and pathological processes. Thus, NCOA4 has become an important bridge that encompasses interactions between immunity and metabolism. In this review, we outline the latest advances in the important regulating mechanisms underlying NCOA4 actions in health and disease conditions, providing insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yue Le
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qinjie Liu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Jie Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
- Research Center of Surgery, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210021, China.
| |
Collapse
|
41
|
Ying Q, Rong J, Hong M, Heng Z, Zhang Z, Xu Y. The emerging role of adaptor proteins in regulating innate immunity of sepsis. Pharmacol Res 2024; 205:107223. [PMID: 38797359 DOI: 10.1016/j.phrs.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Sepsis is a life-threatening syndrome caused by a dysregulated immune response. A large number of adaptor proteins have been found to play a pivotal role in sepsis via protein-protein interactions, thus participating in inflammatory cascades, leading to the generation of numerous inflammatory cytokines, as well as oxidative stress and regulated cell death. Although available strategies for the diagnosis and management of sepsis have improved, effective and specific treatments are lacking. This review focuses on the emerging role of adaptor proteins in regulating the innate immunity of sepsis and evaluates the potential value of adaptor protein-associated therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Qiaoyu Ying
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zetao Heng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaocai Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
42
|
Feng Z, Luan M, Zhu W, Xing Y, Ma X, Wang Y, Jia Y. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol 2024; 98:2007-2018. [PMID: 38602537 DOI: 10.1007/s00204-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Collapse
Affiliation(s)
- Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
43
|
Zhou Y, Bai L, Tang W, Yang W, Sun L. Research progress in the pathogenesis of sepsis-associated encephalopathy. Heliyon 2024; 10:e33458. [PMID: 39027435 PMCID: PMC11254713 DOI: 10.1016/j.heliyon.2024.e33458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a syndrome that causes dysfunction of multiple organs due to the host's uncontrolled response to infection and is a significant contributor to morbidity and mortality in intensive care units worldwide. Surviving patients are often left with acute brain injury and long-term cognitive impairment, known as sepsis-associated encephalopathy (SAE). In recent years, researchers have directed their focus towards the pathogenesis of SAE. However, due to the complexity of its development, there remains a lack of effective treatment measures that arise as a serious issue affecting the prognosis of sepsis patients. Further research on the possible causes of SAE aims to provide clinicians with potential therapeutic targets and help develop targeted prevention strategies. This paper aims to review recent research on the pathogenesis of SAE, in order to enhance our understanding of this syndrome.
Collapse
Affiliation(s)
- Yue Zhou
- Teaching Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Bai
- Department of Medical Oncology, Dalian NO.3 People's Hospital, Dalian, 116091, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
44
|
Jiang J, Zhou X, Chen H, Wang X, Ruan Y, Liu X, Ma J. 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134319. [PMID: 38657511 DOI: 10.1016/j.jhazmat.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18β-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18β-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
45
|
Han Y, Qiu L, Wu H, Song Z, Ke P, Wu X. Focus on the cGAS-STING Signaling Pathway in Sepsis and Its Inflammatory Regulatory Effects. J Inflamm Res 2024; 17:3629-3639. [PMID: 38855170 PMCID: PMC11162626 DOI: 10.2147/jir.s465978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
Sepsis is a severe systemic inflammatory response commonly occurring in infectious diseases, caused by infection with virulent pathogens. In the pathogenesis of sepsis, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway serves a crucial role as a fundamental immunoregulatory mechanism. This signaling pathway activates STING upon recognizing intracellular DNA damage and pathogen-derived DNA, subsequently inducing the production of numerous inflammatory mediators, including interferon and inflammatory cytokines, which in turn trigger an inflammatory response. The aim of this paper is to explore the activation mechanism of the cGAS-STING signaling pathway in sepsis and its impact on inflammatory regulation. By delving into the mechanism of action of the cGAS-STING signaling pathway in sepsis, we aim to identify new therapeutic strategies for the treatment and prevention of sepsis.
Collapse
Affiliation(s)
- Yupeng Han
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Liangcheng Qiu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Haixing Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Zhiwei Song
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Peng Ke
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
46
|
Lyu S, Zhang T, Peng P, Cao D, Ma L, Yu Y, Dong Y, Qi X, Wei C. Involvement of cGAS/STING Signaling in the Pathogenesis of Candida albicans Keratitis: Insights From Genetic and Pharmacological Approaches. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 38848078 PMCID: PMC11166223 DOI: 10.1167/iovs.65.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose Fungal keratitis (FK) is an invasive corneal infection associated with significant risk to vision. Although the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway has been recognized for its role in defending against viral infections, its involvement in FK still remains largely unclear. This study sought to elucidate the contribution of the cGAS/STING signaling pathway to the pathogenesis of FK. Methods The expression of cGAS/STING signaling components was assessed in a murine model of Candida albicans keratitis through RNA sequencing, western blot analysis, immunofluorescence staining, and real-time PCR. Both genetic (utilizing Sting1gt/gt mice) and pharmacological (using C176) interventions were employed to inhibit STING activity, allowing for the evaluation of resultant pathogenic alterations in FK using slit-lamp examination, clinical scoring, hematoxylin and eosin (H&E) staining, fungal culture, and RNA sequencing. Subconjunctival administration of the NOD-like receptor protein 3 (NLRP3) inflammasome inhibitor MCC950 was performed to evaluate FK manifestations following STING activity blockade. Furthermore, the impact of the STING agonist diABZI on FK progression was investigated. Results Compared to uninfected corneas, those infected with C. albicans exhibited increased expression of cGAS/STING signaling components, as well as its elevated activity. Inhibiting cGAS/STING signaling exacerbated the advancement of FK, as evidenced by elevated clinical scores, augmented fungal load, and heightened inflammatory response, including NLRP3 inflammasome activation and pyroptosis. Pharmacological inhibition of the NLRP3 inflammasome effectively mitigated the exacerbated FK by suppressing STING activity. Conversely, pre-activation of STING exacerbated FK progression compared to the PBS control, characterized by increased fungal burden and reinforced inflammatory infiltration. Conclusions This study demonstrates the essential role of the cGAS/STING signaling pathway in FK pathogenesis and highlights the necessity of its proper activation for the host against FK.
Collapse
Affiliation(s)
- Shanmei Lyu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Zhang
- Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, Shandong, China
| | - Peng Peng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Dingwen Cao
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yang Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xiaolin Qi
- Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|
47
|
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJ, Simon HU, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein DC, Chi JT, Zhang DD, Li C, Toyokuni S, Liu J, Roh JL, Dai E, Juhasz G, Liu W, Zhang J, Yang M, Liu J, Zhu LQ, Zou W, Piacentini M, Ding WX, Yue Z, Xie Y, Petersen M, Gewirtz DA, Mandell MA, Chu CT, Sinha D, Eftekharpour E, Zhivotovsky B, Besteiro S, Gabrilovich DI, Kim DH, Kagan VE, Bayir H, Chen GC, Ayton S, Lünemann JD, Komatsu M, Krautwald S, Loos B, Baehrecke EH, Wang J, Lane JD, Sadoshima J, Yang WS, Gao M, Münz C, Thumm M, Kampmann M, Yu D, Lipinski MM, Jones JW, Jiang X, Zeh HJ, Kang R, Klionsky DJ, Kroemer G, Tang D. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 2024; 20:1213-1246. [PMID: 38442890 PMCID: PMC11210914 DOI: 10.1080/15548627.2024.2319901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrey S. Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ciro Isidoro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Werner J.H. Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer-University of Liège, Liège, Belgium
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Donna D. Zhang
- Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Enyong Dai
- The Second Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gabor Juhasz
- Biological Research Center, Institute of Genetics, Szeged, Hungary
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangchun Xie
- Department of Oncology, Central South University, Changsha, Hunan, China
| | - Morten Petersen
- Functional genomics, Department of Biology, Copenhagen University, Denmark
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, USA
| | - Charleen T. Chu
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Wilmer Eye lnstitute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Europe
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sébastien Besteiro
- LPHI, University Montpellier, CNRS, Montpellier, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Valerian E. Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, USA
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Scott Ayton
- Florey Institute, University of Melbourne, Parkville, Australia
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine, Bunkyo-ku Tokyo, Japan
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jon D. Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Junichi Sadoshima
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John’s University, New York City, NY, USA
| | - Minghui Gao
- The HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Martin Kampmann
- Department of Biochemistry & Biophysics, University of California, San Francisco, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, Australia
- Faculty of Medicine, Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Marta M. Lipinski
- Department of Anesthesiology & Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
48
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
49
|
Zhang J, Du J, Liu D, Zhuo J, Chu L, Li Y, Gao L, Xu M, Chen W, Huang W, Xie L, Chen J, Meng X, Zou F, Cai S, Dong H. Polystyrene microplastics induce pulmonary fibrosis by promoting alveolar epithelial cell ferroptosis through cGAS/STING signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116357. [PMID: 38677073 DOI: 10.1016/j.ecoenv.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Polystyrene microplastics (PS-MPs) are new types of environmental pollutant that have garnered significant attention in recent years since they were found to cause damage to the human respiratory system when they are inhaled. The pulmonary fibrosis is one of the serious consequences of PS-MPs inhalation. However, the impact and underlying mechanisms of PS-MPs on pulmonary fibrosis are not clear. In this study, we studied the potential lung toxicity and PS-MPs-developed pulmonary fibrosis by long-term intranasal inhalation of PS-MPs. The results showed that after exposing to the PS-MPs, the lungs of model mouse had different levels of damage and fibrosis. Meanwhile, exposing to the PS-MPs resulted in a markedly decrease in glutathione (GSH), an increase in malondialdehyde (MDA), and iron overload in the lung tissue of mice and alveolar epithelial cells (AECs). These findings suggested the occurrence of PS-MP-induced ferroptosis. Inhibitor of ferroptosis (Fer-1) had alleviated the PS-MPs-induced ferroptosis. Mechanically, PS-MPs triggered cell ferroptosis and promoted the development of pulmonary fibrosis via activating the cGAS/STING signaling pathway. Inhibition of cGAS/STING with G150/H151 attenuated pulmonary fibrosis after PS-MPs exposure. Together, these data provided novel mechanistic insights of PS-MPs-induced pulmonary fibrosis and a potential therapeutic paradigm.
Collapse
Affiliation(s)
- Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqun Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Respiratory and Critical Care Medicine, Ganzhou people's Hospital, Ganzhou, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wufeng Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingyan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
50
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|