1
|
Packer M, Ferreira JP, Butler J, Filippatos G, Januzzi JL, González Maldonado S, Panova-Noeva M, Pocock SJ, Prochaska JH, Saadati M, Sattar N, Sumin M, Anker SD, Zannad F. Reaffirmation of Mechanistic Proteomic Signatures Accompanying SGLT2 Inhibition in Patients With Heart Failure: A Validation Cohort of the EMPEROR Program. J Am Coll Cardiol 2024; 84:1979-1994. [PMID: 39217550 DOI: 10.1016/j.jacc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors exert a distinctive pattern of direct biological effects on the heart and kidney under experimental conditions, but the meaningfulness of these signatures for patients with heart failure has not been fully defined. OBJECTIVES We performed the first mechanistic validation study of large-scale proteomics in a double-blind randomized trial of any treatment in patients with heart failure. METHODS In a discovery cohort from the EMPEROR (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure and Reduced Ejection Fraction) program, we studied the effect of randomized treatment with placebo or empagliflozin on 1,283 circulating proteins in 1,134 patients with heart failure with a reduced or preserved ejection fraction. In a validation cohort, we expanded the number to 2,155 assessed proteins, which were measured in 1,120 EMPEROR participants who had not been studied previously. RESULTS In the validation cohort, 25 proteins were the most differentially enriched by empagliflozin (ie, ≥15% between-group difference and false discovery rate <1% at 12 weeks with known effects on the heart or kidney): 1) 13 proteins promote autophagy and other cellular quality-control functions (IGFBP1, OTUB1, DNAJB1, DNAJC9, RBP2, IST1, HSPA8, H-FABP, FABP6, ATPIFI, TfR1, EPO, IGBP1); 2) 12 proteins enhance mitochondrial health and ATP production (UMtCK, TBCA, L-FABP, H-FABP, FABP5, FABP6, RBP2, IST1, HSPA8, ATPIFI, TfR1, EPO); 3) 7 proteins augment cellular iron mobilization or erythropoiesis (TfR1, EPO, IGBP1, ERMAP, UROD, ATPIF1, SNCA); 4) 3 proteins influence renal tubular sodium handling; and 5) 9 proteins have restorative effects in the heart or kidneys, with many proteins exerting effects in >1 domain. These biological signatures replicated those observed in our discovery cohort. When the threshold for a meaningful between-group difference was lowered to ≥10%, there were 58 additional differentially enriched proteins with actions on the heart and kidney, but the biological signatures remained the same. CONCLUSIONS The replication of mechanistic signatures across discovery and validation cohorts closely aligns with the experimental effects of SGLT2 inhibitors. Thus, the actions of SGLT2 inhibitors-to promote autophagy, restore mitochondrial health and production of ATP, promote iron mobilization and erythropoiesis, influence renal tubular ion reabsorption, and normalize cardiac and renal structure and function-are likely to be relevant to patients with heart failure. (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction [EMPEROR-Preserved], NCT03057951; EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction [EMPEROR-Reduced], NCT03057977).
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College London, London, United Kingdom.
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - James L Januzzi
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece; Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | | | - Marina Panova-Noeva
- Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany; Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jürgen H Prochaska
- Boehringer Ingelheim International GmbH, Ingelheim, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maral Saadati
- Elderbrook Solutions GmbH, on behalf of Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France; F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| |
Collapse
|
2
|
Yang H, Yang M, Zhang Y, Shi Z, Zhang X, Zhang C. Elevated serum IGFBP-1 levels correlate with cognitive deficits in treatment-resistant and chronic medicated schizophrenia patients. Cytokine 2024; 182:156728. [PMID: 39126767 DOI: 10.1016/j.cyto.2024.156728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Schizophrenia is a debilitating psychiatric disorder with diverse cognitive impairments. Insulin-like growth factor binding protein 1 (IGFBP-1), a ubiquitous negative regulator of IGF signaling, crosses the blood-brain barrier after peripheral synthesis. Given the crucial role of IGF signaling in cognitive function, we reasoned that altered serum IGFBP-1 concentrations might be associated with cognitive impairments in schizophrenia. To test this hypothesis, we examined the relationship between serum IGFBP-1 levels and cognitive performance in both medicated and treatment-resistant schizophrenia (TRS) patients. METHODS Serum IGFBP-1 was measured in 31 TRS patients, 49 chronic medicated schizophrenia (CMS) patients, and 53 healthy controls. Clinical symptom severity was evaluated using the Positive and Negative Syndrome Scale (PANSS) and cognitive functions using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS Both TRS and CMS patients exhibited cognitive deficits compared to healthy controls (p < 0.05). Serum IGFBP-1 concentration differed significantly among groups (F=36.805, p < 0.001) and post hoc tests demonstrated significantly higher concentrations in both schizophrenia groups compared to controls (p < 0.001). Further, serum IGFBP-1 concentration was higher in the TRS group than the CMS group (p = 0.048). Correlation analysis identified a significant relationship between serum IGFBP-1 and attention in the TRS group (r = 0.411, p = 0.021), immediate memory in the CMS group (r = -0.417, p = 0.003), and RBANS total score in the CMS group (r = -0.368, p = 0.009). Multiple regression analysis adjusting for confounding factors revealed that serum IGFBP-1 was independently associated with attention in TRS patients (p = 0.016, 95 %CI. 0.002-0.015) and immediate memory in CMS patients (p = 0.022, 95 %CI-0.012 to -0.001). CONCLUSIONS Elevated serum IGFBP-1 concentration may serve as a predictive biomarker for distinct cognitive deficits in TRS and CMS patients. Further investigations are warranted.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China; Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China.
| | - Yuting Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China.
| | - Zhihui Shi
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| | - Caiyi Zhang
- Department of Psychiatry, The Second Medical College of Xuzhou Medical University, Xuzhou, 221004, China; Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
4
|
Stokes S, Palmer PP, Barth JL, Price RL, Parker BG, Evans Anderson HJ. Gene expression and cellular changes in injured myocardium of Ciona intestinalis. Front Cell Dev Biol 2024; 12:1304755. [PMID: 38544819 PMCID: PMC10965623 DOI: 10.3389/fcell.2024.1304755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/31/2024] [Indexed: 11/03/2024] Open
Abstract
Ciona intestinalis is an invertebrate animal model system that is well characterized and has many advantages for the study of cardiovascular biology. The regulatory mechanisms of cardiac myocyte proliferation in Ciona are intriguing since regeneration of functional tissue has been demonstrated in other organs of Ciona in response to injury. To identify genes that are differentially expressed in response to Ciona cardiac injury, microarray analysis was conducted on RNA from adult Ciona hearts with normal or damaged myocardium. After a 24- or 48-h recovery period, total RNA was isolated from damaged and control hearts. Initial results indicate significant changes in gene expression in hearts damaged by ligation in comparison to control hearts. Ligation injury shows differential expression of 223 genes as compared to control with limited false discovery (5.8%). Among these 223 genes, 117 have known human orthologs of which 68 were upregulated and 49 were downregulated. Notably, Fgf9/16/20, insulin-like growth factor binding protein and Ras-related protein Rab11b were significantly upregulated in injured hearts, whereas expression of a junctophilin ortholog was decreased. Histological analyses of injured myocardium were conducted in parallel to the microarray study which revealed thickened myocardium in injured hearts. Taken together, these studies will connect differences in gene expression to cellular changes in the myocardium of Ciona, which will help to promote further investigations into the regulatory mechanisms of cardiac myocyte proliferation across chordates.
Collapse
Affiliation(s)
- Serenity Stokes
- Central Piedmont Community College, Natural Sciences Division, Charlotte, NC, United States
| | - Pooja Pardhanani Palmer
- Atrium Health, Division of Community and Social Impact, Department of Community Health, Charlotte, NC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Proteogenomics Facility, Charleston, SC, United States
| | - Robert L. Price
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Bella G. Parker
- Department of Biology, Stetson University, DeLand, FL, United States
| | | |
Collapse
|
5
|
Tang X, Weng R, Guo G, Wei J, Wu X, Chen B, Liu S, Zhong Z, Chen X. USP10 regulates macrophage inflammation responses via stabilizing NEMO in LPS-induced sepsis. Inflamm Res 2023; 72:1621-1632. [PMID: 37436447 DOI: 10.1007/s00011-023-01768-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory response syndrome characterized by persistent inflammation and immunosuppression, leading to septic shock and multiple organ dysfunctions. Ubiquitin-specific peptidase 10 (USP10), a deubiquitinase enzyme, plays a vital role in cancer and arterial restenosis, but its involvement in sepsis is unknown. OBJECTIVE In this study, we investigated the significance of USP10 in lipopolysaccharide (LPS)-stimulated macrophages and its biological roles in LPS-induced sepsis. METHODS Lipopolysaccharides (LPS) were used to establish sepsis models in vivo and in vitro. We use western blot to identify USP10 expression in macrophages. Spautin-1 and USP10-siRNA were utilized for USP10 inhibition. ELISA assays were used to assess for TNF-α and IL-6 in vitro and in vivo. Nuclear and cytoplasmic protein extraction and Confocal microscopy were applied to verify the translocation of NF-κB. Mechanically, co-immunoprecipitation and rescue experiments were used to validate the regulation of USP10 and NEMO. RESULTS In macrophages, we found that LPS induced USP10 upregulation. The inhibition or knockdown of USP10 reduced the pro-inflammatory cytokines TNF-α and IL-6 and suppressed LPS-induced NF-κB activation by regulating the translocation of NF-κB. Furthermore, we found that NEMO, the regulatory subunit NF-κB essential modulator, was essential for the regulation of LPS-induced inflammation by USP10 in macrophages. NEMO protein evidently interacted with USP10, whereby USP10 inhibition accelerated the degradation of NEMO. Suppressing USP10 significantly attenuated inflammatory responses and improved the survival rate in LPS-induced sepsis mice. CONCLUSIONS Overall, USP10 was shown to regulate inflammatory responses by stabilizing the NEMO protein, which may be a potential therapeutic target for sepsis-induced lung injury.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Medical Research and Experimental Center, Meizhou People's Hospital, No.63 Huangtang Road, Meijiang District, Meizhou, 514031, Guangdong, China
| | - Ruiqiang Weng
- Medical Research and Experimental Center, Meizhou People's Hospital, No.63 Huangtang Road, Meijiang District, Meizhou, 514031, Guangdong, China
| | - Guixian Guo
- Medical Research and Experimental Center, Meizhou People's Hospital, No.63 Huangtang Road, Meijiang District, Meizhou, 514031, Guangdong, China
| | - Juexian Wei
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xueqiang Wu
- Medical Research and Experimental Center, Meizhou People's Hospital, No.63 Huangtang Road, Meijiang District, Meizhou, 514031, Guangdong, China
| | - Bin Chen
- Department of Emergency, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China
| | - Sudong Liu
- Medical Research and Experimental Center, Meizhou People's Hospital, No.63 Huangtang Road, Meijiang District, Meizhou, 514031, Guangdong, China
| | - Zhixiong Zhong
- Medical Research and Experimental Center, Meizhou People's Hospital, No.63 Huangtang Road, Meijiang District, Meizhou, 514031, Guangdong, China.
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
6
|
Hazra R, Hubert H, Little-Ihrig L, Ghosh S, Ofori-Acquah S, Hu X, Novelli EM. Insulin-like Growth Factor-1 Prevents Hypoxia/Reoxygenation-Induced White Matter Injury in Sickle Cell Mice. Biomedicines 2023; 11:biomedicines11030692. [PMID: 36979670 PMCID: PMC10045140 DOI: 10.3390/biomedicines11030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Occlusion of cerebral blood vessels causes acute cerebral hypoxia—an important trigger of ischemic white matter injury and stroke in sickle cell disease (SCD). While chronic hypoxia triggers compensatory neuroprotection via insulin-like growth factor-1 (IGF-1) and hypoxia inducible factor-1α (HIF-1α), severe bouts of acute hypoxia and subsequent restoration of blood flow (hypoxia/reoxygenation, H/R) overwhelm compensatory mechanisms and cause neuroaxonal damage–identified as white matter lesions–in the brain. The neuroprotective role of IGF-1 in the pathogenesis of white matter injury in SCD has not been investigated; however, it is known that systemic IGF-1 is reduced in individuals with SCD. We hypothesized that IGF-1 supplementation may prevent H/R-induced white matter injury in SCD. Transgenic sickle mice homozygous for human hemoglobin S and exposed to H/R developed white matter injury identified by elevated expression of non-phosphorylated neurofilament H (SMI32) with a concomitant decrease in myelin basic protein (MBP) resulting in an increased SMI32/MBP ratio. H/R-challenge also lowered plasma and brain IGF-1 expression. Human recombinant IGF-1 prophylaxis significantly induced HIF-1α and averted H/R-induced white matter injury in the sickle mice compared to vehicle-treated mice. The expression of the IGF-1 binding proteins IGFBP-1 and IGFBP-3 was elevated in the IGF-1-treated brain tissue indicating their potential role in mediating neuroprotective HIF-1α signaling. This study provides proof-of-concept for IGF-1-mediated neuroprotection in SCD.
Collapse
Affiliation(s)
- Rimi Hazra
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-412-648-9427
| | - Holland Hubert
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lynda Little-Ihrig
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Samit Ghosh
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Solomon Ofori-Acquah
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Enrico M Novelli
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Lee KN, Cho I, Im EM, Oh E, Park KH. Plasma IGFBP-1, Fas, kallistatin, and P-selectin as predictive biomarkers of histologic chorioamnionitis and associated intra-amniotic infection in women with preterm labor. Am J Reprod Immunol 2023; 89:e13645. [PMID: 36318832 DOI: 10.1111/aji.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022] Open
Abstract
PROBLEM To determine whether altered levels of 13 plasma biomarkers, alone or in combination, could be independently associated with histologic chorioamnionitis (HCA) and microbial-associated HCA (defined as the presence of HCA along with microbial invasion) in women with preterm labor (PTL). METHODS OF STUDY This was a retrospective cohort study involving 77 singleton pregnant women with PTL (23-34 gestational weeks) who delivered within 96 h of plasma and amniotic fluid (AF) sampling. DKK-3, E-selectin, Fas, haptoglobin, IGFBP-1, kallistatin, MMP-2, MMP-8, pentraxin 3, progranulin, P-selectin, SAA4, and TGFBI levels were assayed in plasma samples by ELISA. AF obtained via amniocentesis was used for microorganism identification. RESULTS Multiple logistic regression analyses revealed significant associations between low plasma IGFBP-1 levels and acute HCA, and between low plasma Fas and kallistatin levels, and elevated plasma P-selectin levels and microbial-associated HCA (all p < .05), after adjusting for gestational age. Using a stepwise regression procedure, a multi-biomarker panel for microbial-associated HCA was developed, which included plasma MMP-2, kallistatin, and P-selectin levels (area under the curve [AUC], .867). The AUC for this three-marker panel was significantly or borderline significantly greater than that of any single variable included in the panel. However, a predictive model for acute HCA could not be developed because only one variable (MMP-2) was selected. CONCLUSIONS These findings demonstrate that IGFBP-1, Fas, kallistatin, and P-selectin are associated with acute HCA and microbial-associated HCA in women with PTL. Their combined use can significantly improve the diagnostic ability for the detection of microbial-associated HCA.
Collapse
Affiliation(s)
- Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Iseop Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Mi Im
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunji Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
8
|
Macvanin M, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. New insights on the cardiovascular effects of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1142644. [PMID: 36843588 PMCID: PMC9947133 DOI: 10.3389/fendo.2023.1142644] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Cardiovascular (CV) disorders are steadily increasing, making them the world's most prevalent health issue. New research highlights the importance of insulin-like growth factor 1 (IGF-1) for maintaining CV health. METHODS We searched PubMed and MEDLINE for English and non-English articles with English abstracts published between 1957 (when the first report on IGF-1 identification was published) and 2022. The top search terms were: IGF-1, cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease. The search retrieved original peer-reviewed articles, which were further analyzed, focusing on the role of IGF-1 in pathophysiological conditions. We specifically focused on including the most recent findings published in the past five years. RESULTS IGF-1, an anabolic growth factor, regulates cell division, proliferation, and survival. In addition to its well-known growth-promoting and metabolic effects, there is mounting evidence that IGF-1 plays a specialized role in the complex activities that underpin CV function. IGF-1 promotes cardiac development and improves cardiac output, stroke volume, contractility, and ejection fraction. Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1 stimulates contractility and tissue remodeling in humans to improve heart function after myocardial infarction. IGF-1 also improves the lipid profile, lowers insulin levels, increases insulin sensitivity, and promotes glucose metabolism. These findings point to the intriguing medicinal potential of IGF-1. Human studies associate low serum levels of free or total IGF-1 with an increased risk of CV and cerebrovascular illness. Extensive human trials are being conducted to investigate the therapeutic efficacy and outcomes of IGF-1-related therapy. DISCUSSION We anticipate the development of novel IGF-1-related therapy with minimal side effects. This review discusses recent findings on the role of IGF-1 in the cardiovascular (CVD) system, including both normal and pathological conditions. We also discuss progress in therapeutic interventions aimed at targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1 mediated by microRNAs.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Mirjana Macvanin,
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Zannad F, Ferreira JP, Butler J, Filippatos G, Januzzi JL, Sumin M, Zwick M, Saadati M, Pocock SJ, Sattar N, Anker SD, Packer M. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur Heart J 2022; 43:4991-5002. [PMID: 36017745 PMCID: PMC9769969 DOI: 10.1093/eurheartj/ehac495] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
AIMS Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in diverse patient populations, but their mechanism of action requires further study. The aim is to explore the effect of empagliflozin on the circulating levels of intracellular proteins in patients with heart failure, using large-scale proteomics. METHODS AND RESULTS Over 1250 circulating proteins were measured at baseline, Week 12, and Week 52 in 1134 patients from EMPEROR-Reduced and EMPEROR-Preserved, using the Olink® Explore 1536 platform. Statistical and bioinformatical analyses identified differentially expressed proteins (empagliflozin vs. placebo), which were then linked to demonstrated biological actions in the heart and kidneys. At Week 12, 32 of 1283 proteins fulfilled our threshold for being differentially expressed, i.e. their levels were changed by ≥10% with a false discovery rate <1% (empagliflozin vs. placebo). Among these, nine proteins demonstrated the largest treatment effect of empagliflozin: insulin-like growth factor-binding protein 1, transferrin receptor protein 1, carbonic anhydrase 2, erythropoietin, protein-glutamine gamma-glutamyltransferase 2, thymosin beta-10, U-type mitochondrial creatine kinase, insulin-like growth factor-binding protein 4, and adipocyte fatty acid-binding protein 4. The changes of the proteins from baseline to Week 52 were generally concordant with the changes from the baseline to Week 12, except empagliflozin reduced levels of kidney injury molecule-1 by ≥10% at Week 52, but not at Week 12. The most common biological action of differentially expressed proteins appeared to be the promotion of autophagic flux in the heart, kidney or endothelium, a feature of 6 proteins. Other effects of differentially expressed proteins on the heart included the reduction of oxidative stress, inhibition of inflammation and fibrosis, and the enhancement of mitochondrial health and energy, repair, and regenerative capacity. The actions of differentially expressed proteins in the kidney involved promotion of autophagy, integrity and regeneration, suppression of renal inflammation and fibrosis, and modulation of renal tubular sodium reabsorption. CONCLUSIONS Changes in circulating protein levels in patients with heart failure are consistent with the findings of experimental studies that have shown that the effects of SGLT2 inhibitors are likely related to actions on the heart and kidney to promote autophagic flux, nutrient deprivation signalling and transmembrane sodium transport.
Collapse
Affiliation(s)
- Faiez Zannad
- Corresponding author. Tel: +33 3 83 15 73 15, Fax: +33 3 83 15 73 24, Emails: ;
| | - João Pedro Ferreira
- Corresponding author. Tel: +33 3 83 15 73 15, Fax: +33 3 83 15 73 24, Emails: ;
| | - Javed Butler
- Heart and Vascular Research, Baylor Scott and White Research Institute, 34 Live Oak St Ste 501, Dallas, TX 75204, USA,University of Mississippi Medical Center, 2500 North State Street Jackson, MS 39216, USA
| | - Gerasimos Filippatos
- Heart Failure Unit, National and Kapodistrian University of Athens School of Medicine, Mikras Asias 75, Athina 115 27 Athens, Greece
| | - James L Januzzi
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114USA,The Baim Institute for Clinical Research, 930 Commonwealth Ave #3, Boston, MA 02215USA
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Binger Str. 173, 55218 Ingelheim am RheinGermany
| | - Matthias Zwick
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der RissGermany
| | - Maral Saadati
- Elderbrook Solutions GmbH on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riss, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HTUK
| | - Naveed Sattar
- BHF, UK School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TAUK
| | - Stefan D Anker
- Department of Cardiology (CVK) Berlin Institute of Health Center for Regenerative Therapies (BCRT) German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany,Institute of Heart Diseases, Wroclaw Medical University, Borowska Street 213, 50-556 Warsaw, Poland
| | - Milton Packer
- Baylor Heart and Vascular Hospital, Baylor University Medical Center, 621 N Hall St, Dallas, TX 75226, USA,Imperial College, London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| |
Collapse
|
10
|
Xu Q, Liu M, Gu J, Ling S, Liu X, Luo Z, Jin Y, Chai R, Ou W, Liu S, Liu N. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1. Cell Death Dis 2022; 8:291. [PMID: 35710902 PMCID: PMC9203583 DOI: 10.1038/s41420-022-01086-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/03/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a complex pathological process that is still not fully understood. The oxidative stress response has a critical role in the occurrence and progression of myocardial ischemia/reperfusion injury. This study investigated the specific mechanism of ubiquitin-specific protease 7 (USP7) regulation of myocardial ischemia/reperfusion injury from the perspective of proteasome degradation and its relation with the Keap1 pathway, a vital regulator of cytoprotective responses to endogenous and exogenous stress induced by reactive oxygen species (ROS) and electrophiles. Our data indicated that USP7 expression is increased during myocardial ischemia/reperfusion injury in mice, while its inhibiting suppressed the generation of oxygen free radicals and myocardial cell apoptosis, reduced myocardial tissue damage, and improved heart function. Mechanistically, USP7 stabilizes Keap1 by regulating its ubiquitination. Taken together, these findings demonstrate the potential therapeutic effect of USP7 on myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Mingke Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jielei Gu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Sisi Ling
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaolin Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhenyu Luo
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yangshuo Jin
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Renjie Chai
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenchao Ou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|